
Dear Reviewer, 

Thank you for your nice and constructive comments. We have addressed your comments point-by-point and 

provided the answer, explanation, and modification where are required in the revised manuscript. This has been 

uploaded as a supplement file where you can find our answers in a table plus the revised manuscript with track 

changes.  

We hope our answers satisfy your demands.  

Best regards, 

Jalal Samia and  the co-authors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Referees' comments:                                                               Author’s responses :                        

 

Comment Response 

General remarks 

 

1. It should be noted though that this is the fourth 

publication of the authors with the same dataset for a 

small study area. I know that such multi-temporal 

datasets are scarce, but in order to prove the idea I think 

it is also important to test the concept with other datasets 

rather than introducing yet another tweak in the 

methodology. 

 

Thank you for this remark. This is absolutely true, and 

indeed the concept of landslide path dependency should 

be explored in other landslides prone areas providing 

that multi-temporal landslide inventories are available.  

We have two arguments for this: 

 

a) As you mentioned, in order to explore the effect of 

landslide path dependency, the main requirement is the 

availability of multi-temporal landslide inventory which 

to the best of our knowledge (at the starting time of this 

project, start of PhD of the corresponding author in 

2013) was rare. We are now aware of a few more multi-

temporal inventories (Asturias in Spain and Ubaye 

Valley in France), that we are going to use then in a 

follow-up project if the proposal of that is granted.  

 

b) The reason for another tweak in the methodology is 

that in the implementation of landslide path dependency 

on landslide susceptibility model in the resolution of 

slope unit (see Samia et.al, 2018), we found  that the 

performance of landslide susceptibility model did not 

change substantially. We had this reasoning that the 

effect of landslide path dependency might be captured 

better in more finer resolution in the mapping unit of 

landslide susceptibility model due to the local effect of 

landslide path dependency. The results of this paper 

confirmed our previous reasoning. Therefore, this 

justifies our another tweak in the methodology where we 

converted the polygons of landslides to point, and then 

used a new metric (Ripley function) to quantify the 

effect of landslide path dependency. Having said, and 

considering the substantial importance of landslide path 

dependency on the performance of landslide 

susceptibility model, we believe that landslide path 

dependency is an important component in landslide 

susceptibility definition, and this should be further 

explored in other landslide prone areas. 

 

 

 

General remarks 

 

2. It is also hard for me to follow the interpretation and 

conclusion that the models considering path dependency 

are “substantially” better than the conventional one. 

With the information provided I consider it hard to take 

a decision at all, but I would tend to rate the 

conventional model as the best, see also my comments 

below.  

The conclusion comes from the comparison of 

performance of three landslide susceptibility models 

with the metrics of AUC and AIC. This improvement 

comes from adding only two variables reflecting 

landslide path dependency to the existing 16 DEM-

derivatives. An increase from the AUC of conventional 

susceptibility model with the value of 0.704 to the AUC 

value of 0.764 for the conventional plus path dependent 

susceptibility refers to “substantial” improvement of 

landslide susceptibility model. Also, AIC values for 

conventional plus path dependent and purely path 

dependent landslide susceptibility models are lower 



(11711 and 12469) which are lower than the AIC value 

of conventional susceptibility model (12678). 

 

 

General remarks 

 

3. I think it is necessary to also show the detailed 

susceptibility maps of the conventional model to be able 

to compare the spatial performance. In all path 

dependent susceptibility maps it is obvious that the path 

dependent variables clearly dominate the spatial 

distribution of landslide susceptibility (bullseye 

artifacts). Are those “hot spot” susceptibility maps 

useful in practice? Are the models well-balanced? 

Regarding the detailed maps of conventional 

susceptibility see our answers in the comment number 

14 in the below.   

 

we have considered your comment regarding the  

applicability of  dynamic landslide susceptibility maps 

in practice as following:  

 

“In reality, static susceptibility maps created (either with 

a conventional susceptibility model, or as the static 

portion of a conventional plus path dependent model) 

can be used in sustainable planning whereas dynamic 

susceptibility maps can be considered in short-term land 

use planning.”  

 

 

The hotspots in the susceptibility maps of conventional 

plus path dependent and purely path dependent landslide 

susceptibility, show the predicted susceptibility per time 

slice given the history effect of previous landslides.  

Surely those hotspots are useful in practice in that given 

period as it reflects that newly happened landslides have 

higher susceptibility level demonstrating more cares for 

practical purposes.  

 

We are not quite sure what you mean with well-balanced 

model but our datasets used in the three susceptibility 

models are balanced. 

 

 

General remarks 

 

4. The conventional model probably has a poor 

variability as it only contains DEM derived variables. 

What happens if more fundamental information is 

introduced, like lithology? I understand that it was 

intended to use a model with minimal data requirements, 

but it also hast to be demonstrated first that this works 

comparing it to a more complex dataset.  

Thank you for this point. Aa you also have mentioned, 

this was our aim to model landslide susceptibility using 

minimum data requirements (DEM-derivatives) plus 

variables derived from landslide path dependency. 

However, we did that work and it’s just not in the paper. 

The conventional susceptibility modelled by DEM-

derivatives, geology and land use  has lower model 

performance  (AUC = 0.771) when adding two landslide 

path dependency variables in the conventional plus path 

dependent landslide susceptibility (AUC = 0.801).  

  

Considering your comment, we also feel that this could 

be mentioned in the discussion of paper as following: 

 

“More complex explanatory variables such as geology, 

soil and land use can also be used along with DEM-

derivatives to improve landslide susceptibility models 

and maps. However, these are not always available. In 

fact, considering landslide path dependency effect into 

such complete explanatory factors improve their 

performance as well. We confirmed this in an additional 



exploration where we constructed a conventional 

landslide susceptibility model used in this paper, with 

the same DEM-derivatives, but also with land use and 

geology as explanatory factors. The results 

demonstrated that adding our two landslide path 

dependency variables to such an improved conventional 

landslide susceptibility increased its performance (from 

AUC value of 0.771 to AUC value of 0.801).” 

 

General remarks 

 

5. The methodology is also not completely clear to me 

based on the explanations provided. Were models 

produced for different time slices or only one model for 

each parameter set?  

Indeed the methodology for modelling part is not 

completely clear. We have updated the manuscript in 

this matter (in line 216-220) as following: 

 

”Conventional landslide susceptibility was modelled 

using DEM-derivatives only once for the defined 

training dataset and was tested using the independent 

testing dataset. Conventional plus path dependent 

landslide susceptibility model  was constructed using 

DEM-derivatives plus the two landslide path 

dependency variables. The purely path dependent 

landslide susceptibility was modelled only by using the 

two landslide path dependency variables. All three 

models were constructed only once.” 

 

 

 

 

  

  

 

 

 

Methodology 

 

6. E.g. L 94-98: To better understand the whole concept 

it would be good to understand how the authors define 

“follow-up landslides” and if/how they are for example 

discriminated from reactivated landslides.  

This comment is confusing since in the lines of 94-98, 

we did not talk about follow-up landslides at all. 

However to make it clear, in our previous paper in Samia 

et al, 2017, we introduced for the first time the term 

“follow-up landslides” and differentiated that from 

reactivated landslides as following: 

“Note that follow-up landslides are not reactivated 

landslides. We consider a landslide a reactivated 

landslide when all or most of the landslide moved down 

again, under the same general condition as the first 

landslide. Instead, follow-up landslides are new 

landslides that have different size and shape than the 

pre-existing landslide.” 

In the current manuscript when talking about follow-up 

landslides (mainly in the discussion), the proper 

reference has been provided. 

 

Methodology 

 

7. L 112-113, Fig. 1: Is this figure not taken from Samia 

et al. 2017a or b?  

Yes, it is taken from those papers , and also from our 

paper in Samia et al, 2018. We have added those two 

references in the updated manuscript.  



 

 
 

 

 

Methodology 

 

8. L 183, Fig. 5: The figure is not referred to in the text. 

Is it correct that the arrows on the left point from the start 

to the results? Are they not supposed to start at the 

Smoothed STC sketch?  

Thank you for this point, indeed the figure is not referred 

in the text. Now we have provided reference for this 

figure in the line of  175 where we talk about the 

computation of the two landslide path dependency 

variables.  

 

Also we appreciate your comment about the position of 

arrows in Fig. 5. You are right and we corrected the 

figure in the updated manuscript. 

 

 

Methodology 

 

9. L 205-215: I am not sure if I understand the 

composition of the training and testing data and the 

whole procedure. Were the models trained on a single 

time slice from L 201 each and then tested with the 

subsequent testing time slice from L 202? Then 10 

samples were taken for each time slice? How were the 

results in tables 1 and 3 generated from the different 

time slice models? Maybe the methods section could be 

put more clearly. 

 

No, the model was trained to the combination of time 

slices 1947, 1954, 1981, 1985, 1999, May 2004, March 

and May 2010. After that, the model was tested on 

testing dataset which is the combination of time slices 

of 1965, 1977, 1991, 1997, December 2004 and 2005 

and April 2013 and 2014. Then, due to the unequal 

amount of pixels with and without landslide in each of 

these training and testing datasets, we selected 5000 

pixels with landslides and 5000 pixels without 

landslides randomly in each of training and testing 

dataset. This random selection was repeated 10 times in 

both training and testing datasets. Therefore, for each of 

these 10 random datasets, conventional, conventional 

plus path dependent and purely path dependent landslide 

susceptibility models were constructed, and the results 

presented in the table 1 and table 3, are the average of 

these 10 models. 

 

 

To make this part more clear, we have modified 

sentences in the lines of 200-203 as following: 

 

“To achieve this, all landslides in the time slices of 1947, 

1954, 1981, 1985, 1999, May 2004, March and May 

2010 were used for training, and all landslides in the 

time  slices of 1965, 1977, 1991, 1997, December 2004 

and 2005 and April 2013 and 2014 were used for testing 

(Figure 1).” 

 

Also sentences in the lines of 209-213 were updated as: 

 

“Therefore, we randomly selected 5,000 pixels with 

landslides and 5,000 pixels without landslides from both 

training and testing datasets in order to create equal 

datasets both for training and testing of the models. This 

random selection of pixels was repeated 10 times  both 

in the training and testing datasets. Therefore, we trained 

the conventional, conventional plus path dependent and 

purely path dependent landslide susceptibility 10 times, 

and finally tested 10 times as well.” 

 



 

Results and discussion 

 

10. L 218-219: Is it possible to show a map of what the 

variables reflecting the path dependency look like 

spatially?  

No that’s not possible. We can only make prediction 

from these variables depending when and where 

previous landslides happened. We have already shown 

the examples of the predictions from landslide path 

dependency variables in our existing figures 8 and 9. 

 

  

Results and discussion 

 

11. L 225, Fig. 6: What does the color code represent?  

The colors represent the intensity of STC measure.  

We have added two sentences to the caption of figure 6 

to make this clear as following: 

 

“The colours represent the intensity of STC measure. 

Red colour indicates high STC and green indicates low 

STC.” 

 

 

Results and discussion 

 

12. L 228-230: Isn’t a spatial scale of 60 m quite small? 

Because 60 m can be below the size of a single landslide. 

Are these new landslides or reactivated ones? 

 

We noted that the 60 meters is the characteristic spatial 

scale of the exponential function so that substantial 

effects still exist over distances more than hundred  

meters. Moreover, this has been calculated from centre 

point to the centre point of different landslides and so if 

the centre points are 60 or 100 or 150 meters away from 

each other, they could still be not overlapping or 

overlapping and they could be either new or reactivating 

landslide. This empirical procedure does not distinguish 

between new and reactivated landslides.  

 

 

Results and discussion 

 

13. Table 1, Table 3: Are the results available for 

different time slices? It is unclear to me which results 

are presented here. Is this a summary of all time slice 

models? Or the best models? 

Considering the explanations given above in the 

methodology part, the results presented in these two 

tables should already be clear. However, to make this 

even more clear, we have modified the caption of table 

1 and table 3 as following: 

 

“The values of AUC represent the average AUC values 

in the 10 training and 10 testing datasets. The values of 

AIC represent the average AIC values in the 10 training 

datasets.” 

 

“Contingency tables computed with cut off value of 0.5 

for the three models. The numbers in the table represent 

the average values computed in the 10 training and 10 

testing datasets.” 

 

  

Results and discussion 

 

We have explained this in above. Just to recall, this 

conclusion comes from the comparison of AUC and 

AIC values of these three models and not based on the 



14. Section 5.2, Table 3: I do not agree with the 

interpretation that the conventional plus path dependent 

and path dependent models are substantially better than 

the conventional one. The conventional one has slightly 

more hits and less misses (false negative). In my 

opinion, false negatives are more critical than false 

positives, which actually contribute to a better zonation 

when the goal is not the accurate detection of landslides 

but the identification of susceptible areas. It would be 

interesting to see also the susceptibility maps (like 

figures 8 and 9) for the conventional models to be able 

to better compare their spatial performance. Success rate 

curves plotting the distribution of landslides over the 

susceptibility classes would add more information. 

 

values presented in table 3, which result only from an 

arbitrary 0.5 cut off value.  

 

 

It’s not possible to make conventional susceptibility 

map like the dynamic path dependent susceptibility 

maps in figure 8 and 9 because only one conventional 

landslide susceptibility map was made based on the 

conventional definition of landslide susceptibility which 

is a time-invariant concept. The relevant spatial 

comparison is shown in figure 7 where we show the 

static susceptibility map from conventional model along 

with examples from one time slice of the other two path 

dependent dynamic models. 

 

 

We have provided the success rate curves for three 

models in 10 training datasets and also for the testing 

datasets as new figure 7 in the revised manuscript. 

 

 

 

 

Results and discussion 

 

 

15. L 235-237 and L 339-341, using only path dependent 

variables: I do not understand, why should we want to 

predict landslides just based on past landslides? Firstly, 

at this point multi-temporal landslide inventories are 

rarely available and secondly, this is in my opinion in 

disagreement with the fundamental paradigm of data-

driven landslide susceptibility analysis, which is 

deducing landslide occurrence from independent 

variables. Also, the susceptibility maps based on the 

path dependent variables only have extreme bullseye 

effect artifacts and I doubt that the maps are in this form 

useful for practical implementations. 

Thank you for this interesting question and comment. 

Well, we – for the first time – have challenged the 

conventional definition of landslide susceptibility with 

introducing the new concept of path dependency 

indicating the history effect of landslides on future 

susceptibility (Samia et al, 2017). With this, landslide 

susceptibility is not a function that considers only the 

spatial distribution of landslides along with a set of  

independent environmental factors but path dependency 

also needs to be taken into account. This effect was 

found in exploration of a unique and rich multi-temporal 

landslide inventory in Collazzone, Italy. Landslide path 

dependency in this study area indicated that 

susceptibility is not time-invariant but susceptibility 

changes over time. With this, a new paradigm for 

landslide susceptibility is emerging called dynamic path 

dependent susceptibility which requires exploration of 

the existence of path dependency, characterization and 

quantification of such effect, and finally its 

implementation in landslide susceptibility modelling. 

This modifies the fundamental paradigm of 

susceptibility in two aspects: first, spatial and temporal 

effect of landslide path dependency is an “add-on”  

dependent variable that has to be considered in 

combination with independent environmental factors. 

Second, landslide susceptibility is not time-invariant but 

instead is dynamic and changes over time. In our study 

area, this effect was obvious, and had a strong effect on 

the performance of landslide susceptibility models. 

However, this new paradigm is in its initial stage and 

has to be explored and studied in other landslide prone 



areas where detailed multi-temporal landslide 

inventories are available. We are aware that such multi-

temporal inventories are rare but given the substantial 

progresses made already in remote sensing imagery and 

techniques, and in near future, this will provide room for 

creation of  more multi-temporal landslide inventories 

where we believe would be main future direction in the 

field of landslide mapping and documenting.  

 

 

Results and discussion 

 

16. Figures 7, 8 and 9: 

 

 - the maps would be easier to interpret with a hillshade 

in the background and the outlines of the corresponding 

training and/or test landslides, which are required to 

assess the spatial performance of the models. 

 

 - it is a good idea to show the distribution of the 

susceptibility classes, but pie charts are not very 

effective for comparing multiple part-to-whole 

relationships. They are inconvenient to read and it is 

hard to perceive the quantitative relationships. Bar or 

column charts would be more suitable. 

 

- why are there blank/white areas in the maps containing 

path dependent variables? 

 

Thank you for this point. We have added the hillshade 

to the backgrounds of landslide susceptibility maps in 

the revised manuscript. However, it would not be 

helpful to show the outlines of landslide because there 

are too many landslides and they completely cover the 

area. 

 

 

 

We appreciate the different preference but we feel that 

pie charts work better for this study. 

 

 

 

 

The reason is that the model does not make a prediction 

for those areas because one of the explanatory factors 

contains no data in those areas. This factor is 

topographic position index (TPI) and it has no data in 

those areas because the slope is zero. The issue only 

occurs in the conventional plus path dependent model 

because only that model uses TPI as explanatory factor. 

It is easy to assign values of zero to TPI in those areas 

and then calculate the model with that manually changed 

TPI but we felt that would not be fair. By using TPI and 

the conventional plus path dependent model with no 

data we are underestimating model performance 

because no landslides occurred in any of no data areas 

and predictions would be zero if we assign zero values 

to TPI.  

 

Results and discussion 

 

17. L 345: I think this should be the map on the left in 

Figure 7. 

 

Thank you for your sharp observation. This has been 

corrected in the updated manuscript. 

Results and discussion 

 

18. L 347-349, usage of landslide susceptibility maps for 

amount of time of landslide inventory: I think this is 

hard to generalize and depends on the task, but for 

sustainable planning of resilient urban areas I would 

rather counsel time-insensitive susceptibility models 

based on intrinsic parameters.  

We certainly agree with you. The usage of landslide 

susceptibility maps indeed depends on the goal and task 

of audience. We also fully agree with you that for 

sustainable planning the conventional static landslide 

susceptibility maps are more useful. However, we 

believe that the dynamic path dependent landslide 

susceptibility maps would be also useful both in long-

term and short-term planning. The dynamic path 



 

 

dependent landslide susceptibility maps consist of a 

static part taking intrinsic factors into account, and a 

dynamic part taking landslide path dependency into 

account. As you also have mentioned, the susceptibility 

maps in the static part are optimal for sustainable 

planning. However, if it’s possible to compute the full 

dynamic susceptibility maps as in the Collozzone area, 

then this would be even more practical both for short-

term and long-term planning. Another important point is 

that the only dynamic part of path dependent landslide 

susceptibility maps would be also in the interest of 

short-term land use planners and farmers where they 

would be aware of the areas with different intensity of 

landslide susceptibility.  

 

As we discussed above, we have updated that part of 

manuscript in the revised version as following: 

 

“The usage of conventional static landslide 

susceptibility maps and dynamic landslide susceptibility 

maps taking landslide path dependency depends on the 

goal and task of audience. In reality, static susceptibility 

maps created (either with a conventional susceptibility 

model, or as the static portion of a conventional plus 

path dependent model) can be used in sustainable 

planning whereas dynamic susceptibility maps can be 

considered in short-term land use planning.” 

 

 

19. Figure 10: I do not understand what hypothetical 

means. Is this graph based on real data or is this just a 

sketch? 

This is just a hypothetical  sketch. We have updated this 

in the revised manuscript as following: 

 

“Conceptual model of implication of dynamic path 

dependent landslide susceptibility model in landslide 

hazard assessment.” 

 

 

 



1 
 

Dynamic path dependent landslide susceptibility modelling  1 

Jalal Samia 1, 2, Arnaud Temme 3, 4, Arnold Bregt 1, Jakob Wallinga 2, Fausto Guzzetti 5, Francesca Ardizzone 5 2 

1 Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, 6708 PB 3 

Wageningen, Droevendaalsesteeg 3, The Netherlands 4 

2 Soil Geography and Landscape group, Wageningen University & Research, 6708 PB, Wageningen, 5 

Droevendaalsesteeg 3, The Netherlands 6 

3 Department of Geography, Kansas State University, 920 N17th Street, Manhattan, KS, 66506, United States 7 

4 Institute of Arctic and Alpine Research, University of Colorado, Campus Box 450, Boulder, CO 803309-0450, 8 

Colorado, United States 9 

5 Istituto di Ricerca per la Protezione Idrogeologica, Consiglio Nazionale delle Ricerche, via Madonna Alta 126, 10 

06128 Perugia, Italy 11 

Correspondence: Jalal Samia, jalal.samia@wur.nl, +31617699436, +31 (0)317 – 419000 12 

 13 

Abstract 14 

This contribution tests the added value of including landslide path dependency in statistically-based landslide 15 

susceptibility modelling. A conventional pixel-based landslide susceptibility model was compared with a model 16 

that includes landslide path dependency, and with a purely path dependent landslide susceptibility model. To 17 

quantify path dependency among landslides, we used a Space-Time Clustering (STC) measure derived from 18 

Ripley’s space-time K function implemented on a point-based multi-temporal landslide inventory from the 19 

Collazzone study area in central Italy. We found that the values of STC obey an exponential decay curve with 20 

characteristic time scale of 17 years, and characteristic space scale of 60 meters. This exponential space-time decay 21 

of the effect of a previous landslide on landslide susceptibility was used as the landslide path dependency 22 

component of susceptibility models. We found that the performance of the conventional landslide susceptibility 23 

model improved considerably when adding the effect of landslide path dependency. In fact, even the purely path 24 

dependent landslide susceptibility model turned out to perform better than the conventional landslide susceptibility 25 

model. The conventional plus path dependent and path dependent landslide susceptibility model and their resulted 26 

maps are dynamic and change over time unlike conventional landslide susceptibility maps.  27 

 28 

1. Introduction 29 

Landslide susceptibility modelling calculates the likelihood of landslide occurrence in a certain location (Brabb, 30 

1985). The resulting landslide susceptibility maps from landslide susceptibility models indicate where landslides 31 

are likely to occur (Guzzetti et al., 2005). These maps are useful in land use planning and insurance, among others. 32 

In this context, different methods and techniques have been used for landslide susceptibility modelling. 33 
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Reichenbach et al. (2018) classified these methods and techniques into five groups: (i) direct geomorphological 34 

mapping, (ii) analysis of landslide inventories, (iii) heuristic or index-based approaches, (iv) physically or process-35 

based methods, and (v) statistically-based techniques.  36 

Statistically-based landslide susceptibility techniques have been the preferred technique in the modelling of 37 

landslide susceptibility (Reichenbach et al., 2018). In statistical landslide susceptibility modelling, empirical 38 

quantitative relations are explored between the spatial distribution of landslides and a set of environmental factors 39 

(e.g., slope and geology) (Van Westen et al., 2003; Guzzetti et al., 2005). The spatial distribution of historic 40 

landslides, documented in landslides inventories, is therefore a crucial input for statistically-based landslide 41 

susceptibility modelling (Guzzetti et al., 2012; Van Westen et al., 2008). Direct field mapping, visual interpretation 42 

of aerial photographs and other remote sensing images are the main sources for such mapping of landslide 43 

inventories (Guzzetti et al., 2012). Landslides in such inventories are stored as points or polygons. Although 44 

polygon-based landslide inventories (Ardizzone et al., 2018; Schlögel et al., 2011; Galli et al., 2008) are becoming 45 

increasingly available, in many landslide prone regions only less-detailed point-based landslide inventories are 46 

collected (Gorum et al., 2011; Sato et al., 2007; Keefer, 2000). Conditioning attributes used in landslide 47 

susceptibility modelling are mainly derivatives of digital elevation models (DEMs) along with geological, soil and 48 

land use data (Günther et al., 2014; Neuhäuser et al., 2012; Reichenbach et al., 2018). While geology, land use and 49 

soil data are not always available in high detail, DEM-derivatives are easily computed and globally available at a 50 

range of resolutions. Therefore, the minimum available dataset for landslide susceptibility modelling includes a 51 

point-based landslide inventory and a set of DEM-derived conditioning attributes. 52 

Traditionally, landslide susceptibility is considered time-invariant: susceptibility of a place to landslide occurrence 53 

is constant over time, at least over decadal scales. Recently, we proposed the concept of time-variant landslide 54 

susceptibility, where susceptibility changes over time due to the transient effect of previous landslides on future 55 

landslide occurrence (Samia et al., 2017b, a). We referred to such a transient effect as “path dependency”, a term 56 

adopted from complex system theory where it is used to describe the concept that the history of a system specifies 57 

the future behaviour of a system through legacy effects (Phillips, 2006). In our study area in Umbria, central Italy 58 

(Figure 1), we identified the existence of path dependency among landslides: earlier landslides locally increased 59 

the susceptibility for future landslides for about two decades, during which the susceptibility decays exponentially 60 

over time (Samia et al., 2017b). We first implemented the effect of this landslide path dependency in landslide 61 

susceptibility modelling at the scale of slope units. Such units divide an area into hydrological units bounded by 62 

drainage and divide lines (Carrara et al., 1991; Alvioli et al., 2016). We found that the impact of path dependency 63 

on landslide susceptibility models at slope-unit scale was limited (Samia et al., 2018). This limited impact of 64 

landslide path dependency on model predictions was probably due to the fact that landslide path dependency 65 

affects landslide patterns at spatial scales smaller than slope units, and we hypothesized that differences between 66 

models were likely to increase when including path dependency at smaller spatial scales.  67 

The objective of this work is thus to consider the effect of landslide path dependency in landslide susceptibility 68 

modelling at the resolution of 10  10 m pixels. We hypothesize that including landslide path dependency will 69 

improve the performance of landslide susceptibility models. We also explore whether a purely path dependent 70 

landslide susceptibility model, i.e. based solely on landslide inventory information, can provide a meaningful 71 
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landslide susceptibility map. We use the unique multi-temporal landslide inventory from the Collazzone study area 72 

(Figure 1) (Guzzetti et al., 2006a; Ardizzone et al., 2007; Ardizzone et al., 2013).  73 

2. Study area and data 74 

The Collazzone study area, Umbria, central Italy (Figure 1), extends for about 80 km2 with terrain elevation 75 

between 140 to 632 m and terrain slope derived from a 10  10 m DEM (Figure 2) between 0 to 64°. The DEM 76 

was prepared by interpolating 5- and 10-m contour lines shown in 1:10,000 topographic maps (Guzzetti et al., 77 

2006b). A set of DEM-derivatives that has been widely used in landslide susceptibility modelling was computed 78 

in SAGA GIS and ArcGIS. We expect that these DEM-derivatives capture topographical, geomorphological and 79 

hydrological properties of locations in our study area.  80 

The DEM-derivatives (Figure 2) are slope angle, curvature, plan and profile curvature, aspect, northness and 81 

eastness as cosine and sine transformations of aspect, topographic position index (TPI) representing different 82 

geomorphological settings (Costanzo et al., 2012), stream power index (SPI) representing the erosive power of 83 

streams (Moore et al., 1993), topographic wetness index (TWI) as an index for hydrological process in the slope 84 

(Jebur et al., 2014). Additionally, for every pixel we computed the distance to the nearest river, the slope length 85 

and steepness factor (LS factor) as an index for soil erosion on slope (Moore and Wilson, 1992), the vertical 86 

distance to the slope’s channel network, and relative slope position representing the relative position of slope in 87 

cells between the valley bottom and ridgetop. Additionally, we calculated topographic roughness, which expresses 88 

the difference in the values of elevation in the neighbouring cells in the DEM (Riley et al., 1999), and the standard 89 

deviation of elevation and slope in a 3  3 pixel window. These 16 DEM-derivatives were used as independent 90 

explanatory variables in logistic regression for modelling of landslide susceptibility (see section 3.2).  91 

Landslides are abundant in this area, and range from recent shallow landslides to old deep-seated landslides 92 

(Guzzetti et al., 2006a). Intense and prolonged rainfall and rapid snowmelt are the main triggers of landslides in 93 

the area (Cardinali et al., 2000; Ardizzone et al., 2007). A unique multi-temporal landslide inventory with 3391 94 

landslides has been mapped in 19 different time slices. The age of the landslides ranges from relict and very old 95 

landslides with an uncertain date of occurrence to landslides that have occurred in 2014. Aerial photographs, direct 96 

geomorphological field mapping and satellite images were used for the preparation of the multi-temporal landslide 97 

inventory (Ardizzone et al., 2013; Guzzetti et al., 2006a; Galli et al., 2008). Only time slices of the multi-temporal 98 

inventory for which the relative date of occurrence is known (Figure 1), were used in this study because time 99 

between landslides is a key element in the quantification of landslide path dependency (Samia et al., 2017a, b). In 100 

addition, the first time slice, with the known date of 1939, was only used in the computation of the landslide path 101 

dependency parameters, and not in landslide susceptibility modelling because of its unknown past. Ultimately, a 102 

multi-temporal landslide inventory was used that contains distribution of landslides in16 time slices dating from 103 

1947 to 2014 (Figure 1). This multi-temporal landslide inventory was mostly prepared at the scale of 1:10,000 104 

which is sufficient for conversion to a 10  10 m pixel-based landslide inventory. However, time slices from 1939 105 

to 1997 were prepared from aerial photographs with scales ranging from 1:15,000 to 1:33,000, and this may 106 

introduce some positional inaccuracy in landslides, in the order of one pixel. Given that the median size of landslide 107 

in this period is 19 pixels, we believe that this is an acceptable level of inaccuracy.  108 
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More information about the Collazzone study area and the multi-temporal landslide inventory is given in (Galli et 109 

al., 2008; Guzzetti et al., 2006a; Guzzetti et al., 2009; Ardizzone et al., 2007).  110 

 
 111 

Figure 1. Multi-temporal landslide inventory dating from 1939 to 2014 (left map) (adapted from (Samia et al., 112 

2018; Samia et al., 2017a, b)). Collazzone study area and Umbria region (right upper map). The coordinate system 113 

of maps is EPSG:32633 (www.spatialreference.org). Landslide points were constructed by placing a point in the 114 

geometric centre of each landslide polygon (map in the right lower corner). The red rectangle shows the extent of 115 

the map in the lower right. 116 

http://www.spatialreference.org/
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 117 

Figure 2. DEM (digital elevation model) and its derivatives used in conventional and conventional plus path 118 

dependent landslide susceptibility models. TPI means topographic position index, TWI means topographic wetness 119 

index and LS factor stands for slope length and steepness factor. 120 

3. Methods 121 

We used logistic regression to construct three different landslide susceptibility models (Figure 3): (i) a 122 

conventional landslide susceptibility model using DEM-derivatives, (ii) a conventional plus path dependent 123 

landslide susceptibility model using 16 DEM-derivatives and two landslide path dependency variables (explained 124 

below), and (iii) a purely path dependent landslide susceptibility model using only the two landslide path 125 

dependency variables. We compared the performance of these models using Area Under Curve (AUC) values from 126 

the Receiver Operating Characteristic (ROC) (Mason and Graham, 2002), and selected the optimal model using 127 
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the Akaike Information Criterion (AIC) (Akaike, 1998), which penalizes the use of additional variables in a model. 128 

Ultimately, the coefficients of the variables selected by three landslide susceptibility models and the resulting 129 

landslide susceptibility maps were compared. 130 

 

Figure 3. Flowchart of methods  131 

 132 

3.1 Quantifying landslide path dependency using Ripley’s space-time K function 133 

The spatial-temporal dynamics of landslide path dependency was recently quantified for the Collazzone study area 134 

(Samia et al., 2017a), and was implemented in landslide susceptibility modelling at the scale of slope units (Samia 135 

et al., 2018). Our previous quantification of landslide path dependency used simplified information about the 136 

spatial overlap among landslides in a polygon-based multi-temporal landslide inventory (Samia et al., 2017b). The 137 

novel aspect of the present paper is that now, at finer spatial resolution, we quantify landslide path dependency 138 

simultaneously in space and time. For this quantification, we use Ripley’s K function (Ripley, 1976; Diggle et al., 139 

1995). Ripley’s K function has been used mainly in spatial point pattern analysis and reflects the degree of spatial 140 

clustering of events (e.g., landslides (Tonini et al., 2014), forest fire (Gavin et al., 2006), crimes (Levine, 2006) 141 

and disease outbreaks (Hinman et al., 2006)). The function determines whether events are clustered, dispersed or 142 

randomly distributed. A modified Ripley’s K function was also used to quantify the degree of clustering of point 143 

events in space and time (Lynch and Moorcroft, 2008; Ye et al., 2015). In the landslide path dependency context, 144 

we used Ripley’s space-time K function to reflect the degree to which landslides occur near previous landslides, 145 

and how this changes with increasing distance to the previous landslide in space and time. The starting point to 146 

derive Ripley’s K is a point-based multi-temporal landslide inventory consisting of points in the geometric centre 147 

of polygons of landslides (Figure 1).  148 

Ripley’s space-time K function tests whether the number of events that is observed in a space-time cylinder around 149 

an initial event is equal to what is expected given the average point density in space and time (Ripley, 1976, 1977; 150 

Diggle et al., 1995). The space-time cylinder I (h, ∆) (Figure 4) is defined as:  151 

𝐼(ℎ,∆) (𝑑𝑖𝑗  , 𝑡𝑖𝑗) = {
 1, (𝑑𝑖𝑗 ≤ ℎ 𝑎𝑛𝑑 (𝑡𝑖𝑗 ≤ ∆) ) 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          
       (1) 152 
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where h shows the spatial distance increment, ∆ shows the time increment, i and j are two landslide centre points, 153 

and d and t reflect the distance and time between the two landslide centre points, respectively.  154 

 

Figure 4. Space-time cylinder neighbourhood (Smith, 2016) for a landslide event (ei) 155 

The expected Ripley’s K function for one space-time cylinder of size h and ∆ is defined as:  156 

𝐾(ℎ, ∆) =  
1

𝜆𝑠𝑡
∑ 𝐸[𝐼(ℎ,∆) (𝑑𝑖𝑗 , 𝑡𝑖𝑗)]𝑗≠𝑖                           (2) 157 

where E is the expected number of landslides in the cylinder, and 𝜆𝑠𝑡 reflects the average space-time intensity of 158 

the landslides i.e., the expected number of landslides per unit of space-time volume, which is calculated as: 159 

 𝜆𝑠𝑡 =  
𝑛

𝑎( 𝑅)×(𝑡𝑚𝑎𝑥−𝑡𝑚𝑖𝑛) 
                                               (3)  160 

where n is the number of landslides in the entire inventory, t is time, and a(R) reflects the size of the area. Therefore, 161 

the expected Ripley’s space-time K function for the space-time cylinders around each landslide point is defined 162 

as: 163 

𝐾(ℎ, ∆) =  
1

𝑛.𝜆𝑠𝑡
∑ ∑ 𝐸[𝐼(ℎ,∆) (𝑑𝑖𝑗, 𝑡𝑖𝑗)]𝑗≠𝑖

𝑛
𝑖=1                 (4)   164 

Similarly, the observed Ripley’s space-time K function is calculated from the landslide inventory as:  165 

𝐾(ℎ, ∆) =  
1

𝑛.�̂�𝑠𝑡
∑ ∑ 𝐼(ℎ,∆) (𝑑𝑖𝑗, 𝑡𝑖𝑗)𝑗≠𝑖

𝑛
𝑖=1 .                     (5)  166 

Finally, we defined the space-time clustering (STC) measure, which reflects how much more likely it is that a 167 

landslide will occur given a time and space distance from a previous landslide, as following: 168 

Empirical 𝑆𝑇𝐶(ℎ, ∆) =
�̂�(ℎ,∆)

𝐾(ℎ,∆)
 -1                                   (6) 169 
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STC values > 0 indicate clustering and values < 0 indicate dispersion. We calculated STC (h, ∆) for a wide range 170 

of h and ∆: values of h ranged from 0 to 500 meter in 30 steps, and values of ∆ ranged from 0 to 38 years in 30 171 

steps. This yielded 900 empirical values of STC (h, ∆). We then fitted an exponential decay function of h and ∆ to 172 

the empirical STC values. This exponential decay function was used to calculate STC values for each pixel 173 

depending on when and where a landslide last occurred closely to that pixel. 174 

Based on this, we calculated two landslide path dependency variables (Figure 5). The first variable reflects the 175 

maximum value of all STC values for all previous landslides near a pixel. This variable results in high values when 176 

one particular previous nearby landslide is expected to have a large impact on the susceptibility of landsliding. The 177 

second variable is the sum of all STC values of all previous landslides near a pixel. This variable results in high 178 

values when all previous nearby landslides are expected to have a large impact on the susceptibility of landsliding. 179 

This approach mirrors what we did in our slope unit-based susceptibility model (Samia et al., 2018) in the sense 180 

that the variables separate the impact of the most impactful previous nearby landslide from the impacts of all 181 

previous nearby landslides. 182 
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Figure 5. Procedure to compute the two landslide path dependency variables using Ripley’s space-time K function. 183 

3.2 Logistic regression  184 

Logistic regression is considered a reference model in statistically-based landslide susceptibility modelling 185 

(Reichenbach et al., 2018). Relations between presence and absence of landslides as a binary target variable are 186 

explained by a set of independent variables such as slope steepness and slope position in logistic regression. In 187 

this paper, DEM-derivatives (section 2 and Figure 2) as well as the two landslide path dependency variables 188 

computed using the Ripley’s space-time K function (see section 3.1) were used as independent variables. Landslide 189 

presence or absence was the binary target variable. 190 

 3.3 Training and testing  191 

When using a multi-temporal landslide inventory in landslide susceptibility modelling, the selection of time slices 192 

for the training and testing is crucial. In Rossi et al. (2010) and Samia et al. (2018), a sequential splitting sampling 193 

strategy was used in such a way that landslides in older time slices were used to train the model and landslides in 194 

newer time slices were used to test the model. However, such a sequential sampling strategy does not provide an 195 

equal range of landslide histories between training and testing datasets and this could bias the role of time in path 196 

dependent landslide susceptibility modelling. To avoid such a timing inequality, Samia et al. (2018) also 197 

introduced a non-sequential sampling strategy in which the span of timing segregation among time slices in the 198 

training and the testing datasets is comparable. In this study, we used this sampling strategy to split the multi-199 

temporal landslide inventory into training and testing datasets. To achieve this, all landslides in the time slices of 200 

1947, 1954, 1981, 1985, 1999, May 2004, March and May 2010 were used for training, and all landslides in the 201 

time  slices of 1965, 1977, 1991, 1997, December 2004 and 2005 and April 2013 and 2014 were used for testing 202 

(Figure 1).To achieve this, landslides in the time slices of 1947, 1954, 1981, 1985, 1999, May 2004, March and 203 

May 2010 were used for training, and landslides in the time slices of 1965, 1977, 1991, 1997, December 2004 and 204 

2005 and April 2013 and 2014 were used for testing (Figure 1). It is important to note that the time slice in 1939 205 

was used only for quantification of landsliding history of the other time slices, and not for training or testing. Thus, 206 

the 1st time slice in the training dataset is 1947 (Figure 1).  207 

The number of pixels with landslides was smaller than the number of pixels without landslides in both training 208 

and testing datasets. Therefore, we randomly selected 5,000 pixels with landslides and 5,000 pixels without 209 

landslides from both training and testing datasets in order to create equal datasets both for training and testing of 210 

the models. This random selection of pixels was repeated 10 times both in the training and testing datasets. 211 

Therefore, we trained the conventional, conventional plus path dependent and purely path dependent landslide 212 

susceptibility 10 times, and finally tested 10 times as well. After preparation of the 10 training datasets, logistic 213 

regression was applied to the10 training datasets with entry probability of 0.05 and removal probability of 0.06 for 214 

independent variables to diminish the chance of overfitting in the model. We only allowed inter-variable 215 

correlations less than 0.8 to avoid multicollinearity. Conventional landslide susceptibility was modelled using 216 

DEM-derivatives only once for the defined training dataset and was tested using the independent testing dataset. 217 

Conventional plus path dependent landslide susceptibility model was constructed using DEM-derivatives plus the 218 

two landslide path dependency variables. The purely path dependent landslide susceptibility was modelled only 219 

by using the two landslide path dependency variables. All three models were constructed only once.  Model 220 
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performance was assessed using AUC and AIC values. The AUC values for testing were assessed using 10 training 221 

models and 10 independent testing datasets. The models with highest performance in terms of AUC values, were 222 

used to map susceptibility to landslides. Finally, we compared landslide susceptibility maps resulting from 223 

conventional, conventional plus path dependent and purely path dependent susceptibility.  224 

4. Results 225 

4.1 Spatial-temporal dynamic of landslide path dependency 226 

Ripley’s space-time K function confirmed the existence of landslide path dependency at small spatial and small 227 

temporal distances from a previous landslide (Figure 6). The STC measure (Eq 6) is high in the space-time vicinity 228 

of an earlier landslide, and it then decreases rapidly. Apparently, landslide susceptibility is relatively high 229 

immediately after occurrence of an earlier, nearby landslide.  230 

 231 

 232 

 233 

 

Figure 6. Space-time dynamic of landslide path dependency. The colours represent the intensity of STC measure. 234 

Red color indicates high STC and green indicates low STC. 235 

The exponential decay function that was fitted to the empirical STC values is: 236 

𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑆𝑇𝐶(𝑡, 𝑑) = 0.44 ∗  𝑒(−𝑡/16.7) ∗  𝑒(−𝑑/58.8)             (7) 237 

This function shows that the STC measure decays exponentially over a characteristic time scale of 16.7 years and 238 

characteristic spatial scale of 58.8 meters. The residual standard error of the exponential function is 0.01, in units 239 

of STC (-), which compares favourably with the actual values that range up to 0.44. 240 

4.2 Model performance 241 
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We compared performance of the conventional, conventional plus path dependent, and purely path dependent 242 

landslide susceptibility models, using AUC (greater is better) and AIC (lower is better) values as measure of 243 

performance. The best performing landslide susceptibility model was the conventional plus path dependent model, 244 

both when expressed as AUC values and as AIC values (Table 1). The purely path dependent landslide 245 

susceptibility model, constructed with only the two landslide path dependency variables, performed better than the 246 

conventional landslide susceptibility model with its 16 DEM-derived variables.  247 

Table 1. Performance of the three landslide susceptibility models. The values of AUC represent the average AUC 248 

values in the 10 training and 10 testing datasets. The values of AIC represent the average AIC values in the 10 249 

training datasets. 250 

AUC and AIC values Conventional 

susceptibility model 

Conventional plus path 

dependent susceptibility model 

Path dependent 

susceptibility model 

AUC training 0.704 ± 0.006 0.764 ± 0.003 0.721 ± 0.004 

AIC training 12,678 ± 82 11,711 ± 53 12,469 ± 62 

AUC testing 0.682 ± 0.007 0.732 ± 0.004 0.698 ± 0.004 

 251 

  

Figure 7. Receiver operating characteristic (ROC) curves of the three landslide susceptibility models in the 10 252 

training datasets (left) and in the 10 testing datasets. 253 

For conventional susceptibility models, 6 DEM-derivatives were selected in all 10 models (Table 2). Adding two 254 

landslide path dependency variables into DEM-derivatives variables affected the inclusion and exclusion of DEM-255 

derivative variables only slightly. For example, the variables TPI and distance to river were selected 4 and 7 times 256 

respectively in the conventional susceptibility models whereas after adding the two landslide path dependency 257 

variables, these variables were selected 5 and 4 times respectively. The variable eastness which was selected twice 258 

in the conventional susceptibility models, was never selected in the conventional plus path dependent susceptibility 259 

models. 260 

 261 

 262 
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Table 2. Selection of independent variables in conventional, conventional plus path dependent and purely path 263 

dependent landslide susceptibility modelling. Variables selected 6 or more times are shown. The numbers between 264 

parentheses indicate how often variables were selected.   265 

Three landslide 

susceptibility models 

Number of variables selection in 10 times 

repetition 

Average number of 

variables selected in the 

three susceptibility 

models 

Conventional (16 DEM-

derivatives) 

Elevation (10), standard deviation of slope (10), 

LS factor (10), standard deviation of elevation 

(10), stream power index (10), aspect (10), 

distance to river (7), vertical distance to channel 

network (6), relative slope position (6) 

8.7 

Conventional plus path 

dependent (16 DEM-

derivatives plus two 

landslide path dependency 

variables) 

Elevation (10), standard deviation of slope (10), 

LS factor (10), standard deviation of elevation 

(10), stream power index (10), aspect (10), max 

smoothed STC value (10), sum of all smoothed 

STC value (10) 

10.4 

Path dependent (two 

landslide path dependency 

variables) 

max smoothed STC value (10), sum of all 

smoothed STC value (10) 

2 

 266 

In all the training and the testing datasets, the contingency tables (Table 3) showed that conventional landslide 267 

susceptibility models differed substantially from the conventional plus path dependent and path dependent 268 

landslide susceptibility models. In particular, the percentage of false positives (the percentage of pixels without 269 

landslides predicted with landslides) for the conventional susceptibility models is higher than for the two other 270 

susceptibility models. However, there are also fewer true negatives (the percentage of pixels without landslides 271 

predicted without landslides) in the conventional than in the conventional plus path dependent and path dependent 272 

susceptibility models. The variation in the differences is larger in the training datasets than the testing datasets, 273 

suggesting that all fitted models are robust. 274 

 275 

 276 

 277 

 278 

 279 

 280 
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Table 3. Contingency tables computed with cut off value of 0.5 for the three models. The numbers in the table 281 

represent the average values computed in the 10 training and 10 testing datasets.  282 

 Conventional landslide 

susceptibility  

Conventional plus path 

dependent landslide susceptibility  

Path dependent landslide 

susceptibility  

 Observed landslides  Observed landslides  Observed landslides  

 yes no yes no yes no 

Predicted 

landslides 

(training) 

yes 

 

 

no 

35 ± 0.33 

 

 
15 ± 0.33 

 

 

19 ± 0.60 

 

 

31 ± 0.60 

34 ± 0.42 

 

 

16 ± 0.42 
 

14 ± 0.23 
 

 

36 ± 0.23 
 

 

31 ± 0.8 
 

 

19 ± 0.8 
 

13 ± 0.32 

 

 

37 ± 0.32 

Predicted 

landslides 

(testing) 

yes 

 

 

no 

33 ± 0.50 

 

 

 

17 ± 0.50 
 

19 ± 0.21 
 

 

 

31 ± 0.21 
 

29 ± 0.35 
 

 

 

21 ± 0.35 
 

13 ± 0.43 
 

 

 

37 ± 0.43 
 

23 ± 0.24 

 

 

 

27 ± 0.24 
 

12 ± 0.41 

 

 

 

38 ± 0.41 
 

 283 

3.3 Conventional, conventional plus path dependent and purely path dependent landslide susceptibility 284 

maps  285 

The landslide susceptibility maps derived from the three models illustrate different patterns of landslide 286 

susceptibility (Figure 78). For the models that include path dependency, the presented maps give the average values 287 

of all simulated time slices. Differences between the maps correspond with the considerable differences in the 288 

performance of their landslide susceptibility models in terms of AUC and AIC values (Table 1). The path 289 

dependent landslide susceptibility map is visually different from both other landslide susceptibility maps, with the 290 

pattern dominated by regions of high susceptibility around locations where landslides previously occurred. 291 

 292 

 293 
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Figure 78. Conventional landslide susceptibility map in the left, the conventional plus path dependent landslide 294 

susceptibility map (averaged out over 16 time slices) in the middle and path dependent landslide susceptibility 295 
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map (averaged out over 16 time slices) in the right. The pie charts show the percentage of pixels in each map in 296 

different probability levels of landslide occurrence.  297 

The 16 conventional plus path dependent landslide susceptibility maps are dynamic and change over time (Figure 298 

89). These changes reflect the exponential decay with increasing time since previous nearby landslides (Figure 6) 299 

and the sudden increase of susceptibility in areas close to recent landslides. The gradual decrease in susceptibility 300 

levels is clearest when comparing the 1981 and 2004 susceptibility maps, whereas the sudden increase is clearest 301 

when comparing the 2004 and 2014 maps. The 2014 susceptibility map has higher susceptibility levels because of 302 

the impact of recent landslides in the year 2013. 303 
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 304 
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Figure 89. Examples of four dynamic conventional plus path dependent landslide susceptibility maps in the years 305 

of 1947, 1981, 2004 and 2014. Zoomed maps show the places where there are large changes in susceptibility over 306 

time.  307 

Similar dynamics are visible when comparing landslide susceptibility maps constructed with the purely path 308 

dependent model for different years (Figure 910). These maps show only the pure influence of earlier landslides 309 

on susceptibility to future landslides (Figure 6). Again, the susceptibility of landslides decreases where distance 310 

from earlier landslides in space and time increases, but jumps back up when more recent landslides become part 311 

of the landslide history. The pure influence of each individual landslide on the susceptibility to the future landslide 312 

is strong when a landslide is fresh which is reflected in the high percentage of susceptibility levels of  0.6-0.8 and 313 

0.8-1.0 in 1947 and 2014.When time passes since the previous landslide has occurred, the susceptibility decreases 314 

with an exponential decay response which is reflected in the low percentage of susceptibility levels of 0.6-0.8 and 315 

0.8-1.0 in 1981 and 2004.  316 
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Figure 910. Examples of four dynamic path dependent landslide susceptibility maps in the years of 1947, 1981, 317 

2004 and 2014. Zoomed maps show the places where there are large changes in susceptibility over time. 318 
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5. Discussion 319 

In this section, we focus first on the quantification of landslide path dependency in the pixel-based multi-temporal 320 

landslide inventory, and then discuss its role in susceptibility models. We also discuss the susceptibility model 321 

performance for all three model types. At the end, the exportability of landslide path dependency parameters and 322 

the implication of dynamic time-variant path dependent landslide susceptibility in landslide hazard is discussed.  323 

5.1 Quantification of landslide path dependency 324 

The quantification of landslide path dependency using Ripley’s space-time K function (Ripley, 1976; Diggle et 325 

al., 1995) indicates, in our study area, an exponential decay response in the STC values (Figure 6). This means 326 

that there is a positive influence of earlier nearby landslides on susceptibility that decays exponentially in time and 327 

space with a characteristic time scale of about 17 years, and a characteristic space scale of about 60 meters. This 328 

is in accordance with our previously quantified landslide path dependency using follow-up landslide fraction in 329 

which the decay period of landslide path dependency was found to be about two decades (Samia et al., 2017b). 330 

Landslide clustering manifests in the form of spatial association among landslides where follow-up landslides 331 

occur immediately after and close to a previous landslide (Samia et al., 2017a). Samia et al. (2017b) discussed the 332 

possible mechanism in the formation of clusters of landslides in which the size of the initial landslide and changes 333 

in hydrology of slope destabilized by a landslide could facilitate the occurrence of follow-up landslides and hence 334 

clusters of landslides.  335 

STC values and their exponential decay to some extent depend on the method that we have chosen to determine 336 

the centre point of landslides when converting polygons of landslides to points of landslides.  Our approach was to 337 

take the geometric centre, but other options exist (Haines, 1994) and their impact should be explored. Also, in the 338 

computation of STC values with Ripley’s space-time K function, distance between landslides was calculated using 339 

the Pythagorean theorem without distinguishing between distances in the x and y direction . Also we did not include 340 

differences in the elevation of centre points in our distance calculations. For future work, it could be interesting to 341 

define one dimension as the distance along the slope in the downslope direction and another dimension as the 342 

distance in the slope parallel direction, and keeping these two spatial dimensions separate in addition to the 343 

temporal dimension.  344 

5.2 Effect of landslide path dependency on performance of landslide susceptibility models  345 

Our results demonstrated that including landslide path dependency effect in a pixel-based landslide susceptibility 346 

model constructed by DEM-derivatives improves model performance substantially. This is in line with high AUC 347 

and low AIC values for the conventional plus path dependent landslide susceptibility model (Table 1 and Figure 348 

7). This confirms our main hypothesis that adding the effect of landslide path dependency boosts the performance 349 

of landslide susceptibility models, and is in accordance with our previous expectations regarding stronger effect 350 

of landslide path dependency in a pixel-based landslide susceptibility model than in a slope unit-based landslide 351 

susceptibility model (Samia et al., 2018). Landslide path dependency is a local effect (apparently with 352 

characteristic space scale of about 60 meters) in which an earlier landslide increases the likelihood of follow-up 353 

landslide occurrence. Such a local effect is obviously more visible at pixel resolution of 10 m rather than at slope 354 

unit resolution (with a median size of 51486 m2 in our study area).  355 
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Strikingly, the purely path dependent landslide susceptibility model constructed with only the two landslide path 356 

dependency variables performs better than the conventional landslide susceptibility model made by DEM-357 

derivative variables (Table 1 and Figure 7). This is potentially interesting since it implies that the landslide 358 

inventory itself can be used to map susceptibility to landslide without using DEM-derivatives which have been 359 

conventionally used in landslide susceptibility modelling (Varnes, 1984; Guzzetti et al., 2005). More complex 360 

explanatory variables such as geology, soil and land use can also be used along with DEM-derivatives to improve 361 

landslide susceptibility models and maps. However, these are not always available. In fact, considering landslide 362 

path dependency effect into such complete explanatory factors improve their performance as well. We confirmed 363 

this in an additional exploration where we constructed a conventional landslide susceptibility model used in this 364 

paper, with the same DEM-derivatives, but also with land use and geology as explanatory factors. The results 365 

demonstrated that adding our two landslide path dependency variables to such an improved conventional landslide 366 

susceptibility increased its performance (from AUC value of 0.771 to AUC value of 0.801).  367 

Another important aspect of considering landslide path dependency effect in landslide susceptibility modelling is 368 

providing dynamic landslide susceptibility maps. Landslide susceptibility maps are usually classified into five 369 

levels of probability to landslide occurrence ranging from 0 to 1. In the conventional landslide susceptibility map 370 

(Figure 78, right left map), the five probability levels of susceptibility by definition remain constant over time 371 

since the DEM-derivatives in the model are constant (although DEM-derivatives also change when a landslide 372 

occurs, but DEMs are not updated frequently enough to reflect this). The usage of conventional static landslide 373 

susceptibility maps and dynamic landslide susceptibility maps taking landslide path dependency depends 374 

on the goal and task of audience. In reality, static susceptibility maps created (either with a conventional 375 

susceptibility model, or as the static portion of a conventional plus path dependent model) with this time-insensitive 376 

method are can be used in sustainable planning whereas dynamic susceptibility maps can be considered in short-377 

term land use planning.  only for an amount of time roughly equal to the temporal length of the original landslide 378 

inventory.  379 

However, adding landslide path dependency in landslide susceptibility models, provides dynamic landslide 380 

susceptibility maps (Figures 8 9 and 910) in which the levels of susceptibility change over time, reflecting the 381 

exponential decay response of landslide path dependency (Figure 6). The changes are in the places where 382 

landslides have already occurred, mainly in probability levels of susceptibility ranging from 0.6 to 1.0. This 383 

suggests that the part of area located in the high probability level of susceptibility could switch to the low 384 

probability level of susceptibility (0 to 0.6) after a decade. This is exemplified between 1947 and 1954 landslide 385 

susceptibility maps, in which about 9 km2 of study area drops more than 0.1 in their probability of landslide 386 

occurrence. After adding the two path dependency variables in the conventional landslide susceptibility modelled 387 

with DEM-derivatives, it turns out that the coefficients of all DEM-derivative variables become lower (e.g., LS 388 

factor becomes less important). 389 

5.3 Can landslide path dependency parameters be transported to other areas? 390 

In landslide prone areas where landslides are documented and mapped in the form of polygon-based multi-391 

temporal inventories, the landslide path dependency can be quantified based on geographical  overlap among 392 

landslides, and hence used in landslide susceptibility modelling (Samia et al., 2017b; Samia et al., 2018). However, 393 
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polygon-based multi-temporal landslide inventories are rare to the best of our knowledge, and hence in many areas 394 

geographical overlap among landslides cannot be computed. In this paper, we proposed using Ripley’s space-time 395 

K function to compute landslide path dependency where point-based multi-temporal landslide inventories are used. 396 

Using such inventories, our STC measure (Eq. 6) can be used to quantify path dependency among landslides.  397 

It is attractive to think that the STC measure (Eq. 6) and its parameters (Eq. 7) can be directly exported to landslide 398 

prone areas with substantial geological and topographical similarities. However, to gain confidence in this 399 

approach, multi-temporal landslide inventories from such places (e.g., (Schlögel et al., 2011)) need to be 400 

interrogated to find out whether path dependency occurs, whether it occurs over similar space and time scales, and 401 

whether it adds value to susceptibility modelling. This would also allow us to start exploring what determines the 402 

characteristic space and time scales. 403 

5.4 Implications of path dependent landslide susceptibility in landslide hazard assessment 404 

We have already modified the definition of conventional landslide susceptibility modelling (Varnes, 1984; 405 

Guzzetti et al., 2005) using spatial temporal dynamics of landslide path dependency (Samia et al., 2017a, b) as 406 

following:  407 

𝐿𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑠,𝑡 = 𝑓(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑠 , 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑝𝑎𝑡ℎ 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦𝑠,𝑡)   (8)         408 

In this study, both conventional plus path dependent and path dependent landslide susceptibility models turned out 409 

to perform better than a conventional landslide susceptibility model (Table 1 and Figure 7). In both models, 410 

availability of a space-time component – reflecting the exponential decay of landslide path dependency – indicates 411 

that landslide susceptibility is dynamic. This challenges the way landslide hazard is assessed as landslide 412 

susceptibility is an important element of landslide hazard.  413 

In landslide hazard assessment, landslide susceptibility as a proxy of ‘where landslides occur’ is combined with 414 

the temporal probability of landslide triggers (mainly rainfall) to determine ‘when landslides occur’ (Guzzetti et 415 

al., 2006a). In this context, a dynamic landslide susceptibility (Eq. 8) needs to be considered in combination with 416 

the temporal information of landslide triggers in the assessment of landslide hazard. When substantial landsliding 417 

happens during a rainfall event, susceptibility in and around such landslides can be raised for a few decades in 418 

which moderate rainfall events may already cause substantial landsliding, which raises susceptibility levels again. 419 

(Figure 1011). If no substantial triggering event happens over the characteristic time scale of roughly 17 years, the 420 

increased susceptibility will be substantially reduced, and a later rainfall event may have less influence on 421 

landsliding; the probability of experiencing a follow-up landslide will have decreased.  422 
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Figure 1011. Hypothetical example Conceptual model of the implication of dynamic path dependent landslide 423 

susceptibility model in landslide hazard assessment. When susceptibility is low, the hazard is also low (providing 424 

the other components of landslide hazard e.g., size remain unchanged) and large rainfall events are needed to 425 

trigger new landslides. Then, when susceptibility is raised by such landslides, the hazard is also high and small 426 

rainfall events may trigger new landslides.  427 

6. Conclusion 428 

In the Collazzone study area, in Central Italy, quantification of landslide path dependency reveals an exponential 429 

decay response in landslide susceptibility as a function of space and time distance to earlier nearby landslides. For 430 

our study area, the characteristic time scale of this effect is about 17 years and the characteristic space scale is 431 

about 60 meters. Adding such an exponential decay response of landslide path dependency in conventional pixel -432 

based landslide susceptibility modelled by DEM-derivative improves the performance of model substantially. 433 

Taking into account landslide path dependency effects in landslide susceptibility results in dynamic landslide 434 

susceptibility models where susceptibility changes over time. We stress that landslide susceptibility modelling 435 

should take the effect of landslide path dependency into account since it provides an estimation of temporal 436 

validation of different probability levels of landslide occurrence in landslide susceptibility map. The obtained 437 

landslide path dependency parameters can possibly be used for dynamic landslide susceptibility modelling in 438 

landslide prone areas with environmental and data similarities. We proposed a conceptual model that considers 439 

the impact of dynamic path dependent landslide susceptibility on landslide hazard.  440 
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