
1 

 

A fast monitor and real time early warning system for landslides in 

the Baige landslide damming event, Tibet, China 

 

Yongbo Wu, Ruiqing Niu*, Zhen Lu 
  5 

Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan, China  

*Correspondence to: Ruiqing Niu， E-mail address: rqniu@163.com 

Abstract: Landslide Early warning systems has been widely used to avoid potential disaster. In this paper, a fast monitoring 

and real time precursor predication method is proposed to build the early warning systems for specific landslide. The fast 

monitoring network in this system uses ad-hoc technology to build rapid site monitoring network consist of Beidou terminals 10 

and fracture monitors. The real time precursor predication method based on the KF-FFT-SVM model is conducted to fulfil 

precursor early warning of in short time. The KF-FFT-SVM model working in this system is established through the analysis 

of the precursor slide character in deformation data got by the Beidou terminals. The deformation data is considered as the 

mechanical vibration of specific landslide and the  KF-FFT-SVM model is trained to predicate the occurrence of landslide by 

the real time deformation data. This system not only improves the robustness of site monitoring, but also provides an effective 15 

early warning method for specific landslide. It is applied in Baige landslide monitoring and results showed that KF-FFT-SVM 

early warning model can predication the occurrence of landslide with high accuracy. It will make the early warning work for 

specific landslide more effective and costless, although numerous continuous monitored precursor slide deformation data are 

needed to trained the model well. 

1 Introduction 20 

Landslide hazard is the third largest geological hazard in nature after earthquakes and volcanoes. It is also direct affected 

by human engineering activities. China is one of the countries that suffered most from landslide disasters in the world(Huang, 

2007). Espically the Ms 8.0 Wenchuan earthquake of May 12, 2008 in China，which triggered tens of thousands of landslides 

over a broad area in west China, some of them buried large sections of some towns and dammed the rivers(Dai et al., 2011). 

So the research on reduced of property damages and casualties has always been an urgent problem, and early warning systems 25 

for landslides have already been operating in many place of the world(Glade and Nadim, 2014; Stähli et al., 2015).  

According to the definition of the United Nations International Strategy for Disaster Reduction (UNISDR 2009), an early 

warning system is defined as “the set of capacities needed to generate and disseminate timely and meaningful warning 

information to enable individuals, communities and organizations threatened by a hazard to prepare and to act appropriately 

and in sufficient time to reduce the possibility of harm or loss.” Refer to the above definitions, efficient landslide EWSs should 30 
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comprise four main sets of actions(DiBiago and Kjekstad, 2007): (1)Monitoring activities, i.e. data acquisition, transmission 

and maintenance of the instruments;(2)Analysis and modelling of the phenomenon;(3)Warning, i.e. the dissemination of 

simple and understandable information to the exposed elements;(4)Effective response of the elements exposed to risk and 

risk’s knowledge. 

Landslide EWSs can be divided into regional landslide EWSs and single landslide EWSs from scale range. Regional 5 

landslide EWSs use the statistic method to determine the threshold by rainfall. These system is applicable for the rainfall 

induced shallow landslides, and the classification early warning is given according the preset rainfall intensity–duration 

threshold combined with real-time monitoring of soil moisture(Baum and Godt, 2010; Gariano et al., 2015, 2016; Hong and 

Adler, 2007; Rosi et al., 2015).  

For single landslide EWSs, the key to a successful EWS lies in the ability to identify and measure in real time limited but 10 

significant indicators, called precursors, which precede a landslide catastrophic failure(Barla and Antolini, 2016).The precursor 

characters are reflected by the mechanical properties of the landslide which can be measured by instruments. For example, 

inclinometer for tilt(Dikshit et al., 2018; Lollino et al., 2002), fiber Bragg grating for fissures(Zhu et al., 2017), Ground-Based 

Synthetic-Aperture Radar, LiDAR, total station, GPS and photogrammetric techniques for deformations(Atzeni et al., 2015; 

Barla and Antolini, 2016; Jaboyedoff et al., 2012; Malet et al., 2002; Tarchi et al., 2003), geoelectrical monitor for soil 15 

moisture(Supper et al., 2014), wire extensometer for rock fracture(Intrieri et al., 2012), etc. These precursor characters are 

used to make early warning with respective model or integrated models(Thiebes et al., 2014; Yin et al., 2010).    

It is obviously that the warning model should build according to the mechanics and the mechanism of the instability of a 

landslide. And the predication accuracy of the early warning model rely on the high quality real-time monitoring data. While 

the implement of monitoring network is durable as geotechnical engineering has to undertake in the hard environment. Futher 20 

more, the monitoring network is easy to broken down in the wild, which means the monitor part of landslide EWSs is less 

robustness(Intrieri et al., 2013). 

        In this paper, a fast monitor and real-time early warning system is proposed. In this system, the monitoring part uses the 

ad-hoc network technology to ensure the robustness of the system. In order to build a monitor network quickly, especially after 

the first failure of a landslide, the monitoring station only include Beidou terminal and fracture monitor. The early warning 25 

part based on Kalman-FFT-SVM method to establish a real time warning model. The system was applied after the Baige 

landslide first damming event, Tibet, and, successfully, got the critical slip data of the surface moving by Beidou terminal 

based on China’s Beidou Navigation System. Then we use the critical slip data to train the early warning model. The early 

warning model predicts the following damming event successfully. Practice shows the fast monitor and real-time early warning 

system has generalization significance. 30 
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2 Fast monitor system  

2.1 Traditional monitor system 

The structure of traditional landslide monitoring network is shown in Figure 1. All kinds of monitoring sensors are 

connected with data acquisition terminal (DTU) through Modbus protocol or SDI-12 protocol. DTU, communication module 

(GPRS/3G/4G) and power supply system constitute a remote measurement unit (RTU). The measuring data is sent to the 5 

mobile communication network through the communication module and transmitted to the control center through the public 

network. In this way, the transmission rate is unstable and the system robustness is poor. Once the communication of a 

monitoring point breaks down, it means that all sensor data under this monitoring point cannot be returned, resulting in 

partial paralysis of the monitor system. Therefore, a more flexible and stable networking structure is needed to improve the 

robustness of the monitor system. 10 

 

Figure 1:Traditional landslide monitoring system 

2.2 Ad-hoc network  monitoring  system 

The adaptive landslide monitoring network is based on ad-hoc network. Ad-hoc network solves the defects of traditional 

bus and star network, and makes the network more secure, robust, stable and reliable. Figure 2 is a typical structure of adaptive 15 

landslide monitoring network. Four stations are listed in figure 2. More stations can be expanded in practical application. Each 

station is composed of several sensors, data acquisition instrument and ad-hoc router, as shown in Station 1. Each router has 

the communication module of Beidou/GPRS/3G/4G. At the same time, each router forms a local ad-hoc network through Lora 

technology. The router can act as an AP (Access Point) node, which is responsible for the access capability of the external 
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network. Each station also can communicate with the external network through the AP node. At the same time, the routers can 

also communicate with each other in multi-hops. When a node fails, the network will find other paths to communicate through 

routing algorithm, which improves the network's robustness .The adaptive landslide monitoring network has three working 

mode. Normal mode, as is shown in figure 3(a); Communication fault mode, as is shown in figure 3(b). In this mode, parts 

router is broken down, so the system finds the new routing path to send the data out; Beidou satellite communication mode, as 5 

is shown in figure 3(c). This mode means the router is all broken down, so the beidou satellite communication system will be 

started. The ad-hoc network landslide monitoring system could build on a occurred landslide immediately, especially in the 

place where have no mobile signal or signal is weak. 

 

 10 

 

Figure 2: Ad-hoc network monitoring system 
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Figure 3: Adaptive landslide monitoring network working mode. Normal mode (a), Communication fault mode (b), 

Beidou satellite communication mode (c). 

2.3 Application of the system 

In the early morning of October 11, 2018, a large-scale high-level landslide occurred on the Tibetan Bank of the Jinsha 5 

River at the junction of Baige Village, Boro Township, Jiangda County, Tibet Autonomous Region, and Zeba Village, Ronggai 

Township, Baiyu County, Sichuan Province, blocking the main stream of the Jinsha River and forming a barrier lake. Then, 

on the late day of November 3, second landslide occurred and blocked the Jinsha River again. The barrier lake formed by the 

twice landslides caused huge hidden dangers. The location of the landslide is shown in figure 4. 
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Figure 4: Location of  Baige landslide. 

Baige landslide occurred suddenly, there are no monitor device working there before, meanwhile the monitoring system 

should be built immediately to ensure the safety of the emergency rescue working for dredging Barrier Lake. As there are no 

mobile signal there, the fast monitor system is applied there. The fast monitor system contents mainly include surface 5 
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displacement monitor and fracture monitor as shown in Figure 5. Figure 5(a) show the beidou receiver on site which is the 

surface displacement monitoring equipment. Figure 5(b) show the fracture monitor on site which is the fracture monitoring 

equipment. Both of them use solar panels as an energy supply. The location of the monitor equipment is showed in figure 6, 

BD1, BD2, BD3 and BD4  is beidou receiver, while Fm1,FM2,F3,and FM4 is fracture monitor. The sensor is located nearby 

the back edge fault scarp, neither too far away nor too close. Because too far away from the fault scarp the 5 

deformation of landslide got by the sensors is not real, while too close the installation work can be dangerous. 

 

Figure 5: Monitor device on the landslide. 

 

Figure 6: Equipment locations on the landslide 10 
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3 Early warning model    

3.1 Kalman filtering  

Kalman filtering is a linear recursive filtering method based on probability theory and mathematical statistics. It is based 

on limited data and according to the principle of linear unbiased minimum variance estimation. This method does not need to 

store the past observation data. When the new data is generated, the best estimation of the current data can be calculated by 5 

using the state transition equation of the signal itself and the recursive formula based on the estimated value of the previous 

moment and the observed value of the present moment. Kalman filter was put forward by R.E. Kalman in 1960. He introduced 

the concept of state space into the filtering theory. With the help of the state transition equation of the system, a recursive 

method was adopted to estimate the new states and observations according to the estimated values at the previous moment and 

the observed values at the present moment. 10 

      Given a discrete time system, and we have𝑋1, 𝑋2, 𝑋3, ⋯，𝑋𝑘 as the system state vectors at 𝑘𝑇𝑠 , where 𝑋𝑘 ∈ 𝑅
𝑛 , 𝑇𝑠 is the 

measuring interval.  Define the system control input𝑈𝑘, the incentive noise  𝑊𝑘 . Then, the stochastic difference equation of 

system state is describe in equation 1. 

𝑋𝑘 = 𝐴𝑋𝑘−1 + 𝐵𝑈𝑘 +𝑊𝑘.                                                                          (1) 

  Define the observation variable 𝑍𝑘 ∈ 𝑅
𝑛, observation noise 𝑉𝑘, we get the observation formula: 15 

𝑍𝑘 = 𝐻𝑋𝑘 + 𝑉𝑘 .                                                                                      (2) 

A, B, H is state transition matrix,𝑊𝑘, 𝑉𝑘 are independent normal distribution white noise: 

𝑊𝑘~𝑁(0, 𝑄)                                                                                                       (3) 

𝑉𝑘~𝑁(0, 𝑅)                                                                                                       (4) 

In the discrete system state estimating, the formula (1) is used to give the value of 𝑋̂𝑗|𝑘, which is the best estimating value 20 

of  𝑋𝑗 in time 𝑗𝑇𝑠 . So there are three situation in the use of formula (1): 

a. When j=k, 𝑋̂𝑗|𝑘 is the optimum filtering of  𝑋𝑘; 

b. When j>k, 𝑋̂𝑗|𝑘 is the optimum predicting of  𝑋𝑘; 

c. When j<k, 𝑋̂𝑗|𝑘 is the optimum smoothing of  𝑋𝑘; 

The solve of kalman filtering can describe as time update process and state update process. Time update process: 25 

𝑋̂𝑘|𝑘−1 = 𝐴𝑋̂𝑘−1|𝑘−1 + 𝐵𝑈𝑘−1                                                                         (5) 

𝑃𝑘|𝑘−1 = 𝐴𝑃𝑘−1|𝑘−1𝐴
𝑇 + 𝑄                                                                          (6) 

  Where P is error estimating matrix: 

                                                 𝐸𝑘 = 𝑋𝑘 − 𝑋̂𝑘                                                                                    (7) 

𝑃𝑘 = 𝐸(𝐸𝑘𝐸𝑘
𝑇)                                                                                    (8) 30 

State update process: 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻
𝑇(𝐻𝑃𝑘|𝑘−1𝐻

𝑇 + 𝑅)−1                                                                    (9) 
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𝑋̂𝑘|𝑘 = 𝑋̂𝑘|𝑘−1 + 𝐾𝑘(𝑍𝑘 − 𝐻𝑋̂𝑘|𝑘−1)                                                             (10) 

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘|𝑘−1                                                                     (11) 

3.2 Fast fourier transform 

Fast Fourier transform(FFT) is a highly efficient algorithm of Discrete Fourier Transform(DFT).Given finite length 

sequence x(n), length N and its DFT is described as: 5 

X(k) = ∑ x(n)WN
nk

N−1

x=0

 (12) 

     FFT uses the symmetry, periodicity and reducibility of W𝑁
𝑛𝑘 in formula (12), i.e. (13) ~ (14), to decompose a large point 

DFT into a combination of several small point DFTs. Following is a time-based 2-FFT algorithm. 

(WN
nk)∗ = WN

−nk = WN
(N−n)k

= WN
n(N−k)

                                                                     (13) 

WN
nk = WN

(N+n)k
= WN

n(N−k)
                                                                               (14) 

WN
nk = WmN

mnk = WN/m
nk/m

                                                                                   (15) 10 

     Given the N=2M, then divide x(n) into 2 groups. When n is even numbers, let n=2r. When n is odd numbers, let n=2r+1. 

Let x(2r)=x1(r), X1(k)=DFT[x1(r)], x(2r+1)=x2(r), X2(k)=DFT[x2(r)], where r=0,1,…,N-1. Then formula (12) can be describe 

as: 

X(k) = X1(k) + WN
kX2(k)                                                                              (16) 

X(k + N/2) = X1(k) + WN
kX2(k)                                                                         (17) 15 

It can be calculated that a N-point FFT operation needs NlogN complex multiplication and NlogN complex addition, 

which greatly improves the operation efficiency of DFT. 

3.3 Support Vector Machine 

Support Vector Machine (SVM) is a statistical Learning Method for Constructing the Optimal Hyperplane based on the 

principle of structural risk minimization. It maps input vectors into high-dimensional feature space by non-linear 20 

transformation, and then find the optimal classification hyperplane in high-dimensional feature space, which separate the two 

types of data points as many as possible, and maximum classification interval at the same time. Suppose a training sequence 

{𝑥𝑖 , 𝑦𝑖}; i=1,2,…,l; 𝑥𝑖 ∈ 𝑅
𝒏, 𝑦𝒊 ∈ {−1,+1}; l is the number of sample, n is the dimension of 𝑥𝑖. In the case of linear separability, 

a classification hyperplane 𝒘𝑥 + b = 0 can be found to separate 2 samples completely. For nonlinearity situation, it should be 

mapping from the low dimension feature space to a high dimension feature space by a nolinear maping function 𝜱(𝑥). Then 25 

the classification hyperplane can be expressed as 𝒘𝜱(𝑥) + b = 0. Where 𝒘, b is the variable to be determined. Find the 

classification hyperplane equivalence maximize 2/‖𝒘‖. This problem can be solve by Lagrange multiplier method：  
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{
 
 

 
 

min
‖𝒘‖2

2
+ 𝐶∑𝜉𝑖

𝑙

𝑖=1

,

𝑠. 𝑡.   𝑦𝑖(𝒘 ∙ 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 ,
𝜉𝑖 ≥ 0, 𝑖 = 1,2… , 𝑙.

 (18) 

Where 𝜉𝑖 is relaxation factor, C is penalty factor. Its duel problem is given by KKT(Karush-Kuhn-Tucher): 

{
 
 

 
 
max∑𝛼𝑖

𝑙

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗

𝑙

𝑗=1

𝑙

𝑖=1

𝑦𝑖𝑦𝑗𝝋(𝑥𝑖) ∙ 𝝋(𝑥𝑗)

𝑠. 𝑡.         0 ≤ 𝛼𝑖 ≤ 𝐶,∑𝛼𝑖

𝑙

𝑖=1

𝑦𝑖 = 0.

 (19) 

Solve the problem by SMO algorithm , we can get the classification function: 

𝑓(𝑥) = sign {∑𝛼𝑖𝑦𝑖[𝜱(𝑥𝑖) ∙ 𝜱(𝑥𝑖)]

𝑙

𝑖=1

+ 𝑏} (20) 

 Kernel function 𝐾(𝑥𝑖 , 𝑥𝑖) = 𝜱(𝑥𝑖) ∙ 𝜱(𝑥𝑖) can be found, which simplified the function operation to inner product of 

vectors. The commonly used kernels are linear kernel function, polynomials kernel function, radial basis (Gauss) function 

and sigmoid kernel function. 5 

3.4 Proposed KF-FFT-SVM landslide early warning model 

Landslide can be treat a multi-dimensional nonlinear dynamic system influenced by various factors(Eid, 2014).  Many 

research predicates the deformation landslide based on these various factors. In this paper, there are not many prior knowledge 

about the Baige landslide. The only quantitative data we got is the deformation monitored in finite time. So in the KF-FFT-

SVM landslide early warning model, firstly, we used the finite deformation data sequence 𝑆𝑘 got by beidou receivers to build 10 

the input of kalman filtering predication model  𝑋𝑘 = (𝑆𝑘 , 𝑉𝑘, 𝐴𝑘), where 𝑉𝑘 and 𝐴𝑘 are the velocity and acceleration of 𝑆𝑘 , 

respectively. After the first step we got the predication and filtering result of 𝐴𝑛. Formula (21) is the precision evaluation of 

kalman filtering predication model. Secondly, we use FFT to analysis the spectrum characteristics of the deformation 

acceleration sequence  𝐴𝑛 , got by step one, nearby the slide time of specific landslide, and find the precursor character of the 

Baige landslide ‘Step 𝑘 ’ which represents the frequency character of  𝐴𝑛 nearby the slide time. Finally, use  𝐴𝑛 form the 15 

acceleration sequence vector training data and testing data according to the precursor character ‘Step 𝑘 ’and label them, then 

train the SVM model with the data and use the trained SVM model to make predication by a new 𝐴𝑘, to find out if the warning 

is made at that time. The predication result 𝐵𝑛  is a vector with the same dimension of 𝐴𝑘 and its value is either ‘0’or ‘1’, ‘0’ 

represent there is no slide warning while ‘1’ represent the slide warning. The precision of classification result is given as 

formula (22). The whole process of KF-FFT-SVM landslide early warning model is showed in figure 7. 20 
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RMS =
1

𝑀
√∑(𝑋𝑖 − 𝑍𝑖)

2

N

i=1

 (21) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑅𝑖𝑔ℎ𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟𝑠

𝑤ℎ𝑜𝑙𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                                                                               (22) 
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Figure 7: Process of KF-FFT-SVM landslide early warning model 

4 Application of KF-FFT-SVM model 

4.1 Data pre-processing   5 

The deformation of Baige landslide after its first slide is got by beidou receivers which shows in figure 6. The second 

landslide occurred on late November 3, so we choose the date from October 31 to November 6 to train the early warning 

model. Figure 8 show the raw data of BD1, BD2, BD3 and BD4(In this paper the horizontal deformation data is used). 

The raw deformation is got in the interval of 10 minutes. It is know from fig.8 that there is noise in the data and the 

deformation got in much point in 10 minutes interval is static. So we make a 30 minute statistics, which means a 30-10 

minute interval sampling. The 30 minute statistics result is show in figure 9. The statistical data is used to build the 

kalman frittering model. 
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Figure 8: Raw data of deformation. 

 

Figure 9: 30 minutes statistics of the raw deformation data 
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4.2 KF-FFT-SVM model analysis   

4.2.1 KF model build 

     In built landslide deformation KF model, choose deformation, velocity and accelerate as the system state vector, which is 

Sk,Vk and Ak respectively .The relation between them is: 5 

{
 
 

 
 𝑋𝑘 = [𝑆𝑘 , 𝑉𝑘 , 𝐴𝑘]

𝑇 ,

𝑆𝑘 = 𝑆𝑘−1 + 𝑉𝑘−1 ∙ 𝑇𝑠 + 𝑤𝑘−1
1 ,

𝑉𝑘 = 𝑉𝑘−1 + 𝐴𝑘−1 ∙ 𝑇𝑠 + 𝑤𝑘−1
2 ,

𝐴𝑘 = 𝐴𝑘−1 + 𝑤𝑘−1
3 .

                                                                       (23) 

   Where 𝑇𝑠 is the data acquisition interval; 𝑤𝑘
1, 𝑤𝑘

2, 𝑤𝑘
3 is random error. Let 𝑇𝑠 = 1，then the stochastic difference equation 

of system state is: 

𝑋𝑘 = [
1 1 0
0 1 0
0 0 1

] 𝑋𝑘−1 + [𝑤𝑘−1
1 , 𝑤𝑘−1

2 , 𝑤𝑘−1
3 ]𝑇                                                              (24) 

The observation formula is described as formula (25): 10 

𝑍𝑘 = [1 1 0]𝑋𝑘−1 + 𝑣𝑘−1                                                                            (25) 

 Where 𝑣𝑘 is random error and we got A = [
1 1 0
0 1 0
0 0 1

], H= [1,1, 0]. The random error 𝑤𝑘  and  𝑣𝑘 is unknown, our purpose 

is use formula (5) ~ (11) to determine them. At the beginning, set a random value of Q and R, then use the date in section 4.1 

to find a couple value of Q and R that makes the KF model convergence and with high fitting accuracy. Figure 10 is the fitting 

result of BD1, BD2, BD3 and BD4, see the red curve. In this KF model 𝑊𝑘=[5,3,3]T, 𝑉𝑘=3. The max fitting error is 5.73mm 15 

which means the built KF model have a good prediction and filtering result. 
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Figure 10: Kalman filtering fitting result 

4.2.2 FFT analysis 

Choose 64 numbers of acceleration data between November 3 and November 4,which is the time around the secondary 

landslides happening,  to conduct FFT analysis. Figure 11 show the FFT result of acceleration date during the precursor stage. 5 

The FFT length N is 64 and the acquisition interval is 𝑇𝑠. Let 𝑇𝑠 = 1, the acquisition frequency can be simplified to 1 Hz. In 

figure 11, there are two major amplitude peak value nearby 0.2 Hz and 0.9 Hz, which means, in time domain, the precursor 

slide character period is nearby 5𝑇𝑠. So we choose the step sequence 𝑘 = 2, 3,4,5,6,7,8  to construct acceleration sequence.  
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Figure 11: FFT of precursor slide character 

4.2.3 SVM model training 

Before SVM model training, we mark the acceleration data of BD1, BD2, BD3 and BD4 manually. The data between 

November 3 and November 4 are marked with label “+1” which represents the precursor slide character, others are marked 5 

with label “-1” which represents the non-precursor slide character. Then, use marketed BD1, BD2, BD3 and BD4 data 

respectively to construct acceleration sequence A𝑛
′ ,  

A𝑛
′ = [A𝑛, A𝑛+1, … , A𝑛+𝑘−1, 𝑙𝑎𝑏𝑒𝑙]                                                              (26) 

where 𝑘 = 2, 3,4,5,6,7,8, which is given in part 4.2.2; 𝑛 = 1,2, … ,336 − 𝑘; label is marked value of A𝑛. 

Then we get the marked set A𝑛(𝐵𝐷1)
′ , A𝑛(𝐵𝐷2)

′ , A𝑛(𝐵𝐷3)
′ , and A𝑛(𝐵𝐷4)

′ . Choose A𝑛(𝐵𝐷1)
′ , A𝑛(𝐵𝐷2)

′  and  A𝑛(𝐵𝐷3)
′  as training 10 

data, while  A𝑛(𝐵𝐷4)
′  as testing data. For example, when = 2 , the training data and testing data is showed in formula (27):  

{
 
 

 
 
                                  A𝑛(𝐵𝐷1)

′ = [A𝑛, A𝑛+1, 𝑙𝑎𝑏𝑒𝑙](𝐵𝐷1) 

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎:    A𝑛(𝐵𝐷2)
′ = [A𝑛, A𝑛+1, 𝑙𝑎𝑏𝑒𝑙](𝐵𝐷2)

                                   A𝑛(𝐵𝐷3)
′ = [A𝑛, A𝑛+1, 𝑙𝑎𝑏𝑒𝑙](𝐵𝐷3)  

𝑡𝑒𝑠𝑡𝑖𝑛𝑔    𝑑𝑎𝑡𝑎:      A𝑛(𝐵𝐷4)
′ = [A𝑛, A𝑛+1, 𝑙𝑎𝑏𝑒𝑙](𝐵𝐷4)   

                                                     (27) 
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4.3 Predicting result 

    Use RBF function and SMO algorithm to search the best C and γ.The predicting result at different steps sequence is showed 

in figure 12. Figure 12 also show the 3 steps sequence training data scatters in 3D coordinate and it is obvious to know that 

they cannot be well separated in 3D space. So we should separate them in high dimension, which means k>3. From figure 12, 

it is known that when k=6, the highest accuracy 0.915 is got .Meanwhile the best C=4, and γ = 1. The result is proved by the 5 

FFT analysis which show the best precursor slide character is nearby 0.2Hz, which equal to 6 steps sequence in SVM model.  

5 Discussion 

    The fast monitor and real-time early warning system in this paper focus on the monitoring, modelling and warning actions 

of the efficient landslides EWSs described in part 1. Effective response manners is beyond the discussion of this paper. The 

use of ad-hoc technology help to layout a redundancy site monitoring network, which improves the robustness of traditional 10 

landslide EWSs. The monitor system mentioned here only include Beidou terminals and fracture monitors. So the monitor 

system can be built in a short time, and it is helpful for the landslide monitoring immediately after the first-time failure of a 

landslide, because the secondary landslides may occur at any time, which is a great threat to rescuers. 

     The early warning model based on the KF-FFT-SVM method makes the predication according to the acceleration characters 

of landslide deformation. It is on the principle that the mechanical vibration of landslide failure can be recorded by the 15 

deformation data. Then the precursor acceleration characters is considered as the vibration of landslide failure.  In this study, 

the Beidou terminals have the ability to measure the deformation of landslide in a short time (10 minutes) and obtain an 

accuracy of a few millimetres which is given by the manufacture. Raw data of deformation are showed in figure 8, it is 

obviously that there are random error got by the Beidou terminals as the deformation data is not continuous rise in several 

period and the deformation is still within the measuring intervals(>10 minutes). That’s why the raw data is pre-processed and 20 

the 30 minutes statistics of the raw deformation data is, then, given in figure 9. Suppose 30 minutes as one unit time scale, then 

KF method is used to filter the random error, FFT is used to find the precursor acceleration characters which represent the 

mechanical vibration frequency of landslide failure. The precursor acceleration characters is finally used to train the SVM 

classifier and the trained SVM classifier can be set online for real time  landslide early warning. 

This system is successfully used in Baige landslide and fulfil the recognition and early warning of secondary landslide. 25 

The most important features of the system is that it can quickly build monitoring network and use the deformation data to carry 

out precursor slide early warning. In this early warning system, we consider the deformation data measured by Beidou 

terminals as the mechanical vibration of landslide. While, there must be distortion for the transformation from vibration signal 

to deformation signal, which call for the high sensitivity of Beidou terminals, meanwhile, with high accuracy. The monitor 

position is also a key to measure the precursor slide characters. In practice it is difficult to put the measuring instrument 30 

correctly on the deformation prat which is inner the landslide body. So we locate the Beidou terminals near the surface fracture 

to make sure measuring the precursor slide characters as possible as it can. Furthermore, the characteristic frequencies got by 
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the FFT method are different between BD1, BD2 and BD3, then a range frequency is used to generate different length time 

sequences. SVM model is trained by these sequences respectively and test the accuracy by BD4 to find the best character 

frequency which can be used to make the early warning for this specific landslide. The training data set in this paper is there, 

while more Beidou terminals are needed to get more data sets to make this method more effective.  

The fast monitor and real-time early warning system is useful for single landslide early warning because it is simplicity, 5 

costless, redundancy and robustness. It is especially meaningful for the rescue work of a large scale specific landslide after its 

first-time failure. Generally, there are limited time left for the rescuing work, so build an effective early warning system in a 

short time is important. The KF-FFT-SVM model trained by the precursor deformation data of landslide makes the single 

landslide early warning more effective and it also can be combine with the monitoring of the acoustic emissions from a specific 

landslide(Hu et al., 2018). 10 

6 Conclusion 

In this study, the fast monitor and real time early warning system for landslide is proposed. This system uses ad-hoc 

technology to facilitate the repaid layout of the site monitoring network, which improves the robustness of traditional landsldes 

EWSs. Furthermore it builds KF-FFT-SVM early warning model for single landslide through the analysis of the precursor 

slide character through the deformation data.  15 

The most important features of the system is that it can quickly layout a monitor network and use the deformation data to 

carry out precursor slide early warning, this is very useful for the early warning of the specific landslide after its first-time 

failure. It provides a new idea for monitoring and early warning of single landslide, which not only improve the robustness of 

the landslide early warning system but also makes landside warning not depend too much on the study of landslide mechanism 

characteristics, simplifies landslide monitoring elements. The precursor character extracts from the deformation data is 20 

considered as the mechanical vibrations of the landslide failure. Then the real time early warning is conducted according to 

the precursor slide deformation data. 
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Figure 12: Prediction result at different steps sequence  
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