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Abstract. Active fault databases are a very powerful and useful tool in seismic hazard assessment, particularly when singular 

faults are considered as seismogenic sources. Active fault databases are also a very relevant source of information for earth 

scientists, earthquake engineers and even teachers or journalists. Active fault databases, hence, should be updated and through 

reviewed on a regular basis in order to keep a standard quality and uniformed criteria. Desirably, active fault databases should 

indicate somehow the quality of the geological data and, particularly, the reliability attributed to crucial fault-seismic 15 

parameters, as Maximum Magnitude and Recurrence Interval. In this paper we explain how we tackled these issues during the 

process of updating and reviewing the Quaternary Active Fault Database of Iberia (QAFI) to its current version 3. We devote 

particular attention to describing the scheme devised for classifying the quality and representativeness of the geological 

evidence of Quaternary activity and the accuracy of the slip rate estimation in the database. Subsequently, we use this 

information as input for a straightforward rating of the level of reliability of Maximum Magnitude and Recurrence Interval 20 

fault seismic parameters. We conclude that QAFI v.3 is a much better database than version 2 either for a proper use in seismic 

hazard applications or as an informative source for non-specialized users. However, we already envision new improvements 

for a future update. 

1 Introduction 

Active fault databases are both an important managing tool for seismic hazard assessment as well as a convenient way to 25 

display and share scientific information. Knowledge about the location and activity degree of faults is crucial for seismic 

hazard and risk assessment, as well as for planning anthropic activities that may involve changing the natural stress-state in 

the crust: water reservoirs, underground gas storage, fracking, etc. The importance of active faults is a matter of concern in 

modern seismic code provisions, as for example in Eurocode-8, in which official documents issued by competent national 

authorities are referred to for the identification of such faults (e.g., Eurocode-8: Part 5 (CEN, 2004)). Active fault databases 30 

are also key on tsunami hazard assessments (e.g. Álvarez-Gómez et al., 2011) as well as on Early Warning Systems, which 
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are largely based on precomputed tsunamigenic faulting scenarios derived from information of such databases (e.g., Gailler et 

al., 2013).  

Since the Quaternary Active Faults Database of Iberia (QAFI v.2) was released in February 2012 an increasing number of 

studies have made use of it. The most relevant use so far has been for the creation of the new seismic hazard map of Spain 35 

(IGN-UPM, 2013), performed considering the foreseen adoption of Eurocode-8 throughout 2017. QAFI faults were considered 

as complementary information for designing seismogenic source-zones models, for estimating maximum magnitude 

distributions in each source-zone, as well as to assign the predominant rupture mechanism required for ground motion 

prediction equations (GMPEs) (García-Mayordomo et al., 2012a; García-Mayordomo, 2015).  

However, the seismogenic model did not consider explicitly QAFI faults as seismogenic sources. The National Seismic Hazard 40 

Map Committee considered that the information available at that time (ca. 2011) was not complete enough to homogenously 

cover all the territory, and that it was affected by large uncertainties that prevented its use for producing an official standard 

for the country. Besides, a number of  tests showed that the most active faults in QAFI (e.g., Eastern Betic Shear Zone) had a 

lower impact on hazard when modelled as sources than a regular seismogenic-zone for the targeted return periods of the map 

(475- and 950-yr) (García-Mayordomo et al., 2012b).  45 

Interestingly, Rivas (2013) analysed in depth the effect of considering QAFI faults as sources for the same return periods and 

found that these faults were clearly controlling the spatial distribution and amplitude of hazard. The reason for this is found in 

the GMPE model used, that considered near-source effects (e.g., Campbell and Bozorgnia, 2013), increasing remarkably the 

hazard in the vicinity of the fault.  Rivas (2013) also tested the application of a Brownian Passage Time renewal model for the 

Carboneras Fault, a major active fault belonging to the Eastern Betic Shear Zone. Following Rivas (2013) methodology, QAFI 50 

faults were modelled as sources to update the seismic hazard map of the Region of Murcia (SE Spain) which was the base for 

the design of the new civil protection plans for the region after the Mw 5.2 Lorca 2011 earthquake (Benito et al., 2015).  

Apart from QAFI the most obvious use in seismic hazard calculations as explained above, the database has also become a 

primary source of information for both researchers and journalists in the event of an earthquake in Spain. Reference to QAFI 

is increasing in the frame of engineering projects, a practice that is foreseen to be increased when the application of Eurocode-55 

8 becomes in force in Spain.  

However, since QAFI v.2 was released it was known that the database presented important shortcomings for being used 

straightforward in seismic hazard assessment (García-Mayordomo et al., 2012c,d).  There was a strong urge for reviewing and 

updating the database in order to make it more complete, more uniform and consistent, in such a way that it could provide 

guidance on the reliability of the seismic parameters of the faults not just for seismic hazard practitioners but for non-specialist 60 

users as well. Fault-source characterization for hazard calculations demands to rate somehow the quality of the geological 

information on which seismic parameters are eventually derived.  

This paper summarises the work carried out to update QAFI to v.3, aiming at improving completeness and homogenizing 

criteria and consistency across the database. A particular effort has been made to classify the quality of geological data in order 

to provide an objective reliability rating of crucial fault-seismic parameters: Maximum Magnitude and Recurrence Interval. 65 
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As a result, QAFI v.3 is a much better database than previous version 2, and more appropriate for being use by seismic hazard 

analysts and earth scientists, and even by non-specialized users, as engineers, teachers or journalists. 

2 Updating process to QAFI v.3 

2.1 QAFI v.2 basic problems 

It was well known since QAFI v.2 was released that the database had some problems of completeness and uniformity (García-70 

Mayordomo et al., 2012c,d), even though at that time QAFI v.2 was the most informative source about active faulting in Iberia. 

On one hand, some important sources of information had not been analysed in detail (e.g., Neotectonic Map of Spain, IGME 

and ENRESA, 1998; and other regional neotectonic maps ITGE, 1991) and on the other hand, some records were not properly 

compiled or had not all possible data adequately compiled. That was the case of some crucial database fields, as the description 

of Evidence of Quaternary Activity, fault geometry parameters (maximum depth, dip), slip rates… Additionally, the variability 75 

range, or error, of important parameters (e.g., slip rate) was not quoted and indicated in many cases. Hence, it was clear that a 

thorough revision of existing but not yet compiled data, as well as a revision of the original sources of information for already 

compiled data, was much needed.  

Uniformity of criteria is of paramount importance in active fault databases, especially when these are open to general, not 

specialized users. The database fields “maximum magnitude” and “recurrence interval”, crucial in seismic hazard applications, 80 

were not always calculated following the same criteria and methods in QAFI v.2. The estimation of maximum magnitudes was 

calculated using a variety of empirical relationships, which in some cases offered very different results, as it was the case, for 

example, of Wells and Coppersmith (1994) compared to the pre-instrumental equation of Stirling et al. (2002). Additionally, 

the independent variable used in these equations was also different in many cases, as for example length-of-surface-rupture 

compared to rupture-area. The consideration of equations derived from subsets considering style of faulting compared to the 85 

overall dataset was also a common difference for a number of records. In a similar way, the estimation of the recurrence 

interval was approached in different ways, and when information on uncertainty was available, it was not always possible to 

discern with confidence how it had been calculated.  

A main issue that a seismic hazard analyst has to face eventually is about quoting the reliability of different, but plausible 

hypothesis regarding geological data and seismic parameters of fault sources. The common approach to tackle this problem –90 

elegantly called epistemic uncertainty, is to follow a logic-tree procedure in which each of the branches represent different 

alternatives on which the analyst express his/her confidence by assigning particular weights. This procedure may become a 

difficult issue, particularly when the hazard analyst is not acquainted with the active tectonics of the territory under study, or 

simply because is not specialized in earthquake geology. Hence, it was envisioned that an obvious improvement in a future 

update of QAFI would consist in devising a system for classifying the reliability of fault seismic parameters, not just for hazard 95 

analysts but also for any other potential user (researchers, engineers, journalists, teachers, civil officers). 
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2.2 Revision and updating 

QAFI v.3 was finally released in September 2015, after a thorough revision, updating and adding new data. For a complete 

description of the fields that form the database the reader is referred to QAFI v.3 documentation and guide to the user available 100 

on the web (IGME, 2015). The new version contains 299 records, 30% more than the old v.2. New records come fundamentally 

after reviewing the complementary material and reports that lead to the publication of the neotectonic maps of Spain (IGME 

and ENRESA, 1998) and Murcia Region (ITGE, 1991). It is worth to mention that only those faults that were clearly named 

and identified in the reports, and the accompanying maps were considered for incorporation into the database. Faults failing 

to meet these criteria were not included as a record in the database, although their cartographic traces can be shown together 105 

with QAFI faults in the website. Additional sources of new information where thesis dissertations (e.g., Simón, 1984), the 

special issue on Active Tectonics in Iberia published in the Journal of Iberian Geology (Martínez-Diaz et al., 2012), the 

proceedings of the Iberfault-2014 meeting (Álvarez-Gómez and Martín-González, 2014) and a number of papers published in 

Earth sciences journals since 2012.  

QAFI v.2 records were revised one by one, verifying the original sources of information referred by the original compilers 110 

and, in many cases, contacting them to help in the compiling process or just for getting their approval on the update of the data 

compilation. We wanted to keep the same thinking as in QAFI v.2, that whenever possible the main compiler should coincide 

with a major author on the fault, even though that this way generally makes the compilation process slower. Particular attention 

was paid to the database-fields description of the Evidence of Quaternary Activity, Age of Last Deformation, Geometry and 

Kinematics, and Slip Rate.  115 

In some cases, the revision process led us to exclude certain faults from the final QAFI v.3 database. These faults were moved 

to a new database called “Debated Faults” (40 records). Debated faults are those that do not show either concluding evidence 

of Quaternary activity or for which this evidence is not yet published in a peer-reviewed journal. The Debated Faults database 

is also available to the public on the QAFI web site (IGME, 2015). 

A special effort was done to produce a best estimation of net slip rates (slip along displacement vector) and its uncertainty. In 120 

many cases, slip rates were not estimated in the original publications and had to be calculated ad hoc searching for valuable 

data included in them. This calculation was done transparently, clearly detailing the data and approach used in a memo field 

associated to the estimation called “brief comment”. In some cases there was not enough information for such an estimation 

and so slip rates were estimated by expert judgement, usually by comparison to similar faults in the area. In spite of the effort, 

22% of the records still lack a slip rate estimation.  125 

The variability/error field associated to slip rate in QAFI v.3 may show either the range of variation of the estimation based on 

uncertainties in geological assumptions or some sort of statistical error based on the randomness of the measurements. An 

example of the former would be a slip rate determination based on assumptions on the age of a non-dated marker, which could 

lead to two extreme values; this is usually quoted as a range (e.g., 0.5-1.0 m/ky). For the latter, consider for example a 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2017-128, 2017
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 18 April 2017
c© Author(s) 2017. CC-BY 3.0 License.

nicolal
Sticky Note
to

nicolal
Highlight
remove

nicolal
Highlight
Not in the reference list

nicolal
Highlight
remove

nicolal
Highlight
made

nicolal
Highlight

nicolal
Highlight
with

nicolal
Highlight

nicolal
Highlight
of



5 

 

variability estimation based on the standard deviation of radiometric dates given by a laboratory; this is usually quoted in QAFI 130 

v.3 as an error (e.g., ±0.08 m/ky). 

Finally, the revision and updating process included verifying the cartographic traces of the faults against the original sources 

of information, geo-referencing all them to the same datum (ETRS89), and double-checking for a good match with associated 

landforms as observed in satellite imagery and DTMs. For those faults compiled from the Neotectonic Map of Spain project 

geo-referencing had to be made by hand as the original source is made up of a composite of different paper sheets, none of 135 

them properly georeferenced. 

2.3 Criteria homogenization 

We particularly refer here to the method considered for calculating maximum magnitudes and associated recurrence intervals. 

If an active fault database is going to show these parameters, then it is important that these are calculated in a consistent, 

homogenous way, allowing direct comparison from between records. It is up to the hazard analysts eventually to either assume 140 

these values or consider different ones for their own purposes. However, for non-specialized users, as they may be engineers 

or journalists, it is important that these critical values are consistent and comparable across the database.  In QAFI v.3 

maximum magnitude and recurrence interval have been calculated consistently in the same way all through the database, 

except for the latter, in which a few records (#12) had conclusive paleoseismic data while for #111 (37%) that available data 

was simply not enough to draw an estimation. In the case that it was already available a published estimation for any of these 145 

data, we kept and referenced it in the accompanying “brief comment” memo field.  

Maximum Magnitude is estimated in QAFI v.3 considering the value quoted in the field “Length” of the fault, and making use 

of Stirling et al. (2002) regression equation of moment-magnitude on surface-rupture-length derived from an updated 

instrumental dataset after Wells and Coppersmith (1994). Length is a field always accounted for in every record of QAFI v.3, 

and one of the fields that more accurate can be estimated, compared to rupture area, for instance, for which uncertainties in the 150 

variation of dip with depth as well as the maximum brittle depth of the fault itself, strongly affect the result. Hence, “Length” 

was chosen as the independent variable for obtaining moment magnitude considering an equation based on empirical data.  

The choice of Stirling et al. (2002) took place along with several working meetings devoted to the Intensity-to-Moment-

Magnitude conversion equation (I-Mw) in the frame of the preparation of the Spanish National Hazard Map (IGN-UPM, 2013). 

In countries with a long historical earthquake record, as Spain, this conversion is a crucial issue as it determines the maximum 155 

magnitude of the events in the catalogue. Desirably, these conversion equations have to provide outputs consistent not just 

with damage descriptions in buildings but also with known environmental effects, as those described in the Environmental 

Seismic Intensity (ESI) scale (Michetti et al., 2007). For instance, in the ESI scale, surface-rupture earthquakes appear from 

Intensity VIII onwards, so it would not be reasonable that pre-instrumental events with lower intensities could be converted to 

Mw>6.0. An additional issue is the estimation of the upper bound of the Gutenberg-Richter distribution when characterizing 160 

seismogenic sources. In seismic hazard assessment practice this is usually done based on the maximum event recorded in the 

zone, and desirably it should be consistent with the maximum Mw that could be derived from the active faults contained in the 
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zone. Furthermore, for zones showing scarce seismicity, the estimation of maximum Mw from fault data may be the most 

reliable approach, if not the only one. Hence, a set of equations available at that time were tested against the outputs of the I-

Mw conversion equation (cf. García-Mayordomo, 2015 and references therein), and the two only available data on fault 165 

ruptures and historical earthquakes in Spain (e.g., 1884 Arenas del Rey and 1829 Torrevieja earthquakes, related to Ventas de 

Zafarraya and Bajo Segura Faults, respectively). It was found that the outcomes of the Stirling et al. (2002) equation were the 

most consistent. Nevertheless, for the faults located in the Gulf of Cádiz, where thick oceanic crust occur, maximum 

magnitudes may be much higher that predicted from that relationship. For these records the Maximum Magnitude “brief 

comment” memo field describes other alternatives and estimations cited in published literature.  170 

The variability/error field for maximum magnitude in QAFI v.3 simply accounts for the standard deviation of expected Mw 

according to Stirling et al. (2002) equation for the instrumental dataset. In those cases where uncertainty in length is significant, 

we use the “brief comment” memo field to explain and account for this issue in the magnitude estimation. For example, the 

Palomares fault (ES609), a 5-10 km wide N-S shear zone that forms part of the Eastern Betic Shear Zone, is ca. 60 km long, 

although to estimate maximum magnitude in QAFI v.3 we used 10 km, which is the maximum length of single fault traces 175 

inside the shear zone.  

Recurrence Interval in QAFI v.3 is estimated considering the Maximum Magnitude Earthquake Model (MEM) (Wesnousky, 

1986). This model assumes that each fault –or fault segment, releases seismic moment in just one maximum event that marks 

the end/beginning of a seismic cycle. The opposite model considers that the fault releases seismic moment by means of events 

of all sizes fitting an exponential distribution –i.e. a Gutenberg-Richter relationship. An intermediate model is the 180 

Characteristic Earthquake Model (Schwartz and Coppersmith, 1984), in which the fault produces events of all sizes up to a 

certain maximum, above which the fault only produces maximum events (cf. Wesnousky, 1994). QAFI v.3 considers the MEM 

model since it is a simple and straightforward method that can be invoked considering just geological data obtained from the 

field.  

In considering the MEM, slip rate (SR) represents the average rate at which maximum earthquakes are released by the fault, 185 

and because these maximum earthquakes are all of a similar size, and so they were produced by a similar coseismic 

displacement (D) on the fault plane, their average frequency can be simply calculated as D/SR. However, the parameter 

displacement (D) of such a single maximum event is very difficult to specify, either from paleoseismic studies or from 

empirical regressions on the length of the surface rupture, which so far show a tremendous uncertainty. In QAFI v.3 we 

calculated recurrence intervals considering the ratio between the seismic moment released from a maximum event and the 190 

seismic moment rate defined by slip rate. Maximum seismic moment is calculated from Mw using Hanks and Kanamori (1979) 

equation, and seismic moment rate is obtained using Aki’s equation (Aki, 1966) substituting average fault displacement (D) 

for slip rate. The former procedure has the inconvenient that Mw is not independently derived, but empirically obtained from 

length of the fault, which is a variable included twice when calculating rupture area in the seismic moment equation.   

The “Recurrence interval” field in QAFI v.3 accounts for a best estimation, which could be that one resulting from considering 195 

either a preferred value of slip rate or an average slip rate. The “Variability/error” is given as a range, bounded by the maximum 
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and minimum values that result from accounting for the standard deviation of maximum magnitude and the variability of slip 

rate (either as a range or as a deviation). As mentioned before, for a few records (#12) the recurrence interval quoted in the 

database is the one originally published in journals, albeit the “brief comment” field still accounts for the recurrence interval 

as calculated with MEM for comparative purposes.  200 

Finally, in order to be as informative as possible for non-specialized users of the database, the “brief comment” field associated 

to recurrence interval includes a statement indicating that the occurrence of smaller but damaging earthquakes may be much 

shorter than that one for maximum events. 

 

3 Assessing the quality of geological data and the reliability of seismic parameters 205 

One of the most outstanding differences of QAFI v.3 from the previous version 2 is that the reliability of seismic parameters 

Maximum Magnitude and Recurrence Interval is classified according to the quality of the geological data on which they were 

derived. We believe this is a very relevant progress considering that the use of this database is increasingly widening not just 

among earthquake science researchers or hazard analysts, but government agencies, industry or even mass media. There is an 

obvious need for any user to quickly grasp how much reliable are the data on a particular fault of the database, and particularly 210 

how sensitive are its Maximum Magnitude and Recurrence Interval. These two seismic parameters are fundamental for 

modelling a fault as a seismogenic source in seismic hazard analysis and, additionally, they are interpreted by the general 

public as indicators of the potential hazardousness of a fault.  

In QAFI v.3 both Maximum Magnitude and Recurrence Interval are obtained solely from geological data, as explained in the 

precedent section. It becomes apparent that rating the reliability of these two parameters should be based on the quality and 215 

representativeness of the geological data from which they are eventually obtained. Desirably, the rating procedure should be 

as automatic and objective as possible, accounting for just the evidence, avoiding as much as possible subjectiveness.  

To account for the quality and representativeness of the geological data we defined in QAFI v.3 two new database fields named 

“Strength of the Quaternary Evidence” and “Accuracy of the Estimation” of slip rate. The former serves to eventually rate the 

reliability of Maximum Magnitude and the latter to rate Recurrence Interval.   220 

When evaluating the reliability of Maximum Magnitude we refer here to the fact that the fault could actually produce maximum 

events –i.e., an event that ruptures the surface for a similar extent as its measured length. We are not evaluating the credibility 

of the actual value of the magnitude. QAFI v.3 rates the epistemic uncertainty of maximum magnitude, conversely to the 

aleatory uncertainty that results from the natural variability of the fault-rupture parameters or from the use of empirical 

equations. Hence, our reliability rating is based on whether there is evidence that the fault has produced such events that 225 

geologists are able to recognize today in the field. In QAFI v.3 this is evaluated in the “Strength of the Quaternary Evidence” 

database field.  

Rating of Recurrence Interval reliability is based both in the reliability rating of Maximum Magnitude and slip rate “Accuracy 

of the Determination”. Slip rate is a key parameter in fault source modelling, particularly in modelling earthquake frequency. 

In QAFI v.3 we calculate Recurrence Interval assuming a Maximum Magnitude Earthquake Model (MEM) (Wesnousky, 230 
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1986), as explained in the precedent section, and so the size of the maximum event is as crucial as slip rate to estimate the 

average frequency between maximum earthquakes. Furthermore, slip rate and maximum magnitude are also both crucial in 

other fault behaviour models, as for example for determining the seismic activity rate of the fault in a Gutenberg-Richter alike 

model (e.g., Anderson and Luco, 1983; Youngs and Coppersmith, 1985). Hence, the reliability of Recurrence Interval, or any 

other parameter related to fault-earthquake frequency, has to be considered jointly with the reliability of Maximum Magnitude 235 

(previously rated considering the strength of the evidence) and the accuracy of the slip determination.  

We shall now show how we account in QAFI v.3 for the database fields: Strength of the Evidence and Accuracy of the Slip 

Rate Determination, and subsequently explain the details of the procedure followed to rate the reliability of Maximum 

Magnitude and Recurrence Interval.  

 240 

3.1 Strenght of the Quaternary activity Evidence (SQE) 

This database field evaluates the quality, significance and representativeness of the information provided in the original 

bibliographic references from which data in the fields named “Geomorphic Evidence” and “Age of the youngest deposit 

affected by the fault” are compiled (cf. García-Mayordomo et al., 2012c,d). Please note that we are not rating the quality of 

published work. The quality of the work is taken for granted, as it is assumed that it reached at least the minimum standards 245 

of the journal where the information was published at the time. What it is evaluated here in particular are the scale, methods, 

and detail of the observations that support the Quaternary activity evidence of the fault. This process was performed record by 

record once compiling of new data was finished, and based on the experience gained after the revision of the entire database 

(see section on updating of QAFI).  

Strength of the Quaternary Evidence (SQE) is classified in three increasing levels of accumulated evidence: CSQE, BSQE and 250 

ASQE. Differentiation among classes is based on the scale of the observations and detail involved in obtaining the observations. 

Table 1 summarizes typical observations, scale and methods that usually characterize the available information at each level 

of evidence. Note that the classes denote accumulated evidence and increasingly stronger evidence. It is convenient to highlight 

that we are not evaluating here the degree of activity of the fault, but the significance of the evidence of activity in Quaternary 

times. 255 

Class CSQE encompasses the less significant evidence. These are inferred from regional scale observations of the fault trace, 

from interpretation of general geological maps or broad range geophysical methods, to digital terrain models (DTM) (Table 

1). At this level, there is usually a lack of field work focused on demonstrating these inferred evidences, or the field work detail 

has not proved conclusive so far. Geochronology is usually only known in broad relative terms as Quaternary sensu lato, or in 

terms of the different stages of the Quaternary Period (Upper Pleistocene, etc.). Similarly, Quaternary landforms or deposits 260 

are mapped in broad, generic units: terraces, alluvial fans, etc.). Numeric dating of certain deposits usually lacks, or they are 

very scarce.  

Class BSE assigns faults that, having class CSQE evidence, also have additional observations from larger scale works, and usually 

some field work. Quaternary geochronology is better constrained, although numeric dating of relevant stratigraphic units may 
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be still lacking. The arrangement of Quaternary units is known more precisely and there is a differentiation of phases or stages 265 

inside generic landforms (e.g., differentiation between generations of alluvial fans, or fluvial terraces, etc.) (Table 1).  

Class ASE faults are those that having class BSQE (and CSQE) evidences, also have conclusive observations obtained from field 

work. In general, Level AQE evidences are gained after intensive work at the office (e.g., photo-interpretation, DTM 

analysis,…) followed by field work focused on confirming the evidence (e.g., trenching) (Table 1). Level ASQE observations 

indicate the activity of the fault as a major controlling agent of Quaternary landforms or sedimentation, as for example fault 270 

scarps offsetting Quaternary deposits. Numeric geochronology may still be lacking, but the refinement reached on the 

definition of the geomorphic units allows a reliable approximation to their age based on their relative spatial associations.  

Rating the strength of the evidence should also consider its representativeness along the fault trace. In order to account for this 

issue, a plus sign (+) is added to the assigned level of SQE of the fault (e.g., A+) when the evidence is consistently reported at 

different locations. However, this is a difficult issue to evaluate as the evidence of Quaternary activity of a fault may vary 275 

along its trace for very different reasons apart from its activity degree. For example, it could be due to natural 

erosion/sedimentation processes, frequently in relation to anthropogenic activities, that may have blurred the evidence at some 

sections and thus biased available studies relatively to other parts of the fault.  

Distribution of SQE in the QAFI v.3 database shows that the majority of the records belong to class B (39%, #101), followed 

closely by classes A (32%, #83) and C (28%, #73) (Figure 1). Note that this distribution does not account for 42 records that 280 

were not evaluated, all of them located in Portuguese territory. Interestingly, practically all the records that show a + sign in 

its SQE belong to class A. This situation may suggest that interpretations on the activity of a fault are many times based on 

single locations; however reasonable that statement seems, we cannot reject that it may be an artificial bias from the evaluation 

process, as the effort was more focused on level A records.  

 285 

3.2 Accuracy of the Slip Rate estimation (ASR)  

This database field rates an estimation of the net slip rate of a fault on the base of the accuracy of the parameters involved in 

its calculation, particularly displacement and age. The slip rate estimation may come from original research published in a 

journal, or may be produced ad hoc as part of the revision and updating process performed in QAFI (see precedent section) 

from data either published in original publications or estimated by expert judgment. Accuracy of the Slip Rate estimation 290 

(ASR) differentiates among three increasing levels of accuracy: CASR, BASR and AASR.  

Class CASR corresponds to a slip rate estimation based on the displacement of a marker measured from the interpretation of 

large scale cartography or DTMs; while age-control of the marker is assumed to correspond to generic Quaternary or Plio-

Quaternary, or the different stages that form the Quaternary Period (e.g., 125 ka Upper Pleistocene). Class CASR slip rates are 

broad approximations that usually lack direct observation of the slip vector and dip of the fault, and it may be assumed from 295 

generic considerations on the general kinematics of the fault (e.g., a rake of -90º for a 60º dip normal fault). Furthermore, in 

many cases slip rates are just assumed from comparison to other similar faults in the region. The uncertainty of the estimation 

is very large, strongly depending on the broad controlling-age considered.  
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A class BASR corresponds to an estimation where one of the basic parameters, displacement or age, is well constrained. 

Displacement of the marker may be measured from the interpretation of large scale cartography after some field work; and age 300 

may be controlled by numeric dating of the marker or by association to similar stratigraphic units dated in the area. The slip 

vector of the fault and/or its dip are also better constrained than in class CASR; a net slip rate is usually estimated additionally 

to the vertical/horizontal components. Uncertainties can still be very large, but the range of maximum and minimum values is 

better constrained than in class CASR estimations. Very often contrasting slip rate values are obtained when considering different 

hypothesis on the displacement and age of the marker. 305 

Class AASR describes slip rate estimations where both displacement and age-control are constrained by measurements at 

outcrop scale and age obtained from numeric dating methods or inferred from them. There is also a good knowledge on the 

true slip-vector and dip of the fault and, accordingly, net slip rate values are usually produced in the publications. Uncertainties 

in the estimation still can be large, but conversely to class CASR or BASR, these depend largely on the accuracy of the dating 

results and its interpretation in relation to the true age of the marker. Uncertainties are usually quoted as standard deviations, 310 

or by other similar statistical parameters (e.g., mean error). Age and displacement are clearly stated in the original publication 

in such a way that any reader could calculate exactly the same values. Typically, there is a discussion on the variation of the 

slip rate of the fault along different periods of activity. 

Most of the slip rates in QAFI v.3 have been rated to class CASR (58%, #150), distantly followed by classes BASR (10%, #25) 

and AASR (6%, #15) (Figure 2). As in the precedent section, 42 records belonging to faults located in Portuguese territory were 315 

not included in this analysis. For an important fraction of the dataset (26%, #67) rating slip rate is not possible simply because 

such an estimation is not available, not even in terms of “expert judgment”. The accuracy in the determination of slip rates has 

varied considerably in the last 10 years of active tectonics research in Spain. The younger the paper the higher is the effort in 

obtaining an accurate estimation of slip rate, reflecting clearly the increasing interest of Spanish geologists in seismic hazard 

practice. 320 

 

3.3 Reliability of Maximum Magnitude (RMM) 

The reliability level entrusted to a Maximum Magnitude estimation for an active fault should be based on the quality and 

representativeness of the geological information from which the estimation was eventually obtained (see the introduction of 

the section). However, for hazard analysts not particularly specialized in earthquake geology this is not an apparent issue; and 325 

sometimes even so for specialized ones, as analysing and evaluating geological data is usually complex and time-consuming. 

Therefore, an objective indication on the reliability level of a Maximum Magnitude estimation should be a practical and 

desirable output in any active fault database.  

We propose here that the reliability of Maximum Magnitude should be determined straightforward based upon the SQE 

(Strength of the Quaternary activity Evidence) classes defined for QAFI v.3 (Figure 3). As explained in the introduction of 330 

the section, reliability here is a concept linked to epistemic uncertainty –i.e., whether it is plausible that a particular fault could 

produce a maximum event; rather than to aleatory uncertainty, that regards to the value of the magnitude associated of such an 
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event. Anyhow, a reliable estimation of maximum magnitude should always be accompanied by a discussion on the sources 

of uncertainty and its impact on the expected value. Additionally, such a reliable estimation should be reached by a reader just 

considering the data and information provided in the paper. QAFI v.3 thus defines a new database field called “Reliability of 335 

Maximum Magnitude” (RMM) that accounts for four levels of increasing reliability:  DRMM, CRMM, BRMM and ARMM. These 

levels are also named, respectively: Speculative, Poorly Reliable, Reliable, and Highly Reliable.  

A Highly Reliable level (AMM) is assigned only when the SQE of the fault has been rated A+ –i.e., the Quaternary activity of 

the fault is clearly evidenced and consistent along its trace; Hence, the occurrence of past earthquakes that ruptured all the 

fault or segment trace is very plausible (Figure 3). An AMM level is usually based on published information that discuss 340 

possible segmentation of the fault based on slip rate variations, geometry variations or other related issues. Furthermore, the 

uncertainty in the maximum magnitude estimation procedure is usually analyzed in the publication considering different 

sources, like variation of rupture parameters (length, width, depth); variation of displacement per event at outcrop scale; 

variation from the use of different empirical equations according to type of faulting or tectonic environment, nature of the 

crust... Eventually, the authors may prefer a particular maximum magnitude value to another, being this choice always clearly 345 

explained in the paper in such a way that a reader could calculate the same figure and its associated uncertainty.  

A BRMM level (Reliable) is assigned when the SQE of the fault is either A or B+ (Figure 3). For these faults there is usually a 

lack of paleoseismic studies, but the geological information is good enough for analyzing uncertainties from the variation of 

rupture parameters, as well as for the variation of style of faulting or tectonic regimen according to different scaling 

relationships. A general reader is usually able to calculate the same maximum magnitude MM value as proposed by the authors 350 

based on the data stated in the paper.  

A CRMM level (Poorly Reliable) comes from a fault whose SQE is either B or C (Figure 3). An additional lower level called 

Speculative (DRMM) is considered for rating maximum magnitude estimations specifically derived from sources in which 

crucial data regarding to the calculation is missing and so it is impossible for a reader to reach a similar value without making 

speculative assumptions.  355 

Approximately 2/3 of the records in QAFI v.3 database –excluding 42 records in Portugal, show a maximum magnitude 

estimation rated as poor (CRMM) or speculative (DRMM) (41 and 26%, respectively) (Figure 4). The other third are very reliable 

(ARMM) or just reliable (BRMM) (21 and 11%, respectively). This situation highlights the importance of being prudent when 

using these data and try not to jump to conclusions, without checking first reliability. 

 360 

3.3 Reliability of Recurrence Interval (RRI) 

Rating the reliability of the Recurrence Interval of maximum events of an active fault should be based mutually on the two 

basic parameters that are involved in such an estimation: Maximum Magnitude and Slip Rate (see the introduction of the 

section). Therefore, we proposed here to evaluate the reliability of a Recurrence Interval estimation after rating the level of 

reliability of Maximum Magnitude (RMM) and the accuracy of the Slip Rate determination (ASR) (Figure 3). Similarly to 365 

RMM, an estimation of Recurrence Interval should always include an uncertainty analysis and its impact.  
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QAFI v.3 defines a database field called Reliability of Recurrence Interval (RRI) that accounts for four levels of increasing 

reliability:  DRRI, CRRI, BRRI and ARRI. Similarly to RMM these levels are also named, respectively: Speculative, Poorly 

Reliable, Reliable, and Highly Reliable. Although QAFI v.3 has chosen to show Recurrence Interval calculated following the 

Maximum Magnitude Earthquake Model (MEM) (see introduction), the rating levels hereby defined for Recurrence Interval 370 

can be easily adapted to rate the reliability of earthquake frequency parameters in any other model of fault behavior that relays 

in maximum seismic moment and seismic moment rate. 

A Highly Reliable level (ARRI) is attributed only when both RMM and ASR have been rated the highest (Figure 3). Published 

information on a fault with a ARRI level usually discuss thoroughly uncertainties both from epistemic and aleatory sources. The 

former refers to account for, at least, the possibility that maximum events happened clustered in time, and for the consistency 375 

between the size of maximum events derived from single-event displacements in the field and the maximum rupture 

dimensions of the fault. The aleatory source refers to account for variations in the number of possible events in a time period, 

which has also an associated error in relation to the numeric dating results and their interpretation. The authors of the 

information may prefer a particular Recurrence Interval value to other, but this is always clearly stated in the paper so an 

external reviewer could reach to the same value, similarly to what is explained in the precedent section for RMM. Uncertainty 380 

is usually quoted as a range (maximum to minimum possible values) or using a statistical parameter as standard deviation or 

mean average error. 

Level BRRI (Reliable) results from a record in which RMM and ASR have been rated B and A or B, respectively (Figure 3). 

An analysis of the aleatory sources of uncertainty is usually included in the published information and uncertainty is quoted 

either as a range or as error. A Poorly Reliable level (CRRI) is assigned when RMM has been rated C and ASR rated B or C 385 

(Figure 3). Yet this level rates the Recurrence Interval estimation as highly interpretative, the information indicates tentative 

bounds for the range of variation of the parameter. Finally, an additional DRRI level (Speculative) is considered to rate 

Recurrence Interval estimations derived from information sources that lack sufficient data to pursue the procedure followed to 

reach the estimation and/or when any source of uncertainty is considered. 

More than half of QAFI v.3 records show a Recurrence Interval estimation rated as Poorly Reliable or Speculative (44% and 390 

16%, respectively). Estimations rated as Reliable or Highly Reliable sum up 14% of the total (9 and 5%, respectively). An 

important fraction (26%) corresponds to records in which there was no available information on the slip rate and, hence, RRI 

could not be rated. Note that 42 records belonging to faults located in Portugal were not considered in this statistics. Estimations 

rated as Highly Reliable (#12) coincide with faults having specific paleoseismic and active tectonic studies. Interestingly, these 

faults do not always coincide with the most active of the database but with the most studied.  395 

 

4 Discussion 

Active fault databases are an important source of systematized knowledge not just for hazard analysts and earthquake science 

researchers, but also for engineers following seismic regulations, journalists looking for information for articles, and even for 

common citizens. In this context, active fault databases should be updated on a regular basis, show uniformity of criteria and, 400 
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somehow, indicate the quality of the raw information and the reliability of seismic hazard parameters derived from it. In 

updating QAFI to its version 3 we have tried to closely follow those assertions.  

QAFI v.3 is a more complete, homogenous and a better quality database than QAFI v.2, the previous version released in 

February 2012. QAFI v.3 contains 299 records, that is 30% more than v.2. All of them have been revised aimed at reaching a 

minimum quality and homogenous standard for the entire database. It was found that 40 records did not actually show 405 

concluding evidence of Quaternary activity, or this was not yet published, and so were excluded from QAFI v.3 and stored in 

a newly developed database named “Debated Faults”. This database can be downloaded from the QAFI web site (IGME, 

2015), as well as displayed online together with QAFI faults.  

The seismic parameters Maximum Magnitude and Recurrence Interval have been calculated uniformly throughout QAFI v.3. 

For the former we used the length of the fault and Stirling et al. (2002) regression on Mw derived from an updated instrumental 410 

dataset based on Wells and Coppersmith (1994). Our primary interest was to produce Mw estimations comparable from fault 

to fault across the database, using a well-controlled parameter (length) and an equation that have shown consistent outputs 

with the Intensity-to-Mw relationship used in the official seismic hazard map of Spain (IGN-UPM, 2013). We do not advocate 

for the use of either that parameter or that empirical equation for calculating fault-related magnitudes in Iberia. That issue is 

left to be solved by a seismic hazard analyst and depending on the scope and scale of a particular project. For instance, we 415 

warn that maximum magnitudes for the faults located in the thick oceanic crust of the Gulf of Cádiz should consider an 

alternative approach.  Recurrence Interval is calculated assuming the Maximum Magnitude Earthquake Model (Wesnousky, 

1986) from the ratio between maximum seismic moment (from maximum Mw) and seismic moment rate (from Slip Rate). 

Similarly, we do not advocate that this model fits better the seismogenic behavior of Iberian faults, but rather that it is a model 

completely based on geological data, and convenient for comparing among faults across the database. 420 

Although final decisions on the expected values and variation of Maximum Magnitude or Recurrence Interval relay on the 

hazard analyst, QAFI v.3 presents a scheme for rating the reliability of these two crucial parameters in a straightforward and 

objective way based on the quality and representativeness of the available geological information. Reliability is graded in four 

levels: Speculative (D), Poorly Reliable (C), Reliable (B) and Highly Reliable (A) (Figure 3).  Reliability levels are assigned 

straightforward depending on the qualification obtained in two extra fields that evaluate the geological data: Strength of the 425 

Quaternary activity Evidence (SQE) and Accuracy of the Slip Rate estimation (ASR). We believe that this scheme is very 

valuable for any potential user of the database. Hazard analysts can use it to support decision making when building logic trees 

or managing epistemic uncertainty in general. Furthermore, general users can use it for quickly checking the quality of the 

available information, detecting knowledge gaps, and learn about how much results can be trusted.  

Two important shortcomings in QAFI v.3 are the large number of records for which we have no estimation of slip rate (26%), 430 

and the need to review thoroughly 42 (14%) records belonging to faults located in Portugal. Regarding the former, part of the 

problem derives from our interest in keeping v.2 concept; in the sense that whenever possible we privileged the compiler to 

coincide with a major author on the fault. This point sometimes leads to compilations that do not make the best use of the 

available data, depending on the willingness of the author, and his/her support on the QAFI project. In other cases, it is because 
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there is simply a lack of sufficient data. Nevertheless, a forthcoming version of the database should address this problem in 435 

such a way that every record shows a slip rate estimation, even though many of them will be estimated as expert judgment 

based on slip rates of similar faults in the vicinity or from geodetic data. Additionally, an extra effort has to be done for quoting 

slip rate uncertainties, and doing it whenever possible following the same criteria and procedure across the database. Finally, 

the available information about Quaternary faults in Portugal has not yet been thoroughly analyzed. This would be an essential 

work to address in a future QAFI version. Additionally, in the case of Spain it would be convenient to explore sources of 440 

information older that the Neotectonic Map (IGME and ENRESA, 1998), taking advantage that all Spanish territory has been 

mapped geologically at 1:50.000 scale (MAGNA National project).  

The process of reviewing and updating QAFI has been an opportunity to learn about the evolution of active tectonic studies in 

Spain for the last 30 years. It has given us also an opportunity for detecting shortcomings as well as to propose improvements. 

Before ca. 1990 most of the efforts were devoted to Neogene sediments, and most of the studies use the name “neotectonic” 445 

for referring to tectonic deformations from upper Miocene to Present. From a tectonic point of view Quaternary was not yet a 

matter of proper study. Later, studies focused on tectonics affecting Quaternary sediments and geomorphic features began to 

emerge. Initially these studies were qualitative in character, mostly devoted to illustrate the evidence. As the interest of 

including geological data in hazard analysis practice in Spain consolidates, these studies become little by little more 

quantitative. A greater deal of work is then dedicated to slip rate estimation and geochronology dating of most affected recent 450 

sediments. In current times, practically all of the papers published on active tectonics in Spain attempt to quantify fault-

geometry and -kinematic parameters, potential maximum magnitudes, recurrence interval… It should be warned that in some 

cases major interpretations are based on very few measurements, or in data that shows great variability (e.g., numeric dating), 

or they are just based on observations at single locations (e.g., a trench). This situation brings up a recommendation for future 

active tectonic studies in Spain: the importance of identifying the sources of uncertainty and being able to quantify them in a 455 

standard way.  

 

5 Conclusion 

QAFI v.3 is a much better source of information for seismic hazard analysts in Iberia than version 2. The new version is more 

complete, more uniform and consistent. Furthermore, QAFI v.3 serves as a baseline for managing epistemic uncertainty in 460 

fault hazard analysis. The reliability of maximum magnitude and recurrence interval of faults is rated based on the quality and 

representativeness of the geological data from which these parameters are eventually derived.  However, it is warned that 

QAFI database is a regional-scope project and, hence, it should not substitute in any way further geological studies that may 

be appropriate to perform for site-specific hazard analysis or local-scale hazard mapping. 

 465 
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Table 1. Classification of the Strength of the Quaternary activity Evidence (SQE) of a fault in three levels of increasing 

significance, based on the scale of the available observations, type of data and methods used. The classification is not 

intended to be exhaustive but to furnish the approach and criteria used in QAFI v.3. See text for complementary 

information. 565 

Classification of the Strength of the Quaternary activity Evidence (SQE) 

Class C.- Evidence inferred just from: 

- Regional-scale geological maps (1/100.000 or smaller) 

- Terrain/drainage/geomorphic anomalies at a broad scale 

- Geophysical methods performed at a broad scale (Bouguer anomaly, magnetic anomalies, …) 

- Interpretations from poor-quality multichannel seismic lines 

Note: A “+” sign is added to the class when evidence is reported at different locations along the fault 

trace (e.g., C+) 

Class B.- Additional evidence based on interpretations from: 

- Detailed-scale geological maps (1/50.000 or larger) 

- Geomorphic indexes indicating relatively recent activity (mountain front sinuosity, …) 

- Drainage network anomalies (fault-aligned deflections, beheaded valleys, longitudinal profile 

anomalies, differential dissection, captures, …) 

- Landforms anomalies (scarps, ponds, ridges, faceted spurs, …) 

- Geophysical methods performed at detailed scale 

- Good-quality multichannel seismic lines 

Note: A “+” sign is added to the class when evidence is reported at different locations along the fault 

trace (e.g., B+) 

Class A.- Additional direct evidence from field data: 

- Fault scarp controlling Quaternary geomorphic landforms 

- Quaternary sedimentation processes controlled by tectonics 

- Fault offsetting or folding Quaternary deposits at surface or subsurface 

- Interpretations from high-resolution geophysical methods 

Note: A “+” sign is added to the class when evidence is reported at different locations along the fault 

trace (e.g., A+) 
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Figure 1. Distribution of level classes of Strength of the Quaternary activity evidence (SQE) in QAFI 570 

v.3 database. See text for comments. 

 

 

 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2017-128, 2017
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 18 April 2017
c© Author(s) 2017. CC-BY 3.0 License.

nicolal
Sticky Note
Strength

nicolal
Sticky Note
Y-axis needs a label

nicolal
Highlight
further details



20 

 

 575 

Figure 2. Distribution of classes of Accuracy of the Slip Rate estimation (ASR) in QAFI v.3 database. 

See text for comments. 
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Figure 3. Diagram summarizing the scheme followed in QAFI v.3 for rating the reliability of Maximum Magnitude 

(RMM) and Recurrence Interval (RRI) on the base of the Strength of the Quaternary activity Evidence (SQE) and 

the Accuracy of the Slip Rate estimation (ASR). First, the SQE of the fault is classified based on the detail of the 585 

available published observations in three increasing levels of accumulated evidence, varying from C (weak) to A (very 

strong). A plus sign (+) is assigned when the observations can be extrapolated with confidence all along the fault trace. 

Second, the ASR is classified based on the accuracy of the information used for its determination, varying from C 

(rough) to A (accurate). Third, RMM is obtained straightforward from SQE class, varying from extremes A (Highly 

Reliable) to D (Speculative). Fourth, RRI is obtained from both RMM and ASR. Resulting RRI would never be higher 590 

than the rated level for RMM, yet it could be lower depending on ASR (these relationships are not shown on the 

diagram for the sake of simplicity). See text and Table 1 for a more extensive explanation. 
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Figure 4. Distribution of rating levels for the database-field Reliability of the Maximum Magnitude estimation (RMM) 

in QAFI v.3 database. See text for explanations. 
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Figure 5. Distribution of rating levels for the database-field Reliability of Recurrence Interval (RRI) in QAFI v.3 

database. See text for explanations. 605 
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