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Response to Dr. Seed

We would like to thanlor. Seedor his constructivecommentsHere wewould like topresent ouanswer

following each comment

Reviewercomments

The paperdescribes the application of a large (1600 members) ensemble efekmbtion rainfall
forecasts for flood forecasting in a small (72?Rneatchment wherthe lead time required to respond to

a flood warning is longer than the characteristgponse e of the catchment. This is an important issue

for unban catchments where hydrological predictions need to be based on rainfall forecasts and nc

observedainfall.

The temporal resolution should always be included when discussing resolution. | asatrtie th
ensemble had iMinute resolution since this is used by the hydrologroadel.

Reply: Since NHM4DENnVAR storeddata every hour due to limited data storage, we applied the hourly
data to the rainfaltunoff model.

Section 2 details of therainfall event. | looked up the 2016 paper for more detdilee meteorological
situation, but found very little extra. It would be very helpfuluttderstand better the meteorological
situation. | am assuming that, since this caseJdsjran and summehe situation was mostly orographic
triggering of severe convectiom a very moist airmass. This implies that the model rainfall forecasts are
closely forcedby the topography where the storms are initiated in the near vicinity of the catcmdent
arelikely to be slow moving? This is important because advection nowcastsoivitle able to provide

accurate nowcasts in these circumstances.
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Reply: We haveadded a paragraph in the revised manuscript to analyze the meteorological situation in
more detailghat we reproduce here:

AAs mentioned in our Part 1 paper (Kobayashi {
area along the synoptic scale stationary front (for surface weather map, see Fig. 1 of Kobayashi et a
2016). Saito et al (2@h) conducted two lfnember downscale ensemble forecasts with different
horizontal resolutions (10 and 2 km) for this event using JMWM and JMAOGs gl obal
perturbations. They found that the location where intense rain concentragsswthra small change of

model setting, thus the position of the heavy rain was likely controlled mainly by horizontal convergence

along the front, rather than the orographic fo

I really missed some radar rainfall images, say the 10 (em@®)ain rdes at the timesf the three peaks
in the hydrograph, just so that we can get a feeling for the djpaestructure of the rainfall fields.
Actually, the spatial and temporal correlation functiovsuld also be interesting, at least to me as a

rainfall person.

Reply: Fa supplement informationye would like to show here the radar images corresponding to the
times when the three peaks occurred in the hydrogisgd Figure Slwe do not intend to add these

figures into the manuscript).
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Section 6 Results. It would be very good to extend the results to include adreicsis of the rainfall
forecastdefore going to the hydrological verification. In particular, how reliable are the probability of
precipitation estimates for the extreme rain radepgcially as a function of ensemble size? This is very

important if we are running aansemble predictiosystem to predict the probability of extreme rainfall.

The paper should include some results that show the skill of the model, say the reliability diagram for
high rain rates, as a function of lead time. Did subsequent makelreproduce the second ahdad

maxima in the hydrograph?

Reply: We haveadded twoparagraph to Section 3describing the verification results of the rainfall
forecasts We agree with the comment that verification scores for rainfall forecasts with respect to
different lead times should be included in the paper. However, it was very costly to rurresoigition

(2 km grid spacinggnsemble forecast using 1600 membe&endor a specific time. Due to this reason,

we @uld only run deterministic forecasts for all other initial times asd the Fraction Skill Score to
measure forecast performance of the deterministic forecasts at different lead times. We had also run &
additional experiment using only 50 ensemble members to compare with the case using 1600 member:
Reliability diagrams are then plotted for sleensemble forecasts by the two experiments, even though
we only run the ensemble forecasts at a specific t@fiecourse, the FSS is also calculate for this
additional experimentlere are the paragraphs that we have added to the revised manuscript:

ADue to | imited computational resource, ensemb
the target time ©0000 JST July 28 2011. However, deterministic forecasts were run for all other initial
times to examine impact of number of ensemble members on analyses and the resulting forecasts. Figu
1 shows the verification results for then8ur precipitatiorforecasts as measured by the Fraction Skill
Score (FSS) (Duc et al., 2013). Here we aggregate loeiBprecipitation in the first and secondi@ur
forecasts to increase samples in calculating the FSS. By this way, robust statistics are obtairleel but at

same time dependence of the FSS on the leading times can still be shown. Note that an addition:
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experiment with the 4EEnVAR-NHM using 50 ensemble members, which is called 4DEnVARS50 to
differentiate with the original one 4DEnVAR1600, was run. It isyvelear from Figure 1 that
4DENnVAR1600 outperforms 4DEnVARS50 almost for all precipitation thresholds, especially for intense
rain. Also for high rairrate,ADENVAR1600 forecasts are worse than JNdgfecasts for the first 12

hour forecasts, which can be attributed to the fact thaEdYDAR-NHM did not assimilate radiances like
JNoVA. However, it is interesting to see that-EDVAR-NHM produces forecasts better than JNoVA
for the next 1zhour forecats.

To check reliability of the ensemble forecasts, reliability diagrams are calculated and plotted in Figure 2
for ADEnVAR1600 and 4DEnVARS50. Since JNoVA only provided deterministic forecasts, reliability
diagram is irrelevant for INoOVA. Note that we yppkerformed ensemble forecasts initialized at the target
time of 0000 JST July 29 2001 due to lack of computational resource to run 66Mber ensemble
forecasts at different initial times. Therefore, the same strategy of aggregdibuy Brecipitaton over

the first and second f2our forecasts in calculating the FSS in Figure 1 is applied to obtain significant
statistics. Clearly, Figure 2 shows that ADEnVAR1600 is distinctively more reliable than 4DEnVAR50
in predicting intense rain. While 4DEnVARScannot capture intense rain, 4DEnVAR1600 tends to
overestimate areas of intense rain. The tendency of overestimation of 4ADEnVAR1600 becomes clearer |
we consider the forecast ranges between 12 and 24 hours. However, for the first 12 hours, 4ADEnVAR160
dightly underestimates areas of light rains. This also explains why the FSSs of 4ADEnVAR1600 are
smaller than those of 4ADEnVARS50 for small rainfall thresholds in Figudre 1.

Since we only run deterministic forecasts for other initial times, we show heferdoast results for
other lead times as supplement informatieee( Figure S2ve do not intend to add these figures into the

manuscript). It turns out that it is more difficult to forecast the second and third peaks in the hydrograph.
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| really liked Figures 7, the probability of the inflow exceeding a critical threshold,@&ticke probability
of an emergency operation, as examples of probabilistic prothattsneets the needs of an arsekr.

Once again, it would be interesting to see tipsducts for a range of lead times.

Regarding Figure 7, moving the forecasts arountinie did not improve the resultbut what about
moving the ensemble in space? Generalfind that the NWP rainfalforecasts that | work with have

limited skill at scales that are below around 100 kmsdume that the rainfall in this case is strongly
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influenced by the topography so yaould not want to shift the rainfall fields too much, but it would still

be interesting tonove them around by a few tens of km.

Reply: As explained above, our computational resource can only afford runningrig@erensemble
forecast for a specific time. Al thougIFigurea9%ms de
supplementjor other lead times, limited computation resource prevented us to employ this. In design the
plot in Figure 7, wentroduedthe idea of using spatiandtemporaluncertaintyin verification from the

FSS into the hourly discharges. It is clear that hourly discharges have strong correlation with hourly
precipitation. Then it is reasonable to consider temporal uncertainty in hourly precipitationth®ince
rainfall over the catchment here is not rainfall at any specific grid point but rainfalinarer grid points

(more than 70 kfin our problem). Therefore, temporal uncertainty is more relevant to hourly catchment
rainfall rather than spatial uncergy. Also, computation with spatial uncertainty is more complicated in
this case since we must consider all directions of displacement vectors hulrersional space, which

have more degree of freedom that just one direction in theliomnsional spacof temporal uncertainty.
Therefore, we do not consider spatial uncertainty in plotting Figure 7 an@id@e 9 and 12 in

supplement

The conclusion that it is difficul tpastperfangahce ct

is significant, if a little discouraging

The revised manuscript is attached in the next pages. The yellow highlight indicates where the revision

ismade.
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Ensemble flood simulation for a small dam catchment in Japan using
nonhydrostatic model rainfalls. Part 2: Flood forecasting using 1600
member 4DEnNVAR predicted rainfalls.

KenichiroKobayashi, Apip?, Le Duc*®, Tsutao Oizunii® and Kazuo Saitt>°
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Abstract. This paper elaborated the feasibility of flood forecasting using a distributed rainfaff model and huge number

of ensemble rainfis with an advanced data assimilation system. Specifically, 1600 ensemble rainfalls simulated by a four
dimensional ensemble variational assimilation system withJdpanMeteorologicalAgency nonhydrostatic model (4D
EnVAR-NHM) were given to the rainfefunoff model to simulate the inflow discharge to a small dam catchment (Kasahori
dam;approx.70 krf) in Niigata, Japan. The results exhibited that the ensemble flood forecasting can indicate the necessity of
flood control operation and emergency flood operation with the occurrence probability and a lead time (e.g. 12 hours). Thus,
the ensemble flood fecasting may be able to inform us the necessity of the early evacuation iohab&antliving
downstream of the dam e.g. half day before the occurrence. On the other hand, the results also showed that the érgct forecast
to reproduce the discharge mgdraph several hours before the occurrence is yet difficult, and some optimization technique is

necessary such as tignamicalselection of the good ensemble members.

1 Introduction

Flood simulation driven by ensemble rainfalls is gaining more atteiiorcent years, because ensemble simulation is
expected to provide flood forecasting with the probability of occurrence. In the Japanese case, it is considered ¢malbkbe ens
rainfall simulation with a high resolution (2 km or below) is desirable xteme rainfall often takes place due to mesoscale
convective systems arttle river catchments aret as large as continental riveeven themaximumTone RiverBasinis
around 17000 ki

A good review of ensemble flood forecasting using medium tgotnal/European ensemble weather forecastss(days
ahead) bynumericalweatherprediction(NWP) models can be found in Cloke and Pappenberger (2009). In much of their

review, the resolution of NWP model is relatively coarse (over 10 km), the numbesesfiBless moderatg10-50) and the
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target catchment size is often large (eb@nube River Basin)lheybasically reviewed global/European ensemble prediction
systems (EPS) but also introduced some reseaochregional EPS nested into global EPS (&4grsigli et al. 2001)They
stated that fioOne of the biggest challenges therefore i
identify the adequate physical representations on the respective scale, but this is a source hangry task

Short-term flood forecasting (B day) based on ensemble NWPs is gaining more attention in Japan, as evidenced by a
project forhigh resolutiorweather/flood forecasting using the K supercomputer in Kobe, J8pén€t al, 2013, hereinafter
the K Project) and a successor project for the preparation toward the use of a next generation exascale computer (hereinaft
the PosK Project; https://www.jamstec.go.jp/pi4/en/sub_00.html). In the K Project, Kobayashi et. al. (201&yitteat
ensemble flood (rainfallunoff) simulation ofa heavy rainfall event occurred in 20ddera small dam catchment (Kasahori
Dam; approx. 70 kA in Niigata, central Japan, using a rainfalhoff model with a resolution of 250.rElevermember
ensenble rainfalls by the Japan Meteorological Agency nonhydrostatic model-NI ; Saito et al. 2006with horizontal
resolutions of 2 km and 10 kmere usedThe 10 km EPS was initiated by the JMA operatianakoscalenalysis and
employed the modified Kai Fritsch convective parameterization scheme, while its downscaling, the 2 km EPS, did not use
the convective parameterization. The results showed that, although the 2 km EPS reproduced the observed rainfall much bett
than the 10 km EPS, the resultantzuiative and hourly maximum rainfalls still underestimated the observed rainfall. Thus,
the ensemble flood simulations with the 2 km rainfalls were still not sufficiently valid. To improve the ensemble rainfalls i
guantity and timing, the cumulative raatis of each 2 km ensemble member were calculated, then the rain distribution was
shifted within 30 km from the original position to where the catchragataged cumulative rainfall for the Kasahori Dam
maximized (i.e., positional lag correction of thenfall field). Using this translation method, the magnitude of the ensemble
rainfalls and likewise the inflows to the Kasahori Dam became comparable with the observed inflows.

Other applications of the 2 km EPS, whimérmit deep convectioon some level, can be foundfor exampleXuan et al.
(2009).Theycarried out an ensemble flood forecasting at the Brue catchment, with an area of li85knthwest England,
UK. The resolution of their grid based distributed rainfatioff model (BDM) was 500 m and the resolution of their NWP
forecast by the PSU/NCAR mesoscale model (MM5) was 2 km. The NWP forecast was the result of downscaling of the global
forecast datasets from the European Centre for Mediunge Weather Forecasts (ECMWEF). e downscaling, four step
nesting were carried out with the inmaost domain covering a region around 100 km x 100 km. The duration of the ensemble
weather forecasting was 24 hours. Fifty members of the ECHMR&and oneleterministidorecast were downated. Since
the original NWP rainfall of a grid average still underestimates the intensity compared wigaugies, they introduced a best
match approach (location correction) and a{o@asection approach (scalp) on the downscaled rainfall field. &mesults
showed that the ensemble flood forecasting of some rainfall events are in good agreement with observations within the
confidence intervals, while those of other rainfall events failed to capture the basic flow patterns.

Yu et al. (2018) have alsused a pogtrocessing method using the spatial shift of NWP rainfall fields for correcting the
misplaced rain distribution. Their study areas are Futatsuno (356)lakih Nanairo (182.1 kfpdam catchments of the

Shingu River Basirin Kii Peninsula,Japan The resolution of the ensemble weather simulations were 10 km and 2 km by

8
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JMA-NHM, which issimilar tothedownscaling EPS in Kobayashi et al. (2016) but for a diffdreatry rainfall evenin west

central Japarcaused by a typhoohe data have a0-hour forecast time. The results showed that the ensemble forecasts
produced better results than the deterministic control run forecast, although the peak discharge was underestimagsd. Thus, th
also carried out a spatial shift of the ensemble raifiéddl. The results showed that the flood forecasting with the spatial shift

of the ensemble rainfall members was better than the originallikewise the peak discharges more closely approached the

observations.

Recently in the Post K Project, asfurther improvement upon the 2 ldownscaleensemble rainfall simulations used by

Kobayashi et al. (2016), Duc and Saito (2017) developed an advanced data assimilation system with the ensemble variation
method (EnVAR) and increased the number of etdemmembers to 1600 using the K supercomp@arcethe new EPS
produces better forecasting of the rainfall field, in this stadya Part 2 version of Kobayashi et al. (200&) applied those

1600 ensemble rainfalls to the ensemble inflow simulationKasahori Dam without the positional lag correction. The
organization of this paper is as follows. In Section 2, the 2011 Niigakaushima heavy rainfall is briefly presented. Section

3 describes the new mesoscale EPS and its forecast. Sections 4@aduse the Kasahori Dam catchment and the rainfall

runoff model. Results are shown in Section 6. In Section 7, concluding remarks and future aspects are presented

2 The 2011 Niigata Fukushima heavy rainfall

A severe rainstorm with two rainfall peakscacred on 2v30 July 2011 over Niigata and Fukushima prefectures in north
central Japan. Niigata Prefecture (Niigata, 2011) reported that the cumulative rainfall from the onset of the rainfall to 130
JST (0400 UTC) on 30 July 2011 reached 985 mm at tlsatkai Dam Observatory. There were 68 rainfall observatories
managed byMA, the Ministry of Land, Infrastructure and Transport and Tourism (MLIT), and the Niigata Prefecture, where
the cumulative rainfall exceeded 250 mm. During the rainfall event, JIMAcan n ¢ e d-sefiingeshoeterm, heavy rainfall
informationo on 30 occasions. The hourly rainfa$hinkor eco
Observatory reached 120 mm. Six people were killed and more than 13000 houses weed tgrmiikeg breaks, river flooding,
and landslides. A detailed description of this rainfall event has been published by JMA as a special issue of the JNMA Technic
Report (JMA, 2013).

As mentioned in our Part 1 paper (Kobayashi et al. 2016), this toinentiaaccurred over the small area along the synoptic
scale stationary front (for surface weather map, see Fig. 1 of Kobayashi et al. 2016). Saito et al (2013a) conducted two 11

membemdownscaleensemble forecasts with different horizontal resolutionsa(id2 km) for this event using JMMHM and

9
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JMAOGs gl obBRS patarlzatonsthéydound that the location wherddnse rain concentrates \e@wivith a small
changeof model setting, thus the position of the heavy rain was likely controlled majrilgrizontal convergence along the
front, rather than the orographic forcing.
Two different types of rainfall are introduced in the following text. The descriptions are as follows:
(a) Radar Composite (1 km resolution): The echo intensity, which camriverted to rainfall intensity, is observed by 20
meteorological radar stations of JMA and is available with 10 min temporal resolution.
(b) RadarAMeDAS (1 km resolution): The rainfall intensity observed by the radar is corrected using rain gauge data

(ground observation data). The data is available with 30 min temporal resolution.

3 Mesoscale ensemble forecast

An advanced mesoscale EPS was developed and employed to prepare precipitation data for thenafiviatidel. The EPS

was built around the @pational mesoscale model IMMHM for its atmospheric models the downscale EPS conducted by
Saito et al. (2013a)n this study, alomain consisting of 819 x 715 horizontal grid points and 60 vertical levels was used for
all ensemble members. This dombaad a grid spacing of 2 km and covered the mainland of Japan. With this high resolution,
convective parameterization was switched off. Boundary
Boundary perturbations were interpolatednfro f or ecast pertur bat i onvwek&PSastihSaitoJ MA S
(2013a) To provide initial conditions and initial perturbations for the EPS, a-douensional, variationaénsemble
assimilation system (4BEnVAR-NHM) was newly developed, in wtth background error covariances were estimated from
shortrange ensemble forecasts by JNMWIM before being plugged into cost functions for minimization to obtain the analyses
(Duc and Saito, 2017). If the number of ensemble members is limited, enserobleogariances contain sampling noises
which manifest as spurious correlations between distant grid points. In data assimilatior;ahedsiocalization technique

is usually applied to remove such noise, but at the same time can remove signifiedaticosrin error covariances. In this
study, we have chosen 1600 members in running the ensemble part of-Ere/AR-NHM to retain significant vertical
correlations, which have a large impact in heavy rainfall events like the Fukubligaga heavy raifall. That means only
horizontal localization is applied in the anNVAR-NHM. The horizontal localization length scales were derived from the
climatologically horizont al cor r el adimeosional] variatiphah assatioa | e s
system JNoVA by détion using a factor of 2.0.

Another special aspect of the mMVAR-NHM is that a separate ensemble Kalman filter was not needed to produce the
analysis ensemble. Instead, a cost function was derived for each analysis pentartdtioinimization was then applied to
obtain this perturbation, which is very similar to the case of analyses. This helped to ensure consistency betweendnalyses a
analysis perturbations in the enVAR-NHM when the same background error covariance séme localization, and the
same observations were used in both cases. To accelerate the running time, all analysis perturbations were calculate

simultaneously using the block algorithm to solve the linear equations with multiplheigtiside vectorseasulting from all

10
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minimization problems. The assimilation system was started at 0900 JST July 24th, 2011-hétlr aSsimilation cycle. All
routine observations at the JMBEWAR-NHM.tThebagsendationw doman wasth i mi |
same as the former operational system at JMA. To reduce the computational costeaalutibn approach was adopted in
the ADEnVAR-NHM where analyses had a grid spacing of 5 km, whereas analysis perturbations had a grid spacing of 15 km.
The analysisand analysis perturbations were interpolated to the grid of the ensemble prediction system to make the initial
conditions fordeterministic and ensemble forecasts

Due to limited computational resource, ensemble forecasts with 1600 members weremplojed for the target time of
0000 JST July 29 2011.However, deterministic forecasts weum for all otherinitial timesto examine impact of number of
ensemble members on analyses thedresultingorecastsFigure 1 shows the verification results the 3hour precipitation
forecastsas measured by the Fraction Skill Score (FE&ic et al., 2013)Here we aggregate theh®ur precipitation in the
first and second2-hour forecasts to increase samples in calculating theBys®Bis way robuststatistics are obtained but at
the same timeependence of the FSS on the leading ticaesstill be shown Note that an additional experiment with the-4D
EnVAR-NHM using 50 ensemble members, which is called 4DEnV AR ®lferentiate with the originaine4DEnVAR1600,
was runlt is very clear from Figure 1 that 4ADEnVAR1600 outperforms 4DEnVARSDst forall precipitation thresholds,
especiallyfor intenserain. Also for high rainrate,ADEnVAR1600forecasts are worse than JNoVA foreesdst the first 2-
hour forecast, which can be attributed to the fact that-EDVAR-NHM did not assimilate radiances like JNoVA. However,
it is interestingto see that 4EEnVAR-NHM produces forecasts better than JNoVA for the nextdi? forecast

To check reliability 6the ensemble forecasts, reliability diagrams are calculated and plotted in FigudZEfdrAR1600
and 4DEnVARS50. Since JNoVA only provided deterministic forecasts, reliability diagram is irrelevant for JNoVA. Note that
we only performed ensemble foratsinitialized athe target time of 0000 JST July®22001due to lack of computational
resource to run 160Mmember ensemble forecasts at different initial tinfé®refore, the same strategy of aggregathhg @
precipitation over the first and second-i@ur forecasts in calculating the FSS in Figure &ppliedto obtain significant
statistics Clearly, Figure 2 shows that 4ADEnVAR1600 is distinctivelgrereliable than 4DEnVARS50 in predicting intense
rain. While 4DEnVARS50 cannot capture intense rain, 4ADEnVAR1600 tends to overestimate areas of intense rain. The tendency
of overestimation of 4DEnVAR1600 becomes clearer if we consider the forecast ranges i&aadr?4 hours. However,
for the first 12 hours, 4ADEnVAR1600 slightly underestimates areas of light rains. Toigxgkins why the FSSof
4DEnVAR1600are smaller than those of ADEnVARSO0 for small rainfall thresholds in Figure 1.

As examples of the fecastsFigure3 shows the accumulated precipitation at the peak period {1200 JST July 29th,
2011) as observed and forecasted byiheEnVAR prediction system. For comparison, the deterministic forecast initialized
by the analysis from JNoVA usinhd same domain has also been given. Note that the forecast range corresponding to this
peak period is from 12 to 15 hours. Clearly, the deterministic forecast initialized by t8aVBR-NHM outperformed that
by the JNoVA, especially in terms of the locetiof the heavy rain, although the forecast by theelVAR-NHM tended to

slightly overestimate the rainfall amowagverified with the reliability diagrams in Figure Phis overestimation can also be

11
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observed in the coastal area near the Sea of Jap#mthat a significant improvement was also attained against the former
downscale EPS by Saito et al (2013a) (see Fig. 9 of Kobayashi et al..2016)

Since it is not possible to examine all 1600 forecasts, the ensemble mean forecast is only plutdebttom right of
Figure3. Again, the location of the heavy rain corresponds well with the observed location, as in the case of the deterministic
forecast, but the ensemble mean precipitation is smeared out as a side effect of the averaging ffroeesfare, to check
the performance of the ensemble forecast we plothae accumulated precipitation over the Kasahori Dam catchment in
time series under beandwhisker plots in Figurel. It can be seen that while the deterministic forecast could smmeh
reproduce the thregeak curve of the observed rainfall, ensemble members tended to capture the first peak only. Note that
some members showed this thpmak curve, such as the best member, but their number was much less than the number of

ensemble mebers.

4 Kasahori Dam catchment

Figure 5(left) shows the Shinanogawa and Aganogawa river catchments, where severe floods occurred in the 2011 Niigata
Fukushima heavy rainfall. The Kasahori Dam catchment exists in the Shinanogawa river cafeigmenb(right) shows an
enlarged view of the Kasahori Dam catchment (catchment area 72 MkiT, 2012). The land use of the Kasahori Dam
catchment is mostly occupied by forest, and as such, the applied rainfaff model assumed the entire area was forest.

The basic operation of the Kasahori Dam is summarized as follows.

1. The reservoir water level is lowered to the normal water level for the rainy season (elevation level (EL) 194.5 m).

2. If a flood risk due to extreme rainfall is expected by weattmamitoring/prediction, the water level is further lowered to
the preliminary release water level (EL 192.0 m).

3. When the inflow exceeds 14G g1, the threshold value for the onset of flood control operations, the gate opening is fixed
such that the oflow amount is determined only by the water pressure in the dam. This is, in a broad sense, a natural
regulation operation. The gate opening is not adjusted until the water level reaches EL 206.6 m.

4. When the reservoir water level reaches EL 206.6 repaargency (Tadashigaki in Japanese) operation is taken, and the
outflow is set equal to the inflow.

Note that the dam has been under renovation to increase its flood control capacity after the flood event in July 2011, but we
do not address the changes thuthe dam renovation here. We consider the dam operational rules at the time of the 2011 flood

event.

5 Distributed Rainfall -Runoff Model

The distributed rainfallrunoff (hereinafter DRR) model used in Kobayashi et al. (2016) was applied again iagérs phe
DRR model applied was originally developed by Kojima et al. (2007) and called CDRMV3, the details of which can be seen

12
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in Apip et al. (2011). In the DRR model, the surface and river flows are simulated using a 1D kinematic wave model. The
subsuréce flow is simulated using thehgrelationship by Tachikawa et al. (2004). The details of the model can be seen in the
paper by Kobayashi et al. (2016).

The parameters of the DRR model were recalibrated in this study usihguHg RadarCompositeprecipitation dateof
JMA, since Radar is in general the primary source for real time flood forecaRtdgrCompesite-data—can-be-obtained in
Japan-at-10-minutes-intervalthe recalibrated equivalent roughness coefficient of the forest, the Manningiemféif the
river, and the identified seikelated parameters are described in Table 1. The simulated hydrograph and observations are shown
in Figure 6 The duration of the calibration simulation is from 0100 July 28th to 0000 July 31th, 2011 JST.
The Na&h Sutcliffe Efficiency (hereinafter NSE), which is used for the assessment of model performance, is calculated as
follows:

3 %p :7 )

0 -B 0 2
whereN is the total number of time steps (1 h interval),is observed dam inflow (discharge) at timé i,is simulated dam
inflow (discharge) at timg 0 is the average of the observed dam inflow

In the calibration simulation iRigure6, the NSE is 0.754. The 2nd peak is not captured well in the simulation because the
RadarComposite basically could not capture the strong rainfall intensity of the 2nd peak. Nevenielesssider that the
model can reproduce the discharge on some level if rainfall is propetlyredby the observatian Thus, the DRR model is

used in the following ensemble simulations.

6 Results

In this chapter, the results of the ensemble flood simulations are shawainpon two aspects:
(1) We examined whether the ensemble inflow simulations can show the necessity of starting the flood control operations
and emergency operations with sufficient lead time (e.g. 12 h).
(2) We also examined if we could obtain high aeayr ensemble inflow predictions several hourS (1) before the
occurrence, which could contribute to the decision for optimal dam operation.
Item (1) provides us with the scenario that we can prepare for any dam operations with enough lead time, itikeayise
enable us to initiate d§ evacuation of the inhabitativing downstream of the dam. Item (2) is the target that has been
attempted by researchers of flood forecasting. If we could forecast the inflow almost correctly several hours before the
occurrence, it could help the dam administrator with the decision for actual optimal dam operations.
Item (1) is considered first hereiRigure 7shows the results of the inflow simulations to the Kasahori Dam driven by the

1600 ensemble rainfalls. The dtion of the ensemble weather simulation is 30 hours from 0000 July 29th to 0700 July 30th
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JST, but the ensemble flood simulation is carried out only for 24 hours from 0300 July 29th to 0400 July 30th, 2011 JST since
we consider that the NHM uses the fiBshours to adjust its dynamics. The results show that, except for the third peak, the
1600 ensemble inflows can encompass the observed rainfall within the range, which was not realized in the previous researc
of Kobayashi et al. (2016) with 11 ensemtdanfalls of 2 km resolution. In other words, the extreme rainfall intensity of the
event can be reproduced by the ensemble members with tEaBR-NHM.

Figure 8shows the 95 % confidence limits and ingerartile limits of the 1600 ensemble members. fdsilts show that
the 3rd peak of the observations was not covered by the 95 % confidence interval, although the rest of the observations can |
reproduced within the 95 % confidence interval. It is considered also that the ensemble mean and medaapiakidse
overall trend of the observations on some level.

Figure 9shows the probability that the inflow discharge is beyond 1#8 her ei naf t er 1eh0mr, e svheed ¢
is the discharge), the threshold value for starting the flood control operations. The figure considers the temporideshift of
ensemble rainfalls, i.e., temporal uncertainty due to the imperfect rainfall simulation. In the figore, @certainty means
that we only considered discharges at time t to calculate probability, whde@rluncertainty means that we considered the
discharges at1, t, t+1 to calculate probability andidur means that we considered the discharge®,at1, t, t+1, t+2 to
calculate probability. The-3and 4hour uncertainties were calculated in the same way. It becomes clear from the figure that
the starting time of g > 140 is likely at t = between 0800 and 0900 July 29th JST, where all curves cro$® ardiag time
is likely at t = 1800 JST, where all curves cross again. Before and after the cross points there are jumps in theeprababiliti
other words, the forecast can indicate that the situation of g > 140 would take placé @&teuBs from tk beginning of
forecasting with the probability of around 50 %. We consider that this is a very valuable information for the users of the
ensemble forecast.

On the other hand, the emergency operation was undertaken in the actual flood event. In thregmpegation, the dam
outflow has to equal the inflow to avoid dam failure as the water level approaches overtopping of the dam body. As written in
the previous section, when the reservoir water level reaches EL 206.6 m, an emergency operation isnyrateitake
outflow is set to equal the inflow. As the Heighvlume (HV) relationship of the dam reservoir was not known during the
study, we judged the necessity of the emergency operation by whether the cumulative dam inflow was beyond the flood contro
capacity of 8700000 #nActually, the flood control capacity had not been previously filled during regular operations more
than the estimation given herein, since the dam can release the dam water by natural regulation. However, again, since we ¢
not krow some of the relationships to calculate the dam water level, the judgement is done based on whether the cumulativ
dam inflow exceeds the flood control capacity.

Figure 10shows the cumulative dam inflows of all the ensemble simulations starting from 0300 July 29th, 2011 JST, as
well as the mean and observed cumulative inflows with the flood control capacity. The figure shows that the mean of the
ensembles was roughly similto the observationgigure 11shows the 38 best ensemble members selected based on NSE >
0.25, as well as the mean of all ensemble members, mean of the best ensemble members, and observations and flood cont

capacity.Figure 11shows that the ensengbinean of the best 38 members resembles the observations for the first 12 hours

14



10

15

20

25

30

better than the mean of all ensemble members, but the accuracy deteriorates for the last 12 hours. The difference between t
observations and ensemble mean of all memberbast20 % after 24 hour§igure 12shows the probability that the
cumulative dam inflow exceeds the flood control capacity of 870680The figure indicates that, for instance, the cumulative
inflow would exceed flood control capacity after 12 hoursrfithe start of the forecast with the probability of around 45 %.

In the actual event, the cumulative inflow based on observations and assuming no dam water release, would exceed the floc
control capacity between 1200 and 1300 July 29th, 2011 JST. Arbanthterval, the exceedance probability of the forecast

is 35 55 %. Until around this time, the forecast shows a slight delay in the estimate of the cumulative dam inflow. In the end,
the forecast shows that the flood control capacity will be used upththrobability of more than 90 % with regard to this

flood event. Thus, we consider this information is very useful as it can inform the residence downstream of the darteto evacua

Hereafter, the focus is put on Item (B)gure 13shows all ensembleembers, the 38 best ensemble members out of 1600
ensembles selected based on NSE > 0.25, and observations. The 38 best ensemble members are theigamd 25 e
figure shows that the selected 38 members reproduce the observations well. In soengetdcted members, even the 3rd
peak is reproduced. In the case where the 3rd peak is reproduced, the inflow hydrographs are beyond the 95 % confidenc
interval. Figure 14shows the catchment average rainfalls of the 38 best ensemble inflow simul@tiersack line is the
observed gauge rainfall, the blue line is the RaleDAS, the green line is the Rad@omposite, while the grey lines are
the 38 ensembile rainfalls. As mentioned, the rauntalbff model parameters are calibrated using R&tanposite since the
RadarComposite is the primary source for the flood forecasting. Therefore, the rainfalls from the best 38 ensemble inflow
simulations resemble those of the RaGamposite.

It is apparent that the flood forecasting becomes very usefid dould just select the 38 ensemble members in advance.
Thus, as a first step, we attempted to select some of the best members out of the 1600 members several hours in advance
the event based only on NSE.

Figure 1%a) shows a result where we seledissl best 46 ensemble members based on NSE > 0.0 for the first 9 hours from
the start of the forecast. In this case, we hadhaB lead time towards the observed peak discharge, and the selected 46
members cover the observed discharge after the firstushmn some level. The result shows that the ensemble inflow
simulations selected can indicate the possibility of rapid increases in the discharge after the 9 hours wiibur tlesebtime.

Likewise Figure 18b) shows the selected best 26 membersthaseNSE > 0.0 for the first 10 hours (two hours ahead of the
observed peak discharge). It is apparent that the result is worse than the previodwfirss€ection. The ensemble inflow
simulations after the 10 hours do not cover the observationmwiblis caseligure 1%c) shows the selected best 30 members
based on NSE > 0.9 for the first 11 hours (1 hour ahead of the observed peak discharge). In this case, the ensemble inflov
after the 11 hours could cover the observed peak discharge 1 houmlaeme level, although it only has a dwur lead

time. Nevertheless, overall it is recognized that we cannot select the best members in advance only by judgement based ¢
NSE of the dischargé=igure 16a) shows a scatter plot of NSE of the catchmeatage rainfall vs NSE of the discharge.
Clearly, the figure shows that catchment average rainfalls with similar NSEs produce discharges with different NSEs. In detai

the catchment average rainfall with NSE of around O produces discharges with NS €éldsand0.5. We consider that
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the spatial distribution of the rainfall field caused these differences even though the amount of the catchment aatage rainf
are the same. Even if the catchment area is small, different patterns in the rainfaliifigldifferent discharge simulations

with different NSEs. As a referendéigure 16€b) shows the Root Mean Square (RMS) of the simulated and observed discharge
vs simulated and observed rainfall. It is apparent that RMS cannot be used for the decisjamdrto the best discharge
simulations as the catchment average rainfalls with the same RMS also produce both favorable and less favorable discharge
The rainfall pattern chosen based only on NSE or RMS does not reflect the variety of rainfall pateeicensider that
selection directly from the rainfall data, and comparing them with Radar based on e@rda@iizing Map (SOM), Support

Vector Machine (SVM), pattern recognition, machine learning, etc., would be more promising to better clusteertiieen
rainfalls. However, we have not addressed that aspect in this study and this remains for future work. We conclude that the
selection method used here based on NSE does not provide us an exact discharge forecast with several hours leadtime, althot

it can provide us some trend in the near future.

7 Concluding Remarks and Future Aspects

The study used 1600 ensemble rainfaligduced by 4EEnVAR which contain various rainfall fields with different rainfall
intensities.No post processing such as tbeation correction of the rainfall field and/or rescaling of rainfall intensity was
employed.The ensemble flood forecast using the 1600 ensemble rainfalls in this study has shown that the extremely high
amount of observed inflow discharge can be repredugithin the confidence interval, which was not possiblehe 11

member downscalensemble rainfadlusedin the previoustudyby Kobayashi et al. (2016), although the accuracy of each
dischargesimulation is, at best, around NSE = 0.6. We caltulate the probability of occurrence (e.g. the necessity of
emergency dam operations) with the 1600 ensemble rainfalls. Thus, the result of the study shows that the ensemble floo
forecasting can inform us that, after 12 hours for example, emergencypaations would be required with the probability

of around 45 %, and that the probability would be more than 90 % for the entire flood event, etc. We consider thadthis kind
information is very useful. For instance, a warning of dam water releade éssued tae inhabitanin the downstream with

enough lead time, if the result obtained in this study is applicable to other locations and events.

On the other hand, the accuracy of each discharge simulation is, at best, around NSE = 0.6 oet D8@0l #msemble
members. Likewise, several of the best ensemble members only could not be selected from the NSE of the inflow discharg
and NSE of the catchment averaged rainfall. Herein lies the problem that, similar NSEs of the catchment averagigrainfall
different rainfall distribution, even in the small catchment areas, produce different NSEs of the discharges. Thus, we canno
select one best ensemble discharge simulation from the rainfall NSEs. Likewise, discharge simulations with similariINSEs unti
X hours before the onset of forecasting produce different future forecasts after the Xth hour. In other word, we cannot selec
the best discharge simulation from the NSE only until X hours. Thus, in this semgmé#micalselection of the best rainfall

field from rainfall simulations is required by comparing the simulated rainfall field with observed Radar fields, eteonngng
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methods, such as SOM, SVM, pattern recognition, machine learning, etc., although this was not addressed here and remai

for future work.
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Figure 1. Fraction skill scores of 3hour precipitation at Fukushima-Niigata from deterministic forecasts initialized by analyses from
JNoVA (left), 4D-EnVAR-NHM using 1600 (center) and 50 members (right)These scores are averagealer the periodfrom 2100
JST July 27th to 2100 JST July 29th, 2011To obtain robust statistics, precipitation is aggregated over the first 1zhour forecass
(valid between 0312-hour forecast) and the next 12hour forecass (valid between 1224-hour forecasty as shown in the top and
bottom rows, respectively Note that the first 3-hour precipitation is discarded due to the spirup problem.
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Figure 2. As Figure 1 but for reliability diagrams of 3-hour precipitation from ensemble forecasts initialized by analysis ensembles
of 4D-EnVAR -NHM using 1600 and 50 merhners. Three precipitation thresholds of 01 mm (left), 10 mm (center), and 50 mm (right)
are chosen Note thatthe ensemble forecasts were only run for the time 0000 JST July 29th, 2011
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Figure 3.Three-hour accumulated precipitation for 12061500 JST July29th, 2011 at FukushimaNiigata as observed by Radar

AMeDAS (R/A, top left), forecasted by NHM initialized by the analysis of INoVA (top right), forecasted by NHM initialized bythe

analysis of 4ADEnVAR-NHM (bottom left), and the ensemble mean forecast diIHMs initialized by the analysis ensemble of 4D
5 EnVAR-NHM (bottom right). All forecasts were started at 0000 JST July 29th, 2011.
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Figure 4. Time series of oneéhour accumulated rainfall over the catchment as forecasted by all ensemble members. Thetwhiskers
in each boxand-whisker diagram show the interquartile and 5th and 95th percentile of forecasted precipitation. The observation,
control forecast, ensemble mean forecast, and best member forecast are also plotted for comparison. Here, the imeshber is
defined as the member that has the minimum distance between its time series and the observed time series.
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Figure 5. Map of the Kasahori, Shinanogawa, and Aganogawa river catchments in Niigata, Fukushima, and Nagano prefectures,
Japan (leff), and detailed view of Kasahori River catchments (right).
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