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Abstract 12 

 13 

Rips currents and other surf hazards are an emerging public health issue globally. Lifeguards, 14 

warning flags and signs are important and to varying degrees they are effective strategies to 15 

minimize risk to beach users. In the United States and other jurisdictions around the world, 16 

lifeguards use coloured flags (green, yellow and red) to indicate whether the danger posed by the 17 

surf and rip hazard is low, moderate, or high respectively. The choice of flag depends on the 18 

lifeguard(s) monitoring the changing surf conditions along the beach and over the course of the 19 

day using both regional surf forecasts and careful observation. There is a potential that the chosen 20 

flag is not consistent with the beach user perception of the risk, which may increase the potential 21 

for rescues or drownings. In this study, machine learning is used to determine the potential for 22 

error in the flags used at Pensacola Beach, and the impact of that error on the number of rescues. 23 

Results of a decision tree analysis indicate that the colour flag chosen by the lifeguards was 24 

different from what the model predicted for 35% of days between 2004 and 2008 (n=396/1125).  25 

Days when there is a difference between the predicted and posted flag colour represent only 17% 26 

of all rescue days but those days are associated with ~60% of all rescues between 2004 and 2008. 27 

Further analysis reveals that the largest number of rescue days and total number of rescues is 28 

associated with days where the flag deployed over-estimated the surf and hazard risk, such as a 29 

red or yellow flag flying when the model predicted a green flag would be more appropriate based 30 

on the wind and wave forcing alone. While it is possible that the lifeguards were overly cautious 31 

it is argued that they most likely identified a rip forced by a transverse-bar and rip morphology 32 

common at the study site.  Regardless, the results suggest that beach users may be discounting 33 

lifeguard warnings if the flag colour is not consistent with how they perceive the surf hazard or 34 

the regional forecast. Results suggest that machine learning techniques have the potential to 35 

support lifeguards and thereby reduce the number of rescues and drownings.  36 

 37 
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Introduction  57 

 58 

Rip currents are the main hazard to recreational swimmers and bathers, and, in recent years, 59 

have been recognized as a serious global public health issue (Brighton et al., 2013; Woodward et al., 60 

2013; Kumar and Prasad et al., 2014; Arozarena et al., 2015; Brewster et al., 2019; Vlodarchyk et al., 61 

2019). Rips are strong, seaward-directed currents that can develop on beaches characterized by 62 

wave breaking within the surf zone (Castelle et al., 2016), and are capable of transporting 63 

swimmers a significant distance away from the shoreline into deeper waters. Weak swimmers or 64 

those who try and fight the current can become stressed and experience panic (Brander et al., 2011; 65 

Drozdzewski et al., 2015) leading to increased adrenaline, an elevated heart rate and blood 66 

pressure, and rapid and shallow breathing. On recreational beaches in Australia and the United 67 

States, rips have been identified as the main cause of drownings and are believed to be responsible 68 

for nearly 80% of all rescues (Brighton et al., 2013; Brewster et al., 2019). It is estimated that the 69 

annual number of rip current drownings exceeds the number of fatalities caused by hurricanes, 70 

forest fires, and floods in Australia, the United States (Brander et al., 2013; NWS, 2017), while 71 

rip-related drownings on a relatively small number of beaches in Costa Rica account for a 72 

disproportionately large number of violent deaths in the country (Arozarena et al., 2015).  73 

However, recent evidence suggests that public knowledge of this hazard is limited (Brander et al., 74 

2011; Williamson et al., 2011; Brannstrom et al., 2014; 2015; Gallop et al., 2016; Fallon et al., 75 

2018; Menard et al., 2018; Silva-Cavalcanti et al., 2018; Trimble and Houser, 2018), and that few 76 

people are interested in rip currents compared to other hazards (Houser et al., 2019).  77 

Many beaches have warning signs at primary access points to warn beach users of the rip 78 

hazard, but recent studies suggest that signs may not be effective (e.g. Matthews et al., 2014; 79 

Brannstrom et al. 2015). Many beaches also use a combination of beach flags to either designate 80 

the location of supervised and safe swimming areas (e.g. Australia and the United Kingdom), or 81 

areas and times to avoid entering the water (e.g. Costa Rica and the US). Unfortunately, not every 82 

country uses the same flagging convention and there are regional variations that can lead to 83 

confusion amongst beach users. The United States and Canada use green, yellow, and red coloured 84 

flags to indicate whether the danger posed by the surf and rip hazard is low, moderate, or high, 85 

respectively (ILSF, 2004). A beach manager or lifeguard decides on the surf hazard and the flag 86 

colour to fly based on a combination of daily updates on rip conditions provided by local lifeguards 87 
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as well as a rip forecast from the US National Weather Service (NWS). Most rip forecasts are 93 

based on a simple correlation between the number of rip-related rescues and meteorological and 94 

oceanographic conditions on that day (Lushine, 1991a, b; Lascody, 1998; Engle, 2002; Dusek and 95 

Seim, 2013; Kumar and Prasad, 2014; Scott et al., 2014; Moulton et al., 2017). These forecasts do 96 

not account for the surf zone morphology, which may be conducive to the development of rips on 97 

days when wave breaking is relatively weak. Even under ‘green flag’ days, the presence of shore-98 

attached nearshore bars (called a transverse bar and rip morphology; Wright and Short, 1984) can 99 

force a current of ~0.5 m s-1 that can pose a threat to weak swimmers (Houser et al, 2013).  100 

Rip currents can still be present even if a regional forecast predicts that the hazard potential 101 

is low based on wind and wave conditions. Beach users can be at risk if the flag colour is based 102 

solely on the regional forecast.  To be effective, the flag system requires lifeguards to continuously 103 

assess surf conditions and monitor swimmers and bathers, and ultimately intervene if someone 104 

does not heed the warning implied by a yellow or red flag indicating moderate and high (‘do not 105 

enter the water’) hazard levels respectively. Recent evidence suggests that many beach users do 106 

not adhere to warnings if their own experience (whether accurate or not) or behavior of others on 107 

the beach, contradicts the hazard, as indicated by the warning flag (Houser et al., 2017; Menard et 108 

al., 2018). Beachgoers may lose trust in authority (i.e. the lifeguards) if a forecast is perceived, 109 

wrongly or rightly, to be inaccurate (Espluga et al., 2009). If the forecast is for dangerous surf 110 

conditions and a yellow or red flag is placed on the beach when conditions appear to the beach 111 

user to be relatively calm, the beach user may discount or ignore the forecast now and, in the 112 

future, if they enter the water and do not experience any difficulties. Trust and confidence in the 113 

authority figures can be eroded if they believe that the lifeguards are being overly cautious. It can 114 

be difficult to change (or ‘reset’) public perception about the accuracy of the flag system as soon 115 

as a discrepancy is perceived, and subsequent visits and experiences may confirm the biases of the 116 

beach user (Houser et al., 2018). It is a situation analogous to the boy who cries “wolf” (Wachinger 117 

et al., 2013).  118 

This study examines the consistency of flag warnings at Pensacola Beach, Florida between 119 

2004 and 2008 when daily data is available for flag colour, wind and wave forcing, as well as the 120 

daily number of rescues performed by lifeguards. A decision tree, a form of machine learning, is 121 

used to predict the posted flag colour using lifeguard observations in combination with wind and 122 

wave forcing. The modelled flag colour, based solely on wave and wind forcing, can be compared 123 
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to the flag colour posted by the lifeguards on a particular day to identify days when there is a 135 

difference and how that influences the number of rescues performed on that day. It is hypothesized 136 

that there will be a greater number of rescues performed on days when there is a difference between 137 

the predicted and posted flag colour.  Specifically, it is hypothesized that a greater number of 138 

rescues will occur on days when the model underestimated the hazard level compared to the 139 

lifeguard who made their decision based on local observations including the presence of semi-140 

permanent rip channels.  In this scenario, the public may believe that the lifeguard is being overly 141 

cautious leading to people entering the water.     142 

 143 

Study Site 144 

 145 

The analysis was completed at Pensacola Beach, Florida (Figure 1), where there is 146 

available records of daily flag colours, wind and wave forcing, and lifeguard-performed rescues 147 

between 2004 and 2008. The beaches of the Florida Panhandle have been described ‘‘as the worst 148 

in the nation for beach drowning’’ (The Tuscaloosa News, 2002), based on the presence of semi-149 

permanent rips along the length of the island (Houser et al., 2011; Barrett and Houser, 2012). These 150 

rips can be active and pose a threat to swimmers when conditions may appear to be safe for 151 

swimming (Houser et al., 2013). During the period of the study (2004-2008), the Santa Rosa Island 152 

Authority maintained a flagging system to alert beach users about the heavy surf and rip hazard 153 

based on the NWS rip forecast. The highest flag colour for that day was recorded by the Island 154 

Authority, along with the number of prevents, assists, and rescues. The Island Authority reserve 155 

the rescue definition for those persons in extreme difficulty who, in the opinion of the lifeguard, 156 

would have drowned without assistance.  157 

Rescues, assists, and prevents are recorded regardless of whether they are conducted in a 158 

‘guarded’ area, a designated swimming area where there are typically many beach users (Casino 159 

Beach, Fort Pickens Gate Beach, and Park East), or along the ~13 kms of unguarded beach where 160 

lifeguards conduct regular patrols and respond to emergency calls. As shown by Barrett and 161 

Houser (2013), there are rip current hotspots with semi-permanent alongshore variation in the 162 

nearshore morphology due to a ridge and swale bathymetry on the inner shelf. The innermost bar 163 

varies alongshore at a scale of ~1000 m, consistent with the ridge and swale bathymetry (Houser 164 

et al., 2008), and tends to exhibit a transverse bar and rip morphology immediately landward of 165 
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the deeper swales (Barrett and Houser, 2012; see Figure 1). Historically, most drownings and 176 

rescues on this popular beach have occurred at these rip hotspots because they correspond to the 177 

main access points along the island (Houser et al., 2015; Trimble and Houser, 2018).  178 

 Santa Rosa Island experienced widespread erosion and washover during Hurricane Ivan in 179 

September 2004. The storm reinforced the alongshore variation in the nearshore bar morphology 180 

and forced the bars farther offshore. As described in Houser et al. (2015), the nearshore bars 181 

migrated landward and recovered to the beachface for 3 years following the storm. During this 182 

period, the inner-bar morphology transitioned from a rhythmic bar and beach morphology to a 183 

transverse bar and rip morphology before ultimately attaching to the beachface in May 2008 184 

(Houser and Barrett, 2010). This changing bar morphology is a primary control on the presence of 185 

rip channels, with the greatest density of rips present in 2005 as the inner-most bar first started to 186 

develop a transverse bar and rip morphology (Houser et al., 2011).  187 

 188 

Methodology 189 

 190 

Offshore wave conditions and wind forcing function are based on long-term meteorological 191 

and oceanographic records from an offshore wave buoy located ~100 km southeast of the study 192 

area (buoy 42039; Figure 1). Between 2004 and 2008, this was the closest buoy to Pensacola Beach 193 

and had been previously used to estimate the incident wave field (Wang and Horwitz, 2007; 194 

Claudino-Sales et al., 2008; 2010; Houser et al., 2011) and was the basis for the rip hazard at 195 

Pensacola Beach until a new buoy was placed closer to the beach in 2009.  The available wave 196 

data from buoy 42039 included offshore significant wave height, significant wave period, and 197 

direction, and the wind data included speed and direction.  Local water level data was acquired 198 

from a station at the Port of Pensacola just north of the study site. A decision tree analysis was 199 

used to determine what combination of wave and wind forcing was associated with the flag posted 200 

by the Santa Rosa Island Authority on that day. After training on the available dataset, the model 201 

produces a decision tree that can be used for future decisions about what flag colour should be 202 

posted, although further training would be required to validate the model and operationalize. The 203 

modelled (i.e. predicted) flag colour is then compared to the posted flag colour for all days to 204 

determine if there is a relationship between the flag colour and the number of rescues. The 205 
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comparison is also used to determine if there is a specific combination of wind and wave forcing 210 

on the days when the modelled flag colour and the posted flag colour do not align.  211 

A decision tree model was developed using the Chi-square Automatic Interaction Detector 212 

(CHAID) technique developed by Kass (1980). The goal of CHAID analysis is to build a model 213 

that helps explain how independent variables (wind speed, wave height, wave period, wave 214 

direction, wind direction and water level) can be merged to explain the results in a given dependent 215 

variable. To develop a decision tree, the first step is declaring the root node, this corresponds to 216 

the target variable that will be predicted throughout the model. Then, the independent variable that 217 

provides the most information about the target values is identified. The root node is then split on 218 

this independent variable into statistically significant different subgroups using the F-test. These 219 

subgroups are then split using the predictor variables that provide the most information about them. 220 

CHAID analysis continues this process until terminal nodes are reached and no splits are 221 

statistically significant.  Previous use of CHAID analysis in hazard studies include landslide 222 

prediction (e.g. Althuwaynee et al., 2014), farmer perception of flooding hazard (Bielders et al., 223 

2003; Tehrany et al., 2015), and property owner perception and decision making along an eroding 224 

coast (Smith et al., 2017). 225 

 226 

Results 227 

 228 

The decision tree model was trained on the 1125 days with complete data between 2004 229 

and 2008.  Over this same period there were 145 days with rescues. The annual number of rescues 230 

and rescue days (ie. days with one or more rescues) varied by year, with a peak in both the total 231 

number of rescues and the number of rescue days in 2005. The number of rescues was at a 232 

minimum in 2007, while the number of rescue days was at a minimum in 2006 (Figure 3). The 233 

number of rescues decreased linearly between 2005 and 2007 as the nearshore bar morphology 234 

continued to recover following Hurricane Ivan and welded to the beachface consistent with 235 

previous observations at the site (Houser et al., 2011).  It is important to note that the CHAID 236 

Analysis does not incorporate nearshore morphology as an independent variable because changes 237 

in nearshore morphology were not tracked daily over the study period.  In this respect, differences 238 

between the posted and predicted flag colour may reflect lifeguard observations of nearshore 239 
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morphology conducive to the development of rip currents despite winds and waves typical of green 243 

flag conditions.   244 

The decision tree analysis suggests that the posted flag colour was not predicted by the 245 

model on 35% of days between 2004 and 2008 (n=396). There was a total of 342 rescues over 66 246 

days when the model predicted a different flag than was posted representing over 60% of all 247 

rescues (Table 1). By comparison, 40% of all rescues (n=224) occurred over 79 days when the 248 

predicted and posted flags were the same. Chi-square analysis suggests that the number of rescue 249 

days is significantly greater at the 95% confidence level when the predicted and posted flags are 250 

different (c2=7.77, r~0.005). This supports the hypothesis that there are a greater number of 251 

rescues performed on days when there is a discrepancy between the predicted and posted flag 252 

colour.   253 

 254 

Table 1.  Results of Chi-square analysis of posted and predicted flag colour versus rescue and no 255 
rescue days at Pensacola Beach, Florida between 2004 and 2008.   256 
 257 

 Rescue Days No Rescue Days  

Posted=Predicted 79 650 c2=7.77, r~0.005 

Posted≠Predicted 66 330 

 258 

Chi-square analysis was also used to determine if the number of rescue days depends on 259 

whether the model predicts a flag of greater or lesser hazard compared to the posted flag (Table 260 

2). Results suggest that the number of rescue days is greater when the model predicts hazardous 261 

surf (i.e. red or yellow flag), but the posted flag was either yellow or green (c2=18.11, r~0.0001). 262 

The number of rescue days was over-represented when the posted flag colour was red or yellow, 263 

but the model predicted that the flag should have been yellow or green, respectively, suggesting 264 

that posting what a beach user may perceive as an overly cautious flag can present a danger. These 265 

47 days were associated with 268 of the total 566 rescues between 2004 and 2008, or ~7.2 rescues 266 

per day when the island authority posted a more cautious flag then was predicted by the model . 267 

In comparison, the number of rescues (n=298) was under-represented on days when the posted 268 

flag suggested conditions were not as hazardous (n=74) as the model or were identical to the model 269 

(n=224).  270 

 271 
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Table 2.  Results of Chi-square analysis of posted and predicted flag colour versus rescue and no 278 
rescue days at Pensacola Beach, Florida between 2004 and 2008.   279 
 280 

 Rescue Days No Rescue Days  

Posted>Predicted 47 171 c2=18.11, r~0.0001 

Posted<Predicted 19 159 

Posted=Predicted 79 650 

 281 

The greatest number of rescues were performed on days when the posted flag was yellow 282 

(moderate hazard, moderate surf and/or currents), but the model predicted a green flag (low hazard, 283 

relatively calm surf and/or currents) based on the wind and wave forcing. Specifically, a total of 284 

231 rescues were performed on 37 of the 168 days when the posted flag was yellow, and the model 285 

predicted that the flag colour should be green. In comparison, there were only 12 rescues on 3 of 286 

20 days when the posted flag was red (high hazard, strong surf and/or currents) and the model 287 

predicted flag colour was green.. Finally, there were 25 rescues preformed on 7 of 30 days when 288 

a red flag was posted, and the model predicted a yellow flag was appropriate. The number of 289 

rescues and rescue days when the posted flag was more cautious than predicted by the model were 290 

at a maximum in 2005 and linearly decreased to a minimum in 2007 as the bar morphology 291 

recovered from Hurricane Ivan.  292 

While there were fewer than expected rescue days when the posted flag was green or 293 

yellow and the model predicted a yellow or red flag, rescues were still performed on those days. 294 

There was a total of 66 rescues on 13 of 80 days when the posted flag was yellow, but the model 295 

predicted a red flag should be posted (Table 3). Only 7 rescues were performed on 5 of the 83 days 296 

when the posted flag was green and the model predicted a yellow flag, with even fewer rescues 297 

performed on days when the posted flag was green, but should have been red. The number of 298 

rescues and rescue days when the posted flag was lower than the predicted flag decreased from 299 

2004 to 2007, with a statistically significant outlier in 2008. The large number of rescues in 2008 300 

is the result of 2 days with 13 rescues each (April 19 and September 14), when a yellow flag was 301 

being flown, but the model predicted a red flag was more appropriate.  This suggests that the 302 

difference between posted and predicted flag colours can vary inter-annually with changes in the 303 

nearshore morphology and/or changes in the individual who makes the flag decision.   304 

 305 
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Table 3. Number of days and rescues (in brackets) based on the combination of posted and 314 
predicted flag colours.  315 
  Predicted Flag 

  G Y R 

Posted Flag G 475 (48) 83 (7) 15 (1) 

Y 168 (231) 154 (125) 80 (66) 

R 20 (12) 30 (25) 100 (51) 

 316 

Discussion 317 

Results of the present study suggest that over 60% of all rescues at Pensacola Beach, 318 

Florida between 2004 and 2008 occurred on days when the posted hazard flag was different from 319 

the flag colour predicted by a decision tree model.  The posted flag colour was not predicted by 320 

the model on 35% of days between 2004 and 2008 (n=396), with one or more rescues occurring 321 

on 66 of those days (~17%). While rescues did not occur on a vast majority of the days when the 322 

posted and predicted flag colours were different, days when the predicted and posted flag colours 323 

were different accounted for a majority of the rescues. This is not to suggest that Santa Island 324 

Authority made a mistake in their flag choice. Rather, the results suggest that the difference 325 

between the posted and predicted flag colour could be associated with the lifeguards noting that 326 

the nearshore had a transverse bar and rip morphology, which is common at this location.   The 327 

morphology of the nearshore and other variables that could influence whether a beach user will 328 

enter the water or not (e.g. weather, number of beach users or presence of seaweed) are not 329 

captured by the current model, which is based on wind and wave forcing alone.  The model 330 

developed in this study is similar to rip forecasts produced by the US National Weather Service 331 

(NWS), and does not include local variables known to the beach manager based on experience and 332 

years of careful observation.  Discrepancies between the predicted and posted flag colours provide 333 

a basis for future model development and expansion.  Incorporating more data into the model will 334 

it to evolve and better capture the variables that influence the colour of flag chosen by the 335 

lifeguards, while ensuring that the model remains computationally efficient.  Introducing 336 

additional variables, such as nearshore morphology, to the model has the potential to better capture 337 

a lifeguard or beach manager’s understanding of what constitutes dangerous surf conditions at 338 

their beach.  At the same time, it is also important to examine the accuracy of beach managers and 339 

lifeguards in assessing the nearshore morphology and potential for rip development.   340 
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The model predictions and most forecasts are based solely on wind and wave forcing 366 

(Lushine, 1991a, b; Lascody, 1998; Engle, 2002; Dusek and Seim 2013; Arun Kumar and Prasad, 367 

2014; Scott et al., 2014; Moulton et al., 2017). Noticeably absent from the current model is surf 368 

zone morphology, which ultimately determines whether a rip can develop under those conditions 369 

or not. The beach manager and lifeguard can observe the nearshore morphology and assess the 370 

potential for rip development, which would lead to them putting out a yellow or red flag when the 371 

model would predict a green or yellow flag as being appropriate. While beach managers and 372 

lifeguards are being prudent, their assessment may not conform to those of the beach user who 373 

decides on whether the water is safe or not based on wave breaking conditions (Caldwell et al., 374 

2013; Brannstrom et al., 2013; 2015). Most beach users assume that larger breaking waves are 375 

more dangerous, and many will not enter the water if they (and the model) believe that it is a ‘red’ 376 

flag condition. This may partially explain why there were fewer than expected rescues on days 377 

when the posted flag colour was green or yellow flag and the model predicted a yellow or red flag, 378 

respectively. Independent of the flag or warning signs, beach users appear to be making personal 379 

decisions about the surf and rip hazard (Brannstrom et al., 2015) based on experience at the site or 380 

elsewhere (see Houser et al., 2018). Whether this causes beach users to lose confidence in the 381 

lifeguards and other authorities managing the beach is an important question for future research.  382 

 A large number of rescues occurred when the posted flag was yellow, but the model 383 

predicted the wind and wave forcing warranted a green flag. Rightly or wrongly, the beach user 384 

will observe that wave breaking is limited and assume that conditions must be safe. As shown by 385 

Caldwell et al. (2013) and Brannstrom et al. (2013) most beach users along the Gulf Coast of the 386 

United States assume that the calm flat water of a rip is safer than adjacent areas where the waves 387 

are breaking. The lifeguard, however, may observe a bar morphology that is conducive to the 388 

development of rips and post a yellow flag to warn about the potential for rips, despite the weak 389 

wind and wave forcing. As observed by Houser and Barrett (2012), rips with speeds of ~0.5 m/s 390 

can develop on ‘green flag’ days because of the transverse bar and rip morphology that is present 391 

in the inner-nearshore. This would suggest that posting a green flag should never be permitted 392 

when wind and swell waves are breaking over the bar, even if the regional forecast suggests a low-393 

level hazard that day.  As shown by Scott et al. (2014), rescues are still possible with seemingly 394 

‘fine weather’ conditions when a green flag would be predicted by the model or in regional 395 

Deleted: is 396 

Deleted: conditions397 

Deleted: was overly-conservative (e.g.398 
Deleted: was 399 
Deleted: posted when the400 
Deleted: )401 
Deleted: erodes 402 
Deleted: ’403 



 12 

forecasts.  Even in the presence of small swell wave, breaking can be induced as water levels fall 404 

with the tide (Castelle et al. 2016).   405 

It is difficult for beach users to spot a rip or assess the potential for rip development, and 406 

they may assume that the lifeguard is being overly cautious if they perceive fine-weather 407 

conditions and the lifeguard posts a yellow or red flag. Going to the beach is a reward-based 408 

activity, and many people commit significant personal and financial investment to be at the beach 409 

(Houser et al., 2018). If they believe that the lifeguard is ‘wrong’ they will ignore the warning and 410 

remain committed to entering the water. The longer and more times that their perceptions are 411 

inconsistent with the experience and knowledge of the lifeguard, the more trust in authority is lost 412 

- a beach that is perceived to be safe based on experience will always be safe despite warnings to 413 

the contrary (Menard et al., 2018). This is an example of confirmation bias, in which an opinion 414 

quickly becomes entrenched and subsequent evidence is used to either bolster the belief or is 415 

rapidly discarded. How this can be addressed to reduce the number of rescues is an important focus 416 

for future research on rips and other hazards in general.  417 

The results of this study also highlight the limitations of regional rip forecasts that are used 418 

in the United States and elsewhere around the world. A forecast based solely on the wind and wave 419 

forcing does not account for the nearshore morphology, which determines the potential for rip 420 

development. This raises one of the most important considerations for future modeling efforts 421 

based on machine learning techniques - the model will only be accurate if the bar morphology and 422 

conceptual knowledge of the lifeguard is included as input variables. Getting the beach user to 423 

observe and heed that forecast and warning, however, will remain a challenge.   424 

 425 

Conclusions 426 

Lifeguards and beach managers decide on warnings and flag colours based on careful 427 

monitoring of the changing surf conditions along the beach and over the course of the day using 428 

both regional surf forecasts and direct observation. A decision tree analysis predicts a flag colour 429 

different to the one flown on ~35% of days between 2004 and 2008 (n=396/1125), and that those 430 

differences account for only 17% of all rescue days and ~60% of the total number of rescues. The 431 

posting of a yellow flag when the model would predict a green flag based solely on the wind and 432 

wave forcing was found to be responsible for the largest number of rescues over the study period. 433 

Variables such as the nearshore morphology and the potential for rip development is not included 434 
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in traditional forecasts or the model developed in this paper, and most beach users use a simple 439 

assessment of wave breaking to determine if the water is safe. Even though a lifeguard will post 440 

the appropriate flag based on direct observation of the bar morphology and experience, the beach 441 

user, like simple models based solely on meteorological data, may not believe that warning and 442 

still enter the water. This suggests that reducing the number of rip and surf rescues will require 443 

that we are able to address confirmation bias on the part of the beach user, which can cause them 444 

to lose their confidence in the lifeguards.  445 
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Figures 576 

 577 

 578 

 579 

Figure 1. Map of study site showing location of flagged section of beach and approximate 580 
location of the wave buoy used in the analysis and for regional rip forecasts.   581 
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 587 

 588 
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 590 
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 592 

 593 
Figure 2.  Satellite image of the flagged section of beach in 2004 (before Hurricane Ivan) 594 
showing the presence of transverse-bar and rip morphology of the innermost bar and the variable 595 
nature of the outermost bar for the flagged section of beach.  The aerial image is not necessarily 596 
representative of the nearshore morphology throughout the remainder of the study.  597 
 598 
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 599 

Figure 3.  Interannual variation in number of rescues and rescue days at Pensacola Beach between 600 
2004 and 2008.   601 
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