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Response to Dr. Seed 

 

We would like to thank Dr. Seed for his constructive comments. Here we would like to present our answer 

following each comment.  

 5 

Reviewer comments: 

 

The paper describes the application of a large (1600 members) ensemble of high-resolution rainfall 

forecasts for flood forecasting in a small (72 km2 ) catchment where the lead time required to respond to 

a flood warning is longer than the characteristic response time of the catchment. This is an important issue 10 

for unban catchments where hydrological predictions need to be based on rainfall forecasts and not 

observed rainfall. 

 

The temporal resolution should always be included when discussing resolution. I assume that the 

ensemble had 10-minute resolution since this is used by the hydrological model. 15 

 

Reply: Since NHM-4DEnVAR stored data every hour due to limited data storage, we applied the hourly 

data to the rainfall-runoff model. 

 

Section 2 – details of the rainfall event. I looked up the 2016 paper for more details of the meteorological 20 

situation, but found very little extra. It would be very helpful to understand better the meteorological 

situation. I am assuming that, since this case is in Japan and summer, the situation was mostly orographic 

triggering of severe convection in a very moist airmass. This implies that the model rainfall forecasts are 

closely forced by the topography where the storms are initiated in the near vicinity of the catchment and 

are likely to be slow moving? This is important because advection nowcasts will not be able to provide 25 

accurate nowcasts in these circumstances. 
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Reply: We have added a paragraph in the revised manuscript to analyze the meteorological situation in 

more details that we reproduce here: 

“As mentioned in our Part 1 paper (Kobayashi et al. 2016), this torrential rain occurred over the small 

area along the synoptic scale stationary front (for surface weather map, see Fig. 1 of Kobayashi et al. 

2016). Saito et al (2013a) conducted two 11-member downscale ensemble forecasts with different 5 

horizontal resolutions (10 and 2 km) for this event using JMA-NHM and JMA’s global ensemble EPS 

perturbations. They found that the location where intense rain concentrates varies with a small change of 

model settings, thus the position of the heavy rain was likely controlled mainly by horizontal convergence 

along the front, rather than the orographic forcing.”   

 10 

I really missed some radar rainfall images, say the 10 (or 30)-min rain rates at the times of the three peaks 

in the hydrograph, just so that we can get a feeling for the space-time structure of the rainfall fields. 

Actually, the spatial and temporal correlation functions would also be interesting, at least to me as a 

rainfall person. 

 15 

Reply: For supplement information, we would like to show here the radar images corresponding to the 

times when the three peaks occurred in the hydrograph (see Figure S1. we do not intend to add these 

figures into the manuscript). 

 

 

Figure S1. Reflectivity from radar composition at the time of the first (left), second (center), and third 

(right) peaks of the hydro-graph. 
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Section 6 – Results. It would be very good to extend the results to include a basic analysis of the rainfall 

forecasts before going to the hydrological verification. In particular, how reliable are the probability of 

precipitation estimates for the extreme rain rates, especially as a function of ensemble size? This is very 

important if we are running an ensemble prediction system to predict the probability of extreme rainfall. 5 

 

The paper should include some results that show the skill of the model, say the reliability diagram for 

high rain rates, as a function of lead time. Did subsequent model runs reproduce the second and third 

maxima in the hydrograph? 

 10 

Reply: We have added two paragraphs to Section 3 describing the verification results of the rainfall 

forecasts. We agree with the comment that verification scores for rainfall forecasts with respect to 

different lead times should be included in the paper. However, it was very costly to run a high-resolution 

(2 km grid spacing) ensemble forecast using 1600 members even for a specific time. Due to this reason, 

we could only run deterministic forecasts for all other initial times and use the Fraction Skill Score to 15 

measure forecast performance of the deterministic forecasts at different lead times. We had also run an 

additional experiment using only 50 ensemble members to compare with the case using 1600 members. 

Reliability diagrams are then plotted for these ensemble forecasts by the two experiments, even though 

we only run the ensemble forecasts at a specific time. Of course, the FSS is also calculate for this 

additional experiment. Here are the paragraphs that we have added to the revised manuscript: 20 

 

“Due to limited computational resource, ensemble forecasts with 1600 members were only employed for 

the target time of 0000 JST July 29th, 2011. However, deterministic forecasts were run for all other initial 

times to examine impact of number of ensemble members on analyses and the resulting forecasts. Figure 

1 shows the verification results for the 3-hour precipitation forecasts as measured by the Fraction Skill 25 

Score (FSS) (Duc et al., 2013). Here we aggregate the 3-hour precipitation in the first and second 12-hour 

forecasts to increase samples in calculating the FSS. By this way, robust statistics are obtained but at the 

same time dependence of the FSS on the leading times can still be shown. Note that an additional 
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experiment with the 4D-EnVAR-NHM using 50 ensemble members, which is called 4DEnVAR50 to 

differentiate with the original one 4DEnVAR1600, was run. It is very clear from Figure 1 that 

4DEnVAR1600 outperforms 4DEnVAR50 almost for all precipitation thresholds, especially for intense 

rain. Also for high rain-rate, 4DEnVAR1600 forecasts are worse than JNoVA forecasts for the first 12-

hour forecasts, which can be attributed to the fact that 4D-EnVAR-NHM did not assimilate radiances like 5 

JNoVA. However, it is interesting to see that 4D-EnVAR-NHM produces forecasts better than JNoVA 

for the next 12-hour forecasts. 

 

To check reliability of the ensemble forecasts, reliability diagrams are calculated and plotted in Figure 2 

for 4DEnVAR1600 and 4DEnVAR50. Since JNoVA only provided deterministic forecasts, reliability 10 

diagram is irrelevant for JNoVA. Note that we only performed ensemble forecasts initialized at the target 

time of 0000 JST July 29th, 2001 due to lack of computational resource to run 1600-member ensemble 

forecasts at different initial times. Therefore, the same strategy of aggregating 3-hour precipitation over 

the first and second 12-hour forecasts in calculating the FSS in Figure 1 is applied to obtain significant 

statistics. Clearly, Figure 2 shows that 4DEnVAR1600 is distinctively more reliable than 4DEnVAR50 15 

in predicting intense rain. While 4DEnVAR50 cannot capture intense rain, 4DEnVAR1600 tends to 

overestimate areas of intense rain. The tendency of overestimation of 4DEnVAR1600 becomes clearer if 

we consider the forecast ranges between 12 and 24 hours. However, for the first 12 hours, 4DEnVAR1600 

slightly underestimates areas of light rains. This also explains why the FSSs of 4DEnVAR1600 are 

smaller than those of 4DEnVAR50 for small rainfall thresholds in Figure 1.” 20 

 

Since we only run deterministic forecasts for other initial times, we show here the forecast results for 

other lead times as supplement information (see Figure S2. we do not intend to add these figures into the 

manuscript). It turns out that it is more difficult to forecast the second and third peaks in the hydrograph.  

 25 
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Figure S2. Time series of one-hour accumulated rainfall over the catchment by deterministic forecasts 

of JNoVA (top) and 4DEnVAR1600 (bottom) at different lead times. 

 

I really liked Figures 7, the probability of the inflow exceeding a critical threshold, and 10, the probability 

of an emergency operation, as examples of probabilistic products that meets the needs of an end-user. 

Once again, it would be interesting to see these products for a range of lead times. 

 5 

Regarding Figure 7, moving the forecasts around in time did not improve the results, but what about 

moving the ensemble in space? Generally, I find that the NWP rainfall forecasts that I work with have 

limited skill at scales that are below around 100 km. I assume that the rainfall in this case is strongly 
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influenced by the topography so you would not want to shift the rainfall fields too much, but it would still 

be interesting to move them around by a few tens of km. 

 

Reply: As explained above, our computational resource can only afford running 1600-member ensemble 

forecast for a specific time. Although it’s desirable to know the forecasts as plotted Figure 7 (Figure 9 in 5 

supplement) for other lead times, limited computation resource prevented us to employ this. In design the 

plot in Figure 7, we introduced the idea of using spatial and temporal uncertainty in verification from the 

FSS into the hourly discharges. It is clear that hourly discharges have strong correlation with hourly 

precipitation. Then it is reasonable to consider temporal uncertainty in hourly precipitation. Since the 

rainfall over the catchment here is not rainfall at any specific grid point but rainfall over many grid points 10 

(more than 70 km2 in our problem). Therefore, temporal uncertainty is more relevant to hourly catchment 

rainfall rather than spatial uncertainty. Also, computation with spatial uncertainty is more complicated in 

this case since we must consider all directions of displacement vectors in a two-dimensional space, which 

have more degree of freedom that just one direction in the one-dimensional space of temporal uncertainty. 

Therefore, we do not consider spatial uncertainty in plotting Figure 7 and 10 (Figure 9 and 12 in 15 

supplement). 

 

The conclusion that it is difficult to select a “set of best ensemble members” based on past performance 

is significant, if a little discouraging. 

 20 

The revised manuscript is attached in the next pages. The yellow highlight indicates where the revision 

is made.  

 

 

 25 
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Kenichiro Kobayashi1, Apip2, Le Duc3,6, Tsutao Oizumi3,6 and Kazuo Saito4,5,6  5 

 

1Research Center for Urban Safety and Security, Kobe University, 1-1 Rokkodai-machi, Nada-ku, Kobe, 657-8501, Japan 
2Research Centre for Limnology, Indonesian Institute of Sciences (LIPI), Bogor, Indonesia 
3Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan 
4Japan Meteorological Business Support Center, Tokyo, Japan 10 
5Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan 
6Meteorological Research Institute, Tsukuba, Japan 

Correspondence to: Kenichiro Kobayashi (kkobayashi@phoenix.kobe-u.ac.jp) 

Abstract. This paper elaborated the feasibility of flood forecasting using a distributed rainfall-runoff model and huge number 

of ensemble rainfalls with an advanced data assimilation system. Specifically, 1600 ensemble rainfalls simulated by a four-15 

dimensional ensemble variational assimilation system with the Japan Meteorological Agency nonhydrostatic model (4D-

EnVAR-NHM) were given to the rainfall-runoff model to simulate the inflow discharge to a small dam catchment (Kasahori 

dam; approx.70 km2) in Niigata, Japan. The results exhibited that the ensemble flood forecasting can indicate the necessity of 

flood control operation and emergency flood operation with the occurrence probability and a lead time (e.g. 12 hours). Thus, 

the ensemble flood forecasting may be able to inform us the necessity of the early evacuation of the inhabitant living 20 

downstream of the dam e.g. half day before the occurrence. On the other hand, the results also showed that the exact forecasting 

to reproduce the discharge hydrograph several hours before the occurrence is yet difficult, and some optimization technique is 

necessary such as the dynamical selection of the good ensemble members. 

1 Introduction 

Flood simulation driven by ensemble rainfalls is gaining more attention in recent years, because ensemble simulation is 25 

expected to provide flood forecasting with the probability of occurrence. In the Japanese case, it is considered that the ensemble 

rainfall simulation with a high resolution (2 km or below) is desirable since extreme rainfall often takes place due to mesoscale 

convective systems and the river catchments are not as large as continental rivers; even the maximum Tone River Basin is 

around 17000 km2.   

A good review of ensemble flood forecasting using medium term global/European ensemble weather forecasts (2-15 days 30 

ahead) by numerical weather prediction (NWP) models can be found in Cloke and Pappenberger (2009). In much of their 

review, the resolution of NWP model is relatively coarse (over 10 km), the number of ensembles is moderate (10-50) and the 
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target catchment size is often large (e.g., Danube River Basin). They basically reviewed global/European ensemble prediction 

systems (EPS) but also introduced some researches on regional EPS nested into global EPS (e.g., Marsigli et al. 2001). They 

stated that “One of the biggest challenges therefore in improving weather forecasts remain to increase the resolution and 

identify the adequate physical representations on the respective scale, but this is a source hungry task”.  

Short-term flood forecasting (1-3 day) based on ensemble NWPs is gaining more attention in Japan, as evidenced by a 5 

project for high resolution weather/flood forecasting using the K supercomputer in Kobe, Japan (Saito et al., 2013b, hereinafter 

the K Project) and a successor project for the preparation toward the use of a next generation exascale computer (hereinafter 

the Post-K Project; https://www.jamstec.go.jp/pi4/en/sub_00.html). In the K Project, Kobayashi et. al. (2016) dealt with an 

ensemble flood (rainfall-runoff) simulation of a heavy rainfall event occurred in 2011 over a small dam catchment (Kasahori 

Dam; approx. 70 km2) in Niigata, central Japan, using a rainfall-runoff model with a resolution of 250 m. Eleven-member 10 

ensemble rainfalls by the Japan Meteorological Agency nonhydrostatic model (JMA-NHM; Saito et al. 2006) with horizontal 

resolutions of 2 km and 10 km were used. The 10 km EPS was initiated by the JMA operational mesoscale analysis and 

employed the modified Kain–Fritsch convective parameterization scheme, while its downscaling, the 2 km EPS, did not use 

the convective parameterization. The results showed that, although the 2 km EPS reproduced the observed rainfall much better 

than the 10 km EPS, the resultant cumulative and hourly maximum rainfalls still underestimated the observed rainfall. Thus, 15 

the ensemble flood simulations with the 2 km rainfalls were still not sufficiently valid. To improve the ensemble rainfalls in 

quantity and timing, the cumulative rainfalls of each 2 km ensemble member were calculated, then the rain distribution was 

shifted within 30 km from the original position to where the catchment-averaged cumulative rainfall for the Kasahori Dam 

maximized (i.e., positional lag correction of the rainfall field). Using this translation method, the magnitude of the ensemble 

rainfalls and likewise the inflows to the Kasahori Dam became comparable with the observed inflows.  20 

Other applications of the 2 km EPS, which permit deep convection on some level, can be found in for example Xuan et al. 

(2009). They carried out an ensemble flood forecasting at the Brue catchment, with an area of 135 km2, in southwest England, 

UK. The resolution of their grid based distributed rainfall-runoff model (GBDM) was 500 m and the resolution of their NWP 

forecast by the PSU/NCAR mesoscale model (MM5) was 2 km. The NWP forecast was the result of downscaling of the global 

forecast datasets from the European Centre for Medium-range Weather Forecasts (ECMWF). In the downscaling, four step 25 

nesting were carried out with the inner-most domain covering a region around 100 km x 100 km. The duration of the ensemble 

weather forecasting was 24 hours. Fifty members of the ECMWF EPS and one deterministic forecast were downscaled. Since 

the original NWP rainfall of a grid average still underestimates the intensity compared with rain-gauges, they introduced a best 

match approach (location correction) and a bias-correction approach (scale-up) on the downscaled rainfall field. The results 

showed that the ensemble flood forecasting of some rainfall events are in good agreement with observations within the 30 

confidence intervals, while those of other rainfall events failed to capture the basic flow patterns.  

Yu et al. (2018) have also used a post-processing method using the spatial shift of NWP rainfall fields for correcting the 

misplaced rain distribution. Their study areas are Futatsuno (356.1 km2) and Nanairo (182.1 km2) dam catchments of the 

Shingu River Basin in Kii Peninsula, Japan. The resolution of the ensemble weather simulations were 10 km and 2 km by 
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JMA-NHM, which is similar to the downscaling EPS in Kobayashi et al. (2016) but for a different heavy rainfall event in west 

central Japan caused by a typhoon. The data have a 30-hour forecast time. The results showed that the ensemble forecasts 

produced better results than the deterministic control run forecast, although the peak discharge was underestimated. Thus, they 

also carried out a spatial shift of the ensemble rainfall field. The results showed that the flood forecasting with the spatial shift 

of the ensemble rainfall members was better than the original one, likewise the peak discharges more closely approached the 5 

observations.  

As part of our review, we found several pieces of research which increased the resolution of EPSs (up to e.g. 2 km), while 

short-range flood forecasting of relatively small catchment (several 10–100 km2) were dealt with.  Nevertheless, the results 

showed that 2 km resolution EPS were not necessarily sufficient to represent the observed rainfall field both in timing and 

location, and thus the post-processing, such as the location correction of the rainfall field and scaling of the peak discharges, 10 

were required. 

Recently, in the Post K Project, as a further improvement upon the 2 km downscale ensemble rainfall simulations used by 

Kobayashi et al. (2016), Duc and Saito (2017) developed an advanced data assimilation system with the ensemble variational 

method (EnVAR) and increased the number of ensemble members to 1600 using the K supercomputer. Since the new EPS 

produces better forecasting of the rainfall field, in this study, as a Part 2 version of Kobayashi et al. (2016), we applied those 15 

1600 ensemble rainfalls to the ensemble inflow simulations to Kasahori Dam without the positional lag correction. The 

organization of this paper is as follows. In Section 2, the 2011 Niigata–Fukushima heavy rainfall is briefly presented. Section 

3 describes the new mesoscale EPS and its forecast. Sections 4 and 5 introduce the Kasahori Dam catchment and the rainfall-

runoff model. Results are shown in Section 6. In Section 7, concluding remarks and future aspects are presented.  

2 The 2011 Niigata–Fukushima heavy rainfall 20 

A severe rainstorm with two rainfall peaks occurred on 27–30 July 2011 over Niigata and Fukushima prefectures in north 

central Japan. Niigata Prefecture (Niigata, 2011) reported that the cumulative rainfall from the onset of the rainfall to 1300 

JST (0400 UTC) on 30 July 2011 reached 985 mm at the Kasahori Dam Observatory. There were 68 rainfall observatories 

managed by JMA, the Ministry of Land, Infrastructure and Transport and Tourism (MLIT), and the Niigata Prefecture, where 

the cumulative rainfall exceeded 250 mm. During the rainfall event, JMA announced “record-setting, short-term, heavy rainfall 25 

information” on 30 occasions. The hourly rainfall recorded from 2000 to 2100 JST on 29 July at the Tokamachi-Shinko 

Observatory reached 120 mm. Six people were killed and more than 13000 houses were damaged by dike breaks, river flooding, 

and landslides. A detailed description of this rainfall event has been published by JMA as a special issue of the JMA Technical 

Report (JMA, 2013).  

As mentioned in our Part 1 paper (Kobayashi et al. 2016), this torrential rain occurred over the small area along the synoptic 30 

scale stationary front (for surface weather map, see Fig. 1 of Kobayashi et al. 2016). Saito et al (2013a) conducted two 11-

member downscale ensemble forecasts with different horizontal resolutions (10 and 2 km) for this event using JMA-NHM and 
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JMA’s global ensemble EPS perturbations. They found that the location where intense rain concentrates varies with a small 

change of model setting, thus the position of the heavy rain was likely controlled mainly by horizontal convergence along the 

front, rather than the orographic forcing.  

Two different types of rainfall are introduced in the following text. The descriptions are as follows:  

(a) Radar Composite (1 km resolution): The echo intensity, which can be converted to rainfall intensity, is observed by 20 5 

meteorological radar stations of JMA and is available with 10 min temporal resolution. 

(b) Radar-AMeDAS (1 km resolution): The rainfall intensity observed by the radar is corrected using rain gauge data 

(ground observation data). The data is available with 30 min temporal resolution.  

3 Mesoscale ensemble forecast  

An advanced mesoscale EPS was developed and employed to prepare precipitation data for the rainfall-runoff model. The EPS 10 

was built around the operational mesoscale model JMA-NHM for its atmospheric model as the downscale EPS conducted by 

Saito et al. (2013a). In this study, a domain consisting of 819 × 715 horizontal grid points and 60 vertical levels was used for 

all ensemble members. This domain had a grid spacing of 2 km and covered the mainland of Japan. With this high resolution, 

convective parameterization was switched off. Boundary conditions were obtained from forecasts of the JMA’s global model. 

Boundary perturbations were interpolated from forecast perturbations of the JMA’s operational one-week EPS as in Saito 15 

(2013a). To provide initial conditions and initial perturbations for the EPS, a four-dimensional, variational-ensemble 

assimilation system (4D-EnVAR-NHM) was newly developed, in which background error covariances were estimated from 

short-range ensemble forecasts by JMA-NHM before being plugged into cost functions for minimization to obtain the analyses 

(Duc and Saito, 2017). If the number of ensemble members is limited, ensemble error covariances contain sampling noises 

which manifest as spurious correlations between distant grid points. In data assimilation, the so-called localization technique 20 

is usually applied to remove such noise, but at the same time can remove significant correlations in error covariances. In this 

study, we have chosen 1600 members in running the ensemble part of the 4D-EnVAR-NHM to retain significant vertical 

correlations, which have a large impact in heavy rainfall events like the Fukushima-Niigata heavy rainfall. That means only 

horizontal localization is applied in the 4D-EnVAR-NHM. The horizontal localization length scales were derived from the 

climatologically horizontal correlation length scales of the JMA’s operational four-dimensional, variational assimilation 25 

system JNoVA by dilation using a factor of 2.0. 

Another special aspect of the 4D-EnVAR-NHM is that a separate ensemble Kalman filter was not needed to produce the 

analysis ensemble. Instead, a cost function was derived for each analysis perturbation and minimization was then applied to 

obtain this perturbation, which is very similar to the case of analyses. This helped to ensure consistency between analyses and 

analysis perturbations in the 4D-EnVAR-NHM when the same background error covariance, the same localization, and the 30 

same observations were used in both cases. To accelerate the running time, all analysis perturbations were calculated 

simultaneously using the block algorithm to solve the linear equations with multiple right-hand-side vectors resulting from all 
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minimization problems. The assimilation system was started at 0900 JST July 24th, 2011 with a 3-hour assimilation cycle. All 

routine observations at the JMA’s database were assimilated into the 4D-EnVAR-NHM. The assimilation domain was the 

same as the former operational system at JMA. To reduce the computational cost, a dual-resolution approach was adopted in 

the 4D-EnVAR-NHM where analyses had a grid spacing of 5 km, whereas analysis perturbations had a grid spacing of 15 km. 

The analysis and analysis perturbations were interpolated to the grid of the ensemble prediction system to make the initial 5 

conditions for deterministic and ensemble forecasts. 

Due to limited computational resource, ensemble forecasts with 1600 members were only employed for the target time of 

0000 JST July 29th, 2011. However, deterministic forecasts were run for all other initial times to examine impact of number of 

ensemble members on analyses and the resulting forecasts. Figure 1 shows the verification results for the 3-hour precipitation 

forecasts as measured by the Fraction Skill Score (FSS) (Duc et al., 2013). Here we aggregate the 3-hour precipitation in the 10 

first and second 12-hour forecasts to increase samples in calculating the FSS. By this way, robust statistics are obtained but at 

the same time dependence of the FSS on the leading times can still be shown. Note that an additional experiment with the 4D-

EnVAR-NHM using 50 ensemble members, which is called 4DEnVAR50 to differentiate with the original one 4DEnVAR1600, 

was run. It is very clear from Figure 1 that 4DEnVAR1600 outperforms 4DEnVAR50 almost for all precipitation thresholds, 

especially for intense rain. Also for high rain-rate, 4DEnVAR1600 forecasts are worse than JNoVA forecasts for the first 12-15 

hour forecasts, which can be attributed to the fact that 4D-EnVAR-NHM did not assimilate radiances like JNoVA. However, 

it is interesting to see that 4D-EnVAR-NHM produces forecasts better than JNoVA for the next 12-hour forecasts. 

To check reliability of the ensemble forecasts, reliability diagrams are calculated and plotted in Figure 2 for 4DEnVAR1600 

and 4DEnVAR50. Since JNoVA only provided deterministic forecasts, reliability diagram is irrelevant for JNoVA. Note that 

we only performed ensemble forecasts initialized at the target time of 0000 JST July 29th, 2001 due to lack of computational 20 

resource to run 1600-member ensemble forecasts at different initial times. Therefore, the same strategy of aggregating 3-hour 

precipitation over the first and second 12-hour forecasts in calculating the FSS in Figure 1 is applied to obtain significant 

statistics. Clearly, Figure 2 shows that 4DEnVAR1600 is distinctively more reliable than 4DEnVAR50 in predicting intense 

rain. While 4DEnVAR50 cannot capture intense rain, 4DEnVAR1600 tends to overestimate areas of intense rain. The tendency 

of overestimation of 4DEnVAR1600 becomes clearer if we consider the forecast ranges between 12 and 24 hours. However, 25 

for the first 12 hours, 4DEnVAR1600 slightly underestimates areas of light rains. This also explains why the FSSs of 

4DEnVAR1600 are smaller than those of 4DEnVAR50 for small rainfall thresholds in Figure 1. 

As examples of the forecasts, Figure 3 shows the accumulated precipitation at the peak period (1200-1500 JST July 29th, 

2011) as observed and forecasted by the 4D-EnVAR prediction system. For comparison, the deterministic forecast initialized 

by the analysis from JNoVA using the same domain has also been given. Note that the forecast range corresponding to this 30 

peak period is from 12 to 15 hours. Clearly, the deterministic forecast initialized by the 4D-EnVAR-NHM outperformed that 

by the JNoVA, especially in terms of the location of the heavy rain, although the forecast by the 4D-EnVAR-NHM tended to 

slightly overestimate the rainfall amount as verified with the reliability diagrams in Figure 2. This over-estimation can also be 
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observed in the coastal area near the Sea of Japan. Note that a significant improvement was also attained against the former 

downscale EPS by Saito et al (2013a) (see Fig. 9 of Kobayashi et al. 2016) .      

Since it is not possible to examine all 1600 forecasts, the ensemble mean forecast is only plotted in the bottom right of 

Figure 3. Again, the location of the heavy rain corresponds well with the observed location, as in the case of the deterministic 

forecast, but the ensemble mean precipitation is smeared out as a side effect of the averaging procedure. Therefore, to check 5 

the performance of the ensemble forecast we plot one-hour accumulated precipitation over the Kasahori Dam catchment in 

time series under box-and-whisker plots in Figure 4. It can be seen that while the deterministic forecast could somehow 

reproduce the three-peak curve of the observed rainfall, ensemble members tended to capture the first peak only. Note that 

some members showed this three-peak curve, such as the best member, but their number was much less than the number of 

ensemble members. 10 

4 Kasahori Dam catchment  

Figure 5 (left) shows the Shinanogawa and Aganogawa river catchments, where severe floods occurred in the 2011 Niigata–

Fukushima heavy rainfall. The Kasahori Dam catchment exists in the Shinanogawa river catchment. Figure 5 (right) shows an 

enlarged view of the Kasahori Dam catchment (catchment area 72.7 km2, MLIT, 2012). The land use of the Kasahori Dam 

catchment is mostly occupied by forest, and as such, the applied rainfall-runoff model assumed the entire area was forest.  15 

The basic operation of the Kasahori Dam is summarized as follows. 

1. The reservoir water level is lowered to the normal water level for the rainy season (elevation level (EL) 194.5 m). 

2. If a flood risk due to extreme rainfall is expected by weather monitoring/prediction, the water level is further lowered to 

the preliminary release water level (EL 192.0 m). 

3. When the inflow exceeds 140 m3 s-1, the threshold value for the onset of flood control operations, the gate opening is fixed 20 

such that the outflow amount is determined only by the water pressure in the dam. This is, in a broad sense, a natural 

regulation operation. The gate opening is not adjusted until the water level reaches EL 206.6 m. 

4. When the reservoir water level reaches EL 206.6 m, an emergency (Tadashigaki in Japanese) operation is taken, and the 

outflow is set equal to the inflow. 

Note that the dam has been under renovation to increase its flood control capacity after the flood event in July 2011, but we 25 

do not address the changes due to the dam renovation here. We consider the dam operational rules at the time of the 2011 flood 

event.  

5 Distributed Rainfall-Runoff Model 

The distributed rainfall–runoff (hereinafter DRR) model used in Kobayashi et al. (2016) was applied again in this paper. The 

DRR model applied was originally developed by Kojima et al. (2007) and called CDRMV3, the details of which can be seen 30 
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in Apip et al. (2011). In the DRR model, the surface and river flows are simulated using a 1D kinematic wave model. The 

subsurface flow is simulated using the q-h relationship by Tachikawa et al. (2004). The details of the model can be seen in the 

paper by Kobayashi et al. (2016).  

The parameters of the DRR model were recalibrated in this study using the hourly Radar-Composite precipitation data of 

JMA, since Radar is in general the primary source for real time flood forecasting. Radar-Composite data can be obtained in 5 

Japan at 10 minutes intervals. The recalibrated equivalent roughness coefficient of the forest, the Manning coefficient of the 

river, and the identified soil-related parameters are described in Table 1. The simulated hydrograph and observations are shown 

in Figure 6. The duration of the calibration simulation is from 0100 July 28th to 0000 July 31th, 2011 JST.  

The Nash Sutcliffe Efficiency (hereinafter NSE), which is used for the assessment of model performance, is calculated as 

follows:  10 

NSE = 1 −
∑ {𝑄0

𝑖−𝑄𝑠
𝑖}
2𝑁

𝑖=1

∑ {𝑄0
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2
𝑁
𝑖=1

                                                                                                                                                             (1)                                                                                                                                    
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1

𝑁
∑ 𝑄0

𝑖𝑁
𝑖=1                                                                                                                                                                                        (2)                                                                                                                          

where N is the total number of time steps (1 h interval), 𝑄0
𝑖  is observed dam inflow (discharge) at time i, 𝑄𝑠

𝑖  is simulated dam 

inflow (discharge) at time i, 𝑄𝑚 is the average of the observed dam inflows.   

In the calibration simulation in Figure 6, the NSE is 0.754. The 2nd peak is not captured well in the simulation because the 15 

Radar-Composite basically could not capture the strong rainfall intensity of the 2nd peak. Nevertheless, we consider that the 

model can reproduce the discharge on some level if rainfall is properly captured by the observations. Thus, the DRR model is 

used in the following ensemble simulations.  

6 Results 

In this chapter, the results of the ensemble flood simulations are shown focusing on two aspects: 20 

(1) We examined whether the ensemble inflow simulations can show the necessity of starting the flood control operations 

and emergency operations with sufficient lead time (e.g. 12 h). 

(2) We also examined if we could obtain high accuracy ensemble inflow predictions several hours (1-3 h) before the 

occurrence, which could contribute to the decision for optimal dam operation. 

Item (1) provides us with the scenario that we can prepare for any dam operations with enough lead time. Likewise, it may 25 

enable us to initiate early evacuation of the inhabitant living downstream of the dam. Item (2) is the target that has been 

attempted by researchers of flood forecasting. If we could forecast the inflow almost correctly several hours before the 

occurrence, it could help the dam administrator with the decision for actual optimal dam operations.  

Item (1) is considered first herein. Figure 7 shows the results of the inflow simulations to the Kasahori Dam driven by the 

1600 ensemble rainfalls. The duration of the ensemble weather simulation is 30 hours from 0000 July 29th to 0700 July 30th 30 
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JST, but the ensemble flood simulation is carried out only for 24 hours from 0300 July 29th to 0400 July 30th, 2011 JST since 

we consider that the NHM uses the first 3 hours to adjust its dynamics. The results show that, except for the third peak, the 

1600 ensemble inflows can encompass the observed rainfall within the range, which was not realized in the previous research 

of Kobayashi et al. (2016) with 11 ensemble rainfalls of 2 km resolution. In other words, the extreme rainfall intensity of the 

event can be reproduced by the ensemble members with the 4D-EnVAR-NHM.  5 

Figure 8 shows the 95 % confidence limits and inter-quartile limits of the 1600 ensemble members. The results show that 

the 3rd peak of the observations was not covered by the 95 % confidence interval, although the rest of the observations can be 

reproduced within the 95 % confidence interval. It is considered also that the ensemble mean and median values capture the 

overall trend of the observations on some level. 

Figure 9 shows the probability that the inflow discharge is beyond 140 m3 s-1 (hereinafter expressed as “q > 140”, where q 10 

is the discharge), the threshold value for starting the flood control operations. The figure considers the temporal shift of the 

ensemble rainfalls, i.e., temporal uncertainty due to the imperfect rainfall simulation. In the figure, 0-hour uncertainty means 

that we only considered discharges at time t to calculate probability, while 1-hour uncertainty means that we considered the 

discharges at t-1, t, t+1 to calculate probability and 2-hour means that we considered the discharges at t-2, t-1, t, t+1, t+2 to 

calculate probability. The 3- and 4-hour uncertainties were calculated in the same way. It becomes clear from the figure that 15 

the starting time of q > 140 is likely at t = between 0800 and 0900 July 29th JST, where all curves cross, while the ending time 

is likely at t = 1800 JST, where all curves cross again. Before and after the cross points there are jumps in the probabilities. In 

other words, the forecast can indicate that the situation of q > 140 would take place after 8–9 hours from the beginning of 

forecasting with the probability of around 50 %. We consider that this is a very valuable information for the users of the 

ensemble forecast.  20 

On the other hand, the emergency operation was undertaken in the actual flood event. In the emergency operation, the dam 

outflow has to equal the inflow to avoid dam failure as the water level approaches overtopping of the dam body. As written in 

the previous section, when the reservoir water level reaches EL 206.6 m, an emergency operation is undertaken, and the 

outflow is set to equal the inflow. As the Height-Volume (H-V) relationship of the dam reservoir was not known during the 

study, we judged the necessity of the emergency operation by whether the cumulative dam inflow was beyond the flood control 25 

capacity of 8700000 m3. Actually, the flood control capacity had not been previously filled during regular operations more 

than the estimation given herein, since the dam can release the dam water by natural regulation. However, again, since we do 

not know some of the relationships to calculate the dam water level, the judgement is done based on whether the cumulative 

dam inflow exceeds the flood control capacity.   

Figure 10 shows the cumulative dam inflows of all the ensemble simulations starting from 0300 July 29th, 2011 JST, as 30 

well as the mean and observed cumulative inflows with the flood control capacity. The figure shows that the mean of the 

ensembles was roughly similar to the observations. Figure 11 shows the 38 best ensemble members selected based on NSE > 

0.25, as well as the mean of all ensemble members, mean of the best ensemble members, and observations and flood control 

capacity. Figure 11 shows that the ensemble mean of the best 38 members resembles the observations for the first 12 hours 
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better than the mean of all ensemble members, but the accuracy deteriorates for the last 12 hours. The difference between the 

observations and ensemble mean of all members is about 20 % after 24 hours. Figure 12 shows the probability that the 

cumulative dam inflow exceeds the flood control capacity of 8700000 m3. The figure indicates that, for instance, the cumulative 

inflow would exceed flood control capacity after 12 hours from the start of the forecast with the probability of around 45 %. 

In the actual event, the cumulative inflow based on observations and assuming no dam water release, would exceed the flood 5 

control capacity between 1200 and 1300 July 29th, 2011 JST. Around that interval, the exceedance probability of the forecast 

is 35–55 %. Until around this time, the forecast shows a slight delay in the estimate of the cumulative dam inflow. In the end, 

the forecast shows that the flood control capacity will be used up with the probability of more than 90 % with regard to this 

flood event. Thus, we consider this information is very useful as it can inform the residence downstream of the dam to evacuate.  

Hereafter, the focus is put on Item (2). Figure 13 shows all ensemble members, the 38 best ensemble members out of 1600 10 

ensembles selected based on NSE > 0.25, and observations. The 38 best ensemble members are the same as in Figure 11. The 

figure shows that the selected 38 members reproduce the observations well. In some of the selected members, even the 3rd 

peak is reproduced. In the case where the 3rd peak is reproduced, the inflow hydrographs are beyond the 95 % confidence 

interval. Figure 14 shows the catchment average rainfalls of the 38 best ensemble inflow simulations. The black line is the 

observed gauge rainfall, the blue line is the Radar-AMeDAS, the green line is the Radar-Composite, while the grey lines are 15 

the 38 ensemble rainfalls. As mentioned, the rainfall-runoff model parameters are calibrated using Radar-Composite since the 

Radar-Composite is the primary source for the flood forecasting. Therefore, the rainfalls from the best 38 ensemble inflow 

simulations resemble those of the Radar-Composite.  

It is apparent that the flood forecasting becomes very useful if we could just select the 38 ensemble members in advance. 

Thus, as a first step, we attempted to select some of the best members out of the 1600 members several hours in advance of 20 

the event based only on NSE.  

Figure 15(a) shows a result where we selected the best 46 ensemble members based on NSE > 0.0 for the first 9 hours from 

the start of the forecast. In this case, we had a 3-hour lead time towards the observed peak discharge, and the selected 46 

members cover the observed discharge after the first 9 hours on some level. The result shows that the ensemble inflow 

simulations selected can indicate the possibility of rapid increases in the discharge after the 9 hours with a three-hour lead time.  25 

Likewise Figure 15(b) shows the selected best 26 members based on NSE > 0.0 for the first 10 hours (two hours ahead of the 

observed peak discharge). It is apparent that the result is worse than the previous first 9-hour selection. The ensemble inflow 

simulations after the 10 hours do not cover the observation well in this case. Figure 15(c) shows the selected best 30 members 

based on NSE > 0.9 for the first 11 hours (1 hour ahead of the observed peak discharge). In this case, the ensemble inflows 

after the 11 hours could cover the observed peak discharge 1 hour later on some level, although it only has a one-hour lead 30 

time. Nevertheless, overall it is recognized that we cannot select the best members in advance only by judgement based on 

NSE of the discharge. Figure 16(a) shows a scatter plot of NSE of the catchment average rainfall vs NSE of the discharge. 

Clearly, the figure shows that catchment average rainfalls with similar NSEs produce discharges with different NSEs. In detail, 

the catchment average rainfall with NSE of around 0 produces discharges with NSE close to 0.5 and -0.5. We consider that 
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the spatial distribution of the rainfall field caused these differences even though the amount of the catchment average rainfalls 

are the same. Even if the catchment area is small, different patterns in the rainfall field bring different discharge simulations 

with different NSEs. As a reference, Figure 16(b) shows the Root Mean Square (RMS) of the simulated and observed discharge 

vs simulated and observed rainfall. It is apparent that RMS cannot be used for the decision in regard to the best discharge 

simulations as the catchment average rainfalls with the same RMS also produce both favorable and less favorable discharges.  5 

The rainfall pattern chosen based only on NSE or RMS does not reflect the variety of rainfall patterns. We consider that 

selection directly from the rainfall data, and comparing them with Radar based on e.g. Self-Organizing Map (SOM), Support 

Vector Machine (SVM), pattern recognition, machine learning, etc., would be more promising to better cluster the ensemble 

rainfalls. However, we have not addressed that aspect in this study and this remains for future work. We conclude that the 

selection method used here based on NSE does not provide us an exact discharge forecast with several hours lead time, although 10 

it can provide us some trend in the near future. 

7 Concluding Remarks and Future Aspects 

The study used 1600 ensemble rainfalls produced by 4D-EnVAR which contain various rainfall fields with different rainfall 

intensities. No post processing such as the location correction of the rainfall field and/or rescaling of rainfall intensity was 

employed. The ensemble flood forecast using the 1600 ensemble rainfalls in this study has shown that the extremely high 15 

amount of observed inflow discharge can be reproduced within the confidence interval, which was not possible by the 11 

member downscale ensemble rainfalls used in the previous study by Kobayashi et al. (2016), although the accuracy of each 

discharge simulation is, at best, around NSE = 0.6. We can calculate the probability of occurrence (e.g. the necessity of 

emergency dam operations) with the 1600 ensemble rainfalls. Thus, the result of the study shows that the ensemble flood 

forecasting can inform us that, after 12 hours for example, emergency dam operations would be required with the probability 20 

of around 45 %, and that the probability would be more than 90 % for the entire flood event, etc. We consider that this kind of 

information is very useful. For instance, a warning of dam water release can be issued to the inhabitant in the downstream with 

enough lead time, if the result obtained in this study is applicable to other locations and events.  

On the other hand, the accuracy of each discharge simulation is, at best, around NSE = 0.6 out of all the 1600 ensemble 

members. Likewise, several of the best ensemble members only could not be selected from the NSE of the inflow discharge 25 

and NSE of the catchment averaged rainfall. Herein lies the problem that, similar NSEs of the catchment average rainfall with 

different rainfall distribution, even in the small catchment areas, produce different NSEs of the discharges. Thus, we cannot 

select one best ensemble discharge simulation from the rainfall NSEs. Likewise, discharge simulations with similar NSEs until 

X hours before the onset of forecasting produce different future forecasts after the Xth hour. In other word, we cannot select 

the best discharge simulation from the NSE only until X hours. Thus, in this sense the dynamical selection of the best rainfall 30 

field from rainfall simulations is required by comparing the simulated rainfall field with observed Radar fields, etc. using some 



17 

 

methods, such as SOM, SVM, pattern recognition, machine learning, etc., although this was not addressed here and remains 

for future work. 
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Table 1. The equivalent roughness coefficient of the forest, the Manning coefficient of the river, and identified soil-related parameters. 

Forest [m(-1/3)/s] River [m(-1/3)/s] D [m] Ks [ms-1] 

0.170 0.00536 0.234 0.00084 
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Figure 1. Fraction skill scores of 3-hour precipitation at Fukushima-Niigata from deterministic forecasts initialized by analyses from 

JNoVA (left), 4D-EnVAR-NHM using 1600 (center) and 50 members (right). These scores are averaged over the period from 2100 5 

JST July 27th to 2100 JST July 29th, 2011. To obtain robust statistics, precipitation is aggregated over the first 12-hour forecasts 

(valid between 03-12-hour forecast) and the next 12-hour forecasts (valid between 12-24-hour forecasts) as shown in the top and 

bottom rows, respectively. Note that the first 3-hour precipitation is discarded due to the spin-up problem. 
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Figure 2. As Figure 1 but for reliability diagrams of 3-hour precipitation from ensemble forecasts initialized by analysis ensembles 

of 4D-EnVAR-NHM using 1600 and 50 members. Three precipitation thresholds of 01 mm (left), 10 mm (center), and 50 mm (right) 

are chosen. Note that the ensemble forecasts were only run for the time 0000 JST July 29th, 2011. 
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Figure 3.Three-hour accumulated precipitation for 1200-1500 JST July 29th, 2011 at Fukushima-Niigata as observed by Radar-

AMeDAS (R/A; top left), forecasted by NHM initialized by the analysis of JNoVA (top right), forecasted by NHM initialized by the 

analysis of 4D-EnVAR-NHM (bottom left), and the ensemble mean forecast of NHMs initialized by the analysis ensemble of 4D-

EnVAR-NHM (bottom right). All forecasts were started at 0000 JST July 29th, 2011. 5 
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Figure 4. Time series of one-hour accumulated rainfall over the catchment as forecasted by all ensemble members. The two whiskers 

in each box-and-whisker diagram show the inter-quartile and 5th and 95th percentile of forecasted precipitation. The observation, 

control forecast, ensemble mean forecast, and best member forecast are also plotted for comparison. Here, the best member is 

defined as the member that has the minimum distance between its time series and the observed time series. 5 
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Figure 5. Map of the Kasahori, Shinanogawa, and Aganogawa river catchments in Niigata, Fukushima, and Nagano prefectures, 

Japan  (left), and detailed view of Kasahori River catchments (right). 
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Figure 6. The observed inflow and simulated dam inflow using Radar-Composite.   
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Figure 7. Total of 1600 ensemble inflow simulations to the Kasahori Dam, as well as mean and the observation. 
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Figure 8. The 95% confidence limits and inter-quartile limits of the 1600 ensemble members. 
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Figure 9. Probability that the simulated inflow is beyond 140 m3/s considering temporal uncertainty. 
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Figure 10. Cumulative dam inflow by the ensemble simulations, mean of simulation and observations, as well as critical dam volume. 
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Figure 11. Cumulative dam inflow by the best 38 ensemble members, mean of the best 38 ensemble members, mean of all ensemble 

members, and observations, as well as critical dam volume. 
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Figure 12. Probability that the dam needs emergency operation. 
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Figure 13. Hydrographs of all 1600 ensemble members, the 38 best ensemble members, and observations. 
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Figure 14. Rainfall intensity of the 38 best ensemble inflow simulation members, of Radar AMeDAS, of Radar-Composite, and 

ground observations. 
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Figure 15. (a) 46 ensemble members (NSE > 0.0) selected from first 9-hour forecast, (b) 26 ensemble members (NSE > 0.0) selected 

from first 10-hour forecast, and (c) 30 ensemble members (NSE > 0.9) selected from first 11-hour forecast. 
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Figure 16. (a) NSE of rainfall vs NSE of discharge, (b) RMS of rainfall vs RMS of discharge 

 


