
Response to Referee #1 

We wish to thank the Reviewer for his/her thorough review of our manuscript and for the                
useful comments that helped us improve the quality of the paper. The specific issues              
raised by this Referee are addressed in detail below: 

General Comments 
 
The authors develop a numerical tool for predicting flood hazards in real-time in an              
Andean watershed. The tool is based on a data-driven surrogate model of a             
physically-based hydrological-hydraulic modeling cascade. The topic is interesting and         
well-suited for NHESS.  
The performance of the surrogate model in predicting water depth is, however, lower             
than I would have expected, and calls into question the application of this method in an                
operational version.   
 
We appreciate the positive comments from the Reviewer regarding the topic of our research.              
We would like to clarify this paper intends to show the first approach to use surrogate models as                  
an alternative for water depth predictions in much shorter times than running high-resolution             
hydrologic and hydrodynamic models. While this idea can be used as the base of future               
operational models, we are aware that significant improvements and additional testing should            
be implemented in future research, as we have now discussed in the new version of the paper. 
We apologize for not describing clearly the context of the study region in the original version of                 
the manuscript, in which we should have explained the limitations of the surrogate model              
implementation in the Andes region. As we discussed in the companion paper recently             
published in NHESS (Contreras and Escauriaza, 2020), the main difficulty for predicting the             
flood propagation in the Andes is the very limited historical data and remarkably complex              
terrain. The Quebrada de Ramon watershed has only one water depth gauge with             
discontinuous 40 years of measurements and no rain gauges. Additionally, the magnitude of the              
floods makes measuring discharge even more difficult during storms.  
In this case, we only have a record of 48 events with only one validation point in the entire                   
region. With this limitation, we implemented a surrogate model that requires 4 inputs and              
predicts approximately 88% of the storms with a mean error of 2.22% at the validation point.                
Previous applications of surrogate models using similar methodologies for storm surge           
predictions have been built with 350 storms and 150 validation points, for 4 inputs. Their results                
have been validated with 20 storms with average errors of 4% and 3% for the significant wave                 
height and water level respectively (see Taflanidis et al., 2013, for details). 
While the order of magnitude of the average errors is similar, it is expected that a larger                 
database to build our surrogate model would improve its accuracy, mainly because a wider              
variety of storms would be represented in the historical series.  
As acknowledged by the authors, some storms are predicted with very significant errors.             
In my view, the paper falls short in explaining the reasons behind this and the possible                
ways to improve the model performance.  



In section 4.2, the authors do not observe that the surrogate model does especially good               
or bad depending on the characteristics of the storms (understood here as the values of               
the 4 input parameters), but many other relevant aspects are not explored, such as (1) the                
choice of input parameters itself, (2) the type of surrogate model, or (3) the number of                
events in the database. The latter point is mentioned in the discussion (page 18, lines               
9-11), but is not tested and shown in the results. Please find below some suggested               
readings that can provide insights into these questions:  

Berkhahn, S., Fuchs, L., Neuweiler, I. (2019). An ensemble neural network model            
for real-time prediction of urban floods. Journal of Hydrology, 575, 743-754.  

Bermudez, M., Cea, L., Puertas, J. (2019). A rapid flood inundation model for             
hazard mapping based on least squares support vector machine regression. Journal of            
Flood Risk Management, 12(S1), e12522  

Jhong, B.C., Wang, J.H., & Lin, G.F. (2017). An integrated two-stage support vector             
machine approach to forecast inundation maps during typhoons. Journal of Hydrology,           
547, 236– 252.  

Razavi, S., Tolson, B. A., & Burn, D. H. (2012). Review of surrogate modeling in               
water resources. Water Resources Research, 48(7), W07401.  

 
 

We sincerely thank the Referee for this comment, as we now realize that we did not explain                 
thoroughly the relations and influence of the controlling factors of the extreme flood events in               
this region of the Andes mountains, and especially the process to select the input variables for                
the surrogate model, which is now explained in the new version of the paper. 
 
Our previous research in these regions has shown that the variables that best explain daily               
discharges, particularly for low exceedance probabilities, are the cumulative precipitation over           
the previous 3 days and the minimum temperature on the day of the maximum discharge               
measured at a low elevation in the valley (Castro et al., 2019). This directly justifies the selection                 
of the minimum temperature during the storm as part of the inputs, and underscores the               
importance of the liquid precipitation that occurs in the entire watershed during warm events              
(Contreras and Escauriaza, 2020).  
The cumulative precipitation over the previous 3 days represents a combination of how much              
has rained and the duration of the event, which is also an indication of soil saturation in the                  
watershed. Thus, we selected the mean of the precipitation during each event and the second               
moment of the distribution of precipitation as variables that represent the magnitude of the              
rainfall event and its distribution in time.  
Finally, we consider the sediment concentration that might play a significant role on the flood               
propagation. Contreras and Escauriaza (2020) showed differences on the order of 25% for             
water depths calculated with clear water or 20% of sediment concentration. Additionally,            
differences of up to 0.5 m were observed in the urban area for hyperconcentrated flows. The                
main difficulty regarding the definition of this variable is the uncertainty of sediment             
concentration for each event, as localized landslides, previous recent storms, or interannual            
changes on the vegetation covering have produced different concentrations, which are also            



difficult to measure in extreme flooding conditions. Therefore we selected this variable to             
evaluate potential scenarios, and analyze a flood with the same rainfall event, but under              
different sediment concentrations. 
Magnitudes of sediment concentration have been reported for the largest flood registered in the              
watershed, which was generated during an abnormally warm storm, with periods of intense             
precipitation over partially saturated soils. The sediment concentrations during the events could            
not be directly measured, but it was estimated to be around ~40% (Sepulveda et al., 2006;                
Sepulveda and Rebolledo, 2008). 
 

Regarding the types of surrogate models, we chose the methodology based on kriging             
due to the simplicity of its implementation in sites with limited information. To the best of our                 
knowledge there are no previous studies that have developed surrogate models in ungauged             
mountain regions, therefore we selected a simple model, with the fewest number of parameters              
to calibrate, and keeping the physical meaning of all the inputs and parameters. We carried out                
a systematic study on the number of parameters, reducing and changing the combination of              
inputs, as shown in the following Table, and the model presented was the best in terms of                 
reducing the error of the predictions. 
 

 
 
 
Even if depths are shallow, it is relevant to accurately predict flood extent for operational               
purposes and for extending the methodology to other sites (Page 17, lines 11-13 /Page              
20, lines 5-7 of the manuscript). An additional step might be needed in the tool: a first                 
binary classification model to predict when flooding occurs, and a second one to             
calculate its magnitude ​. ​I suggest evaluating the agreement between the surrogate and            
the physically-based depth maps obtained (ideally for all storms) by means of metrics             
such as the flood area index (a revision of commonly used metrics for this purpose can                
be found in Stephens et al. 2014. Problems with binary pattern measures for flood model               
evaluation. Journal of Hydrology 28 (18), 4928-4937). (Page 17, lines 14-18 / Page 21, line               
19 of the manuscript). 
  
 



We agree with the Reviewer, as shallow depths are also relevant for the analysis of the flooded                 
area, and the metrics proposed by Stephens et al. (2014) have provided information on this               
binary classification for a smaller number of nodes. However, the analysis for all the storms in                
the unsteady flows of our cases, including high spatial resolution that varies in size as we move                 
further away from the channel, makes this specific analysis a formidable task, which is outside               
the scope of the present investigation. We initially focused on the development and validation of               
the surrogate model in a mountain region, with limited available data and based on kriging               
interpolation. 
It is important to emphasize that the nodes that are far from the main channel do not get                  
inundated very often, and they participate in a considerably smaller number of events within the               
database, which adds uncertainty and calls for a careful analysis on this specific point in future                
research. 
 
To provide an analysis of the errors on shallow flooded areas in the present investigation, we                
have now performed an averaged analysis, comparing the outcomes of the surrogate model             
and the deterministic simulations, as shown in the following figure. In this case, we can identify                
in blue and red, specific regions that might show problems with the prediction of shallow               
inundations. 
 

 
 
 
 
 
 
 
 
 
 
Minor comments: 
 



Page 4: Information on lines 9-10 seems to be repeated in lines 30-31. Page 8: How are                 
buildings represented in the mesh of the flood inundation model of the urban area? Is it a                 
building block method?  
Response:  
We have improved the description on how we represent the vegetation and buildings in the               
hydrodynamic model. We modified the lines 9-10 and 30-31 in the new version of the paper, so                 
the information is not repeated. We specify on line 31 that we use a bare Earth or digital terrain                   
model for the hydrological model. On page 8, line 17, we describe how we use a digital surface                  
model (DSM) for the hydrodynamic model, and represent the geometry of buildings in the urban               
area with their elevations in the computational grid. 
 
Page 9, Lines 16-17. “... .the zones where the sediment concentration produces            
significant changes on the velocity and flow depth of the flood” It’s not clear to me how                 
this is shown in Figure 5. 
Response:  
We apologize for not explaining in detail the effects of sediment concentrations, as we              
described them above. We have modified the manuscript to incorporate the adequate details on              
how the sediment concentration modifies the hydrodynamics of the floods in the urban region,              
which is based on the companion paper (Contreras and Escauriaza, (2020), 
 https://doi.org/10.5194/nhess-20-221-2020, 2020. 
 
Page 14, line 22: Please write “event” in full for clarity.  
Response:  
Corrected.  
 
Page 16, line 9: It would be useful to indicate the CPU time to simulate in the                 
physically-based model, for comparison purposes. 
Response:  
In the new version of the manuscript we have incorporated the information about the elapsed               
times for the simulations on page 16 lines 12 and 13. This information highlights the importance                
of the fast response of the surrogate model, which is almost instantaneous, contrasted with 2 to                
3 days of calculation for a high fidelity simulation.  
 
Page 19, lines 21-22: Is this filter applied in this work?  
Response:  
Thanks for clarifying this point. We did not apply this filter to these results. All the errors and                  
standard deviations are influenced by the incorrectly predicted events. We have modified the             
manuscript to recommend filtering the predictions based on large standard deviations. We            
observed that this procedure might be one way to identify predictions with large errors.  
 
Page 21, line 21: “we recommend using values of water depth in surrounding points as               
parts of the inputs for a specific point”. As this possibility has not been tested in the                 
paper, I suggest removing this recommendation. 



Response:  
We deleted the recommendation, following this comment from the Reviewer. 
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