Effects of coupled hydro-mechanical model considering two-phase fluid flow on potential for shallow landslides: a case study in Halmidang Mountain, Yongin, South Korea

Sinhang Kang and Byungmin Kim *

We thank the referee for the insightful comments which truly helped enrich the manuscript. In the revised manuscript, we have clarified contributions of the manuscript. We have also applied the changed coupled hydro-mechanical model considering deformation-dependent water retention behavior with hydraulic hysteresis. For the comments raised by the reviewers, we have provided the point by point responses.

Referee #1's Comments	Responses
The research lacks novelty and has	We revised the following sentences in Lines 49-64
significant shortcomings with regard to	to complement contributions of this work.
the methodology and fails to impress	"Because air flow delays wetting process on soil
upon the reader the need for such a	slope associated with rainfall infiltration (Hu et al.,
complex undertaking instead of the	2011), a neglect of air flow would result in an
traditional single-phase modelling at a	imprecise simulation (Laloui et al., 2003), such as an
regional scale.	overestimation of deformation induced by rainfall
	infiltration (Hu et al., 2016). Effects of deformation
	on water retention behavior should be considered in
	the collapse during wetting process (Hu et al., 2016).
	Water retention curve hysteresis is fundamental for
	the soil–water–air coupling (Ebel et al., 2010; Tsai,
	2011; Borja et al., 2012; Yang et al., 2017), and it
	has significant effects on distribution of water
	content and slope stability (Ma et al., 2011).
	Whereas it has been demonstrated that the coupled
	hydro-mechanical model considering two-phase
	fluid flow and deformation-dependence of water
	retention behavior with hydraulic hysteresis
	accurately simulates the behavior of unsaturated
	deformable soils at a slope scale (e.g., Hu et al.,

	2016; Hu et al., 2018), such models have rarely been
	applied to evaluate slope stability on a regional
	scale.
	Considering efficient uses of computing resources,
	we simplified slopes at cells of the GIS-based
	topography of Halmidang Mountain located in
	Yongin-si, South Korea to be infinite slopes in a two-
	dimensional domain. We applied the coupled hydro-
	mechanical model based on numerical methods to
	those infinite slopes for suitable simulations of slope
	failure induced by rainfall infiltration. The changes
	in pore air/water pressures and void ratios obtained
	from the simulation of rainfall-infiltration were used
	as input data for slope failure analyses at each
	infinite slope model, and the minimum safety factor
	on the infinite slope was determined to be a safety
	factor of the corresponding cell of the GIS-based
	topography."
The use of the Kozeny-Carman equation	Several previous studies have used Kozeny–Carman
(16) to link the volume changes in	equation incorporated in coupled hydro-mechanical
unsaturated soil with the variation of	models to compute the saturated permeability varied
saturated hydraulic conductivity (ks)	depending on porosity (e.g., Chapuis and Aubertin,
doesn't seem reasonable. The Kozeny-	2003; Cho, 2016a; Kim et al., 2016; Kim et al.,
Carman equation is used to roughly	2018). Changes in hydraulic conductivity owing to
predict the vertical saturated hydraulic	volume changes under rainfall infiltration have not
conductivity for homogenised soils. As	exactly quantified, but it is clear that variations in
far as I am aware Chapuis and Aubertin	void of soil affect permeability (Hu et al., 2011), and
(2003) or any other studies have not	Hu et al. (2013) and Hu et al. (2018) have applied an
tested the equation to model volume	equation to predict the permeability of deformable
change behaviours like swelling or	unsaturated soils. We also applied their equation
collapse under saturated or unsaturated	incorporated in the coupled hydro-mechanical
conditions. Whilst procedures to	model. We revised the following sentences in Lines
measure the volume change in	190–198.
unsaturated condition exists, the	"Chapuis and Aubertin (2003), Cho (2016a), Kim et
quantification of corresponding changes	al. (2016), and Kim et al. (2018) have used Kozeny–
in hydraulic conductivity owing to the	Carman equation incorporated in coupled hydro-
volume changes under rainfall	mechanical models to compute the saturated
	1

infiltration is a task yet to be	
accomplished. The paper also doesn't	
explain how the Kozeny-Carman	
equation for saturated hydraulic	
conductivity is used to model effective	
stress changes and the subsequent	
variations in unsaturated hydraulic	
conductivity under rainfall infiltration.	
In light of the above shortcoming, the	
reviewer thinks the review of the results	
presented in the paper as of now would	
be a fruitless exercise.	

permeability which depends on porosity. Hu et al. (2013) and Hu et al. (2018) have applied Eq. (20) to predict the permeability of deformable unsaturated soils, which depends on changes in porosity and void ratio. Because changes in permeability of the soil deformed during rainfall infiltration are not considered in FLAC, we programmed Eq. (20) to be applied during infiltration analysis using an in-built programming language (FISH).

$$k(e) = \frac{k_0}{n_0^2 exp(2k_p e_0)} n^2 exp(2k_p e)$$
(20)

where k_0 is the initial permeability, n_0 is the initial porosity, k_p is the parameter involved in Eq. (3), and e_0 is the initial void ratio."

We added the following sentences in Lines 199–205 to describe the scheme of a coupled hydromechanical model and how Eq. (20) was incorporated in the model.

"The coupled hydro-mechanical model consists of the fluid flow, mechanical, and water retention model loops. The fluid flow loop evaluates fluid flows from pressure gradients and changes in saturation and pore pressure due to unbalanced flows, based on from Eq. (7) to Eq. (13). The mechanical loop evaluates total stress depending on velocities, coordinates, and generation of pore pressure due to mechanical volume strain, based on from Eq. (14) to Eq. (19). The water retention model loop updates saturation and permeability that depend on mechanical volumetric change and generation of pore pressure, based on from Eq. (3) to Eq. (6) and Eq. (20). The stress state sequentially updated from the modified water retention behavior is applied to the next time step for the fluid flow loop." We added the following sentences in Lines 207–214

The authors have not clearly explainedWe added the following sentences in Lines 207–214how the two-dimensional model forin section 4.1 to describe how to apply a coupled

seepage analysis (FLAC) has been applied at a regional scale. Has the subsurface-flow routing from different grid cells been considered? Also, any attempts at validation cannot be seen (e.g. field-based monitoring, streamflow data from gauge stations, etc.).	hydro-mechanical model for infiltration analyses at a regional scale. "We applied the coupled hydro-mechanical model for simulations of rainfall infiltration to the independent 2D infinite slope model considering slope angles from different cells of the slope raster computed from the DEM in the study area. The depths from ground surfaces to slope failure surfaces observed during our field investigation are generally shallow and comparable with a range of 1–3 m associated with Korea (Kim et al., 2004). We set a uniform soil depth and a length of an infinite slope to be 2 m and 10 m, respectively, and applied the soil properties obtained from field investigations. Finally, saturations and pore pressures of wetting and non-wetting fluids (water and air) could be computed at all area of the infinite slope for a period of 22 hours from starting the simulations."
	We added the section 5.1 (Lines 232–263) for validation of the coupled hydro-mechanical model using the experimental results obtained from Liakopoulos (1964).
Did the authors use the effective stress	We added the following sentences in Lines 227–230
estimated during the hydro-mechanical	in section 4.2 to describe how to determine safety
coupled seepage analysis in FLAC in the	factors.
assessment of the factor of safety? Please provide a detailed explanation in section	"We evaluated slope stability of infinite slope models for a period of 22 hours based on Eq. (20) utilizing
4.2.	for a period of 22 hours based on Eq. (20) utilizing the variations in saturations and pore pressures of
	water and air with time simulated from the coupled
	hydro-mechanical model. The minimum safety
	factors of infinite slope models were finally
	determined to be safety factors of different cells of the GIS-based topography of the study area."
It is difficult to follow the motivation of	We revised the sentences in Lines 49–64 to
the authors in conducting the two-phase	complement contributions of this work, as shown in
coupled hydro-mechanical based	the response to the first comment.

infiltration modelling at a regional scale. No information could be found in the paper with regard to the volume change behaviour of soils from Central Korea under unsaturated conditions (soil volume changes under wetting and drying). This is a fundamental issue the authors need to sort out before attempting to model at any scale. Also, under circumstances of volume change, authors would require to carry out SWCC corrections for volume change as well.

Volume change of unsaturated soils depends on changes in matric suction and net normal stress (Matyas and Radhakrishna, 1968; Fredlund and Rahardjo, 1993). Soils in Korea would also be expected to follow this relationship among them. We added the following sentence in Lines 39–43 to describe why the volume change behavior of unsaturated soils should be used.

"Considering that volume of unsaturated soils changes depending on matric suction and net normal stress (Matyas and Radhakrishna, 1968) and relationship among them can be considered to make the constitutive equation for volumetric strain of unsaturated soils (Fredlund and Rahardjo, 1993), a coupled hydro-mechanical model considering the volume change behavior can be applied to simulate hydraulic processes in unsaturated soils."

We applied the deformation-dependent water retention curve model (Hu et al., 2013; Hu et al., 2016) to consider both volume change of unsaturated soils and water retention curve hysteresis, as shown in the following sentences in Lines 127–146, and we corrected SWRC model parameters in Table 3. "*The hydraulic hysteresis reflects different hydraulic states and hydraulic paths, and the saturation of the wetting fluid for deformable soils depends on the soil skeleton deformation as well as matric suction (Hu et al., 2013; Hu et al., 2016). The water retention behavior is classified into two groups, the main wetting and drying surfaces and the scanning curves. Eq. (1) can be replaced by Eq. (3), which defines a bounding surface (wetting or drying) considering the*

hysteretic water retention behavior for deformable soils subjected to mechanical and hydraulic loading.

	2
	$S_{e,\gamma}(\psi, e) = \left[\{ \beta_{\gamma} exp(k_{p}e)\psi \}^{\frac{1}{1-a}} + 1 \right]^{-a}, \ \gamma = w, d $ (3)
	where β_{γ} is the air entry value (for main drying
	surface, $\beta_{\gamma} = \beta_d$, and for main wetting surface,
	$\beta_{\gamma} = \beta_{w}$), k_{p} is the model parameter, and e is the
	void ratio.
	Hu et al. (2013) considered the incremental effective
	saturation associated with scanning zones during
	movement of a soil state, expressed by Eq. (4).
	Integrating Eq. (4) from $S_{e,n}$ to $S_{e,n+1}$, ψ_n to
	$\psi_{n+1} (= \psi_n + d\psi_n)$, and e_n to $e_{n+1} (= e_n + de_n)$,
	Eq. (6) can be obtained to compute the updated trial
	effective saturation $(S_{e,n+1}^{trial})$.
	$dS_e = -S_e \left(1 - S_e^{-1/a}\right) \left(k_{ss} \frac{d\psi}{\psi} + k_{se} de\right) $ (4)
	$\int \frac{\partial \ln S_e}{\partial \ln \psi} = -k_{ss} \left(1 - S_e^{1/a}\right) \tag{5}$
	$\begin{cases} \frac{\partial \ln \psi}{\partial e} = -k_{se} \left(1 - S_e^{1/a}\right) \end{cases} $ (5)
	$S_{e,n+1}^{trial} = \left[1 - \frac{(\psi_{n+1})^{k_{ss}/a} exp\left(\frac{k_{se}}{a} e_{n+1}\right)}{(\psi_n)^{k_{ss}/a} exp\left(\frac{k_{se}}{a} e_n\right)} \left(1 - S_{e,n}^{-1/a}\right)\right]^{-a} \tag{6}$
	where k_{ss} and k_{se} are the slopes of the asymptotes
	for the scanning curves in the $\ln S_e - \ln \psi$ and $\ln S_e - \psi$
	e planes, respectively.
	The following procedure is required to determine the
	updated saturation $(S_{e,n+1})$:
	If $S_{e,n+1}^{trial} < S_{e,d}(\psi_{n+1}, e_{n+1})$ and $S_{e,n+1}^{trial} > S_{e,w}(\psi_{n+1}, e_{n+1})$
	then $S_{e,n+1} \leftarrow S_{e,n+1}^{trial}$; else if $S_{e,n+1}^{trial} \ge S_{e,d}(\psi_{n+1}, e_{n+1})$
	then $S_{e,n+1} \leftarrow S_{e,d}(\psi_{n+1}, e_{n+1})$; else $S_{e,n+1}^{trial} \leq$
	$S_{e,w}(\psi_{n+1}, e_{n+1})$ then $S_{e,n+1} \leftarrow S_{e,w}(\psi_{n+1}, e_{n+1})$."
Another drawback is the lack of	We added the following sentences in Lines 104–109
description with regard to the field	in Section 3 to supply additional information about
mapped landslide characteristics,	landslides in the study area and observations during
evidence from sites in all zones with	field investigations.
regard to soil profiles (single or several	"From the slope failures, a total of 21 debris flows
different layers) and soil depth	were transformed with a total debris flow spreading
especially when field investigations	area of approximately $94,000 \text{ m}^2$. Areas and
were carried out (mentioned in Section	distances of debris flow spreading ranged from
3). Please provide necessary details.	1,100 to $19,600$ m ² and from 90 to 580 m,

	noncostingly We checked the second of the
	respectively. We checked the accuracy of the
	landslide inventories by comparing some of them
	with actual slope failure sites during our field investigations. Figure $2(h)$ shows the slope failure
	investigations. Figure 2(b) shows the slope failure
	initiation sites we observed. Failure surfaces were
	within depths to weathered rocks up to which soils
	consisted of a single layer. Depths from ground
	surfaces to slope failure surfaces were generally
	shallow within a range from 1.3 to 2.1 m."
Vanapalli et al. (1996) used two	Some previous studies have used degree of
approaches to calculate the shear	saturation to be the matric suction coefficient (χ) in
strength. The first approach was to use a	Bishop's effective stress equation (e.g., Chateau and
dimensionless number "normalised area	Dormieux, 2001, 2002; Cho, 2016b; Hu et al., 2018;
of water with k as a fitting parameter"	Zhang et al., 2018). We revised the following
and the second approach was to use a	sentence in Lines 176–179.
normalised degree of saturation (defined	"The matric suction coefficient (χ) in Bishop's
as effective saturation in this paper)	effective stress equation can be substituted by the
wherein the residual degree of saturation	saturation of a wetting fluid (S_w) (Chateau and
needs to be estimated. The authors in this	Dormieux, 2001, 2002; Cho, 2016b; Hu et al., 2018;
study have substituted Bishop's matric	Zhang et al., 2018), and Pham et al. (2019) reported
suction coefficient with the saturation of	that critical points computed from effective stress
a wetting fluid variable (Equation 12 and	utilizing the S_w were close to saturated critical state
Equation 14). Could the authors explain	line with large correlations statistically evaluated."
the basis for equating the degree of	
saturation (instead of an effective	
saturation) of a wetting fluid with the	
Bishop's matric suction coefficient?	
The authors have focused more on the	We added Figure 13 and the following sentences in
modelling aspect with advanced two-	Lines 416-430 to describe results of the sensitivity
phase modelling at the regional scale and	analysis.
did not worry much about the variability	"Limited number of samples were used to determine
in input data which clearly will influence	representative material properties of the study area
the safety factor values. It is	in spite of complex geological features and
recommended that such a study	variability in material properties. We investigated
(sensitivity analysis) be undertaken in	effects of cohesion (c), saturated hydraulic
the region. Also, could the authors	conductivity (k_s) , water retention model parameter
explain why only watershed criteria was	(k_p) , and van Genuchten SWRC coefficient (a) on
	P' 00 (1) 11

used in creating the zones? Why wasn't	characteristics of change in safety factor. Figure 13
geological information used? Please	shows variations in safety factor with time at an
explain in detail.	infinite slope model with an angle of 30° when
-	material properties of Zone 10 were consistently
	applied with the exception of changing only c or k_s
	or k_p or a . As a value of cohesion became large
	from 0 to 9 kPa, an initial safety factor increased
	from 1.4 to 1.95 (Figure 13(a)). The rates of
	decrease in safety factor were not affected by
	cohesion. It is observed in Figure 13(b) that safety
	factors slowly and continuously decreased when
	saturated hydraulic conductivity was small ($k_s =$
	3×10^{-5} m/s). However, the greater the saturated
	hydraulic conductivity, the larger the reduction in
	safety factor when rainfall occurred (from 0 to 5 h
	and from 12 to 22 h), and the smaller the reduction
	in safety factor when rainfall did not occur (from 6
	to 11 h). When the water retention model parameter
	decreases, an air entry pressure (P_0) becomes large,
	and a rate of increase in degree of saturation with a
	decrease in matric suction becomes fast. Therefore,
	the smaller the water retention model parameter, the
	faster the reduction in safety factor (Figure $13(c)$).
	As a van Genuchten SWRC coefficient increases, the
	slope gradient of water retention curve becomes
	steep, and a degree of saturation at the same matric
	suction becomes small. A large SWRC coefficient
	that results in slow rates of increase in degree of
	saturation affects the reduction in safety factor to be
	slow (Figure 13(d))."
	As described in the "Study area" section, the study
	area consists of same geological system (biotite
	gneiss). Thus, we used only the watershed to classify
	zones.

The reasoning for the selection of a 10-	We corrected the following sentence in Lines 95–98
m DEM is not clear (Section 3). Why is	to simplify descriptions about why we applied a 10-
channelisation important for slope	m DEM.
stability analysis? I can understand its	"Considering the cell size of digital elevation model
importance in debris flow modelling.	(DEM) used in previous studies which have
Please explain by also including	evaluated physically based models for predicting
information with regard to the size of	landslides at a regional scale (e.g., Park et al., 2016;
landslides mapped.	Salvatici et al., 2018; Park et al., 2019), we utilized
	the DEM with a cell size of 10 m."
	We added the following sentences in Lines 104–109
	C
	to supply additional information about landslides in
	the study area.
	"From the slope failures, a total of 21 debris flows
	were transformed with a total debris flow spreading
	area of approximately $94,000 \text{ m}^2$. Areas and
	distances of debris flow spreading ranged from
	1,100 to $19,600$ m ² and from 90 to 580 m,
	respectively. We checked the accuracy of the
	landslide inventories by comparing some of them
	with actual slope failure sites during our field
	investigations. Figure 2(b) shows the slope failure
	initiation sites we observed. Failure surfaces were
	within depths to weathered rocks up to which soils
	consisted of a single layer. Depths from ground
	surfaces to slope failure surfaces were generally
	shallow within a range from 1.3 to 2.1 m."
	Shanon munun a range ji oni 1.5 to 2.1 m.