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Abstract. A coupled wave-vegetation simulation is presented for the swaying effect of the coastal vegetation on tsunami 

wave height damping. The problem is idealized by solitary wave propagating on a group of emergent cylinders. The 

numerical model is based on general Reynolds-averaged Navier-Stokes equations with renormalization group turbulent 

closure model by using volume of fluid technique. The general moving object (GMO) model developed in CFD code Flow-10 

3D is applied to simulate the coupled motion of vegetation with wave dynamically. The damping of wave height and the 

turbulent kinetic energy as waves passed over both swaying and stationary cylinders are discussed. The simulated results 

show that the damping of wave height and turbulent kinetic energy by the swaying cylinders were markedly less than by the 

stationary cylinders. The result implies that the wave decay by the coastal vegetation might be overestimated if the mangrove 

vegetation was represented as stationary state. 15 

1 Introduction 

A huge tsunami in South East Asia caused catastrophic damage and claimed more than 200,000 people in December 2004. 

Cochard et al. (2008) pointed out that this event has stimulated a debate about the role played coastal ecosystems such as 

mangrove forests and coral reefs in protecting low-lying coastal area. For example, Baird (2006) questioned the effectiveness 

of the coastal forests or reefs on the reduction of the damage caused by the tsunami. However, Danielsen et al. (2005) 20 

reported areas with coastal tree vegetation were markedly less damaged than areas without. Iverson and Prasad (2007) also 

indicated that developed areas were far more likely to be damaged than forested zones. Several studies (Hiraishi and Harada, 

2003; Harada and Kawata, 2004; Teh et al., 2009) have shown that tsunami wave energy, heights and velocities were 

significantly reduced as the wave propagates through mangrove forests. Nevertheless, Wolanski (2006) has noted that 

mangroves probably cannot protect the coast against a tsunami wave greater than a threshold level based on some evidence 25 

from observations of the Indian Ocean tsunami. Based on the field observations, Shuto (1987) and Yanagisawa et al. (2009) 

found that single trees or even entire forests could be destroyed through tilting, uprooting, bending or trunk breaking by 
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tsunami. For tsunami being always present a threat to lives and property along the most coasts of the world, it remains an 

important for estimating the effectiveness of the coastal vegetation on the tsunami impact. 

Many numerical and experimental approaches have been developed in recent years to help understanding the tsunami 

wave interactions with coastal vegetation. The coastal tree vegetation was idealized by a group of rigid cylinders in most 

investigations. Huang et al. (2011) performed both experiments and a numerical model by considering solitary wave 5 

propagating on emergent rigid cylinders and found that dense cylinders may reduce the wave transmission because of the 

increased wave energy dissipation into turbulence in cylinders. By using both direct numerical simulation and macroscopic 

approach, Maza et al. (2015) simulated the interaction of solitary waves with emergent rigid cylinders based on the 

arrangement of laboratory experiments of Huang et al. (2011). Previous approaches (e.g. Anderson et al., 2011; Huang et al., 

2011; Maza et al., 2015; Wu et al., 2016) assumed that the idealized mangrove vegetation is stationary and neglected the 10 

plant motion with the wave.  

There are several works investigated the hydraulic resistance of coastal vegetation involving the flexible effect of plants. 

Zhang et al. (2015) pointed out that the prop roots under tidal hydrodynamic loadings in a mangrove environment can be 

regarded as fairly rigid on account of a large Young's modulus. However, Augustin et al. (2009) indicated that motion of the 

flexible elements is an important factor on wave attenuation based on flume tests considering both stiff and flexible 15 

parameterised tree models under wave action. Husrin (2013) investigated that the trunk of mangrove with its strength 

properties may behave as a stiff or flexible structure which also governs its relative contribution to the total energy 

dissipation under tsunami and storm wave action. Coastal pines, one of typical coastal forest vegetation have longer trunk 

compared to mangroves, Husrin and Oumeraci (2013) indicated that they are more deflected when subject to similar flow 

velocity compared to mangroves. Husrin et al. (2012) and Strusińska et al. (2013; 2014) examined the tsunami attenuation by 20 

coastal vegetation under laboratory conditions for mature mangroves using parameterized trees including flexible tree 

models. Maza et al. (2013) presented a new numerical model for the interaction of wave and flexible swaying vegetation 

which couples the flow and the plant motion considering the plant deformation using RANS equation with k- turbulent 

model. 

Some mangrove roots and branches at the stage of growing are hanging from the canopy to the flow; it causes the prop 25 

roots to oscillate in the water. This study presents the numerical simulation considering vegetation motion coupled with 

tsunami waves to investigate the wave damping performance. Similar to the experimental work of Kazemi et al. (2015), we 

model the swaying motion of the vegetation by attaching rigid cylinders to torsional connectors under wave action. This is 

also a simplified way to represent some movements of mangroves induced by sediment scour, tilting or uprooting states. A 

direct numerical model based on computational fluid dynamics (CFD) is presented in this paper for simulating the wave 30 

damping characteristics including both stationary and swaying vegetation. 
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2 Numerical model description 

Among a number of open source CFD codes available, IHFOAM (Higuera et al., 2013; 2014) is specially designed for 

coastal engineering applications. IHFOAM model was used in Maza et al. (2015) for direct numerical simulation of the 

solitary wave interacting with the stationary vegetation. Alternatively, the model Flow-3D (Flow Science, Inc., 2012) is 

applied in this paper to conduct the numerical simulations including vegetation motion under wave action. Flow-3D provides 5 

exclusively the FAVOR (fractional area/volumes obstacle representation) technique (Hirt, 1993) and the general moving 

object (GMO) model that is capable of simulating the rigid body motion dynamically coupled with fluid flow. The FAVOR 

technique retains rectangular elements with a simple Cartesian grid system and has been shown to be one of the most 

efficient methods to treat the immersed solid bodies (Xiao, 1999). The free water surface tracking in the model is 

accomplished by using volume of fluid (VOF) method (Hirt and Nichols, 1981). 10 

Referring to previous literature, the problem is idealized by solitary wave passing on a group of emergent rigid cylinders. 

Considering the fluid to be incompressible, the continuity and momentum equations for a moving object formulated with 

area and volume fraction functions are given as 
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where ( / / ) / 2ij i j j iS u x u x      , VF is the fractional volume open to the flow and Aj is the fraction area for the subscript 

direction, the subscripts of i and j = 1, 2, 3 represent x-, y- and z- directions, xi  and xj represent Cartesian coordinates, ui  and 

uj  are the mean velocity component in subscript direction, t is the time,  p is the pressure intensity,is the fluid density, g is 

the gravitational acceleration,  is the absolute viscosity, t  is the eddy viscosity, k is the turbulent kinetic energy, and ij  is 

the Kronecker delta function such that ij = 1 when i = j; ij = 0, when i ≠ j. It is noted that the above governing equations are 20 

rendered to standard RANS equations as both VF and A are set to unity.  

The eddy viscosity t in Eq. (2) takes the form as 
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where k and represent the turbulent kinetic energy and turbulent energy dissipation rate, respectively. k and  are related 

to the effect of space and time distribution of the turbulent motion, which can be solved by a variety of turbulent closure 25 

models including one equation model, two equations k-model, Renormalization Group method (RNG k-model), Large 

Eddy Simulation (LES), and Shear Stress Transport (k-SST) model etc. The RNG k-turbulent model was originally 
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derived by Yokhot and Orszag (1986) based on Renormalization Group methods and improved by Yakhot et al. (1992) with 

scale expansions for the Reynolds stress and production of dissipation terms. The RNG k-model can be a useful turbulence 

model for practical engineering and scientific calculations (Speziale and Thangam, 1992). Choi et al. (2007) applied RNG k-

turbulent model to the three­dimensional simulation of tsunami run­up around conical island and demonstrated that it is 

with computational efficiency and accuracy.  RNG k-turbulent model has been proved having reliability for a wider class 5 

of flows, thus it is selected to apply in this paper. 

Referring to Yakhot et al. (1992), the turbulent transport equations of the RNG k-model are expressed as 
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where P is the turbulence kinetic energy production given by 10 
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The coefficients are summarized as follows: 
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    For coupling the rigid body motion dynamically with fluid flow, the general moving object (GMO) model is adopted here. 15 

Comparing with the continuity equation for stationary obstacle problems, /FV t   in equation (1) is equivalent to an 

additional volume source term and exists only in mesh cells around the moving object boundary. It can be calculated using 
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where cellV is volume of a mesh cell, 
objS , 

jn  and 
obju  are respectively surface area, unit normal vector and velocity of the 

moving object in the mesh cell. The relative transport equation for the VOF function F is given using 20 
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According to kinematics, general motion of a rigid body can be divided into a translational motion and a rotational motion.  
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If the cylinder is considered to sway in the x-direction accompanied by wave, angular velocity of the swaying cylinder is the 

only one non-zero component. Then the equations of motion of the cylinder are rendered as 

T J     (10) 

where T, J, and are total torque, moment of inertia and angular acceleration about the fixed axis. And the velocity of any 

point G on the swaying cylinder is calculated by G/G CV r , where G/Cr  denotes distance from the fixed end C of the 5 

cylinder to point G.  

    In computing the coupling of fluid and rigid body interaction, the velocity and pressure of fluid flow are first solved. The 

hydrodynamics forces on the rigid body are then obtained and used to calculate the velocity of the rigid body. Then the 

volume and area fractions are updated according to the new position of the rigid body, and the source term can be calculated 

using equation (8).  The flow field is computed repeatedly until the convergence is achieved. The similar GMO model was 10 

well applied for the numerical simulation of the coupled motion of solid body and waves, e.g.  Bhinder et al. (2009), Dental 

et al. (2014), and Zhao et al. (2014).  

As for the boundary conditions for solving the governing equations of flow, the normal stress is in equilibrium with the 

atmospheric pressure while shearing stress is zero on the free surface. All of the solid surfaces were treated using the no-slip 

boundary condition. The variation of the turbulent energy and the turbulent energy dissipation on the free surface boundary 15 

was set as zero in the normal direction. The solution of solitary wave derived from Boussinesq equations was employed as 

the incident wave. 

3 Validation 

Huang et al. (2011) conducted laboratory experiments in a wave flume for the solitary waves interacting with emergent, 

rigid vegetation. The vegetation was considered as a group of cylinders which were made of Perpex tubes with a uniform 20 

outer diameter of 0.01 m. The computations used the same geometric configuration of Huang’s laboratory works. The water 

depth was uniform and equal to h = 0.15 m, and the cylinder height was 0.24 m. The arrangement of cylinders shown in Fig. 

1 was selected to validate the present numerical simulation. Examples of two vegetation lengths, L = 1.635 m and 0.545 m, 

shown in previous studies are simulated here. The numerical tank was set by 6 m long, 0.55 m wide and 0.3 m height. Note 

that the verification of the model performance is only implemented by the case of stationary cylinders because the 25 

experimental information on the swaying cylinders by solitary waves is unfortunately lacking.  

Two different uniform computational meshes around the cylinder field, 0.002 m and 0.001 m respectively, were used to 

test the numerical accuracy and the sensitivity to grid size. Fig. 2 shows that FAVOR technique resolved successfully the 

geometry of cylinders using these two computational grids constructed. It indicates that the FAVOR efficiently uses 29 and 

17 points to define each cylinder for the mesh of 0 .001 m × 0.001 m and 0.002 m × 0.002 m, respectively.  30 

Fig. 3 shows the comparison of free surface evolution between the present numerical results and experimental 

measurements for an incident wave height Hi = 0.05 m considering the vegetation length L = 1.635 m. The results obtained 



6 
 

by the direct simulation using IHFOAM with k-SST turbulent model in Maza et al. (2015) were also shown in the figure. 

The comparisons depict that the present numerical results are in a good agreement with the laboratory experiments and 

previous numerical simulations. The second validation is performed by considering the vegetation length L = 0.545 m to 

compare with the Fig. 14 of Maza et al. (2015) using Hi = 0.05 m. The simulated result of wave height evolution shown in 

Fig. 4 depicts in a good agreement with previous numerical results, though the present simulation used different turbulent 5 

model.  The comparisons shown in Figs. 3 and 4 also demonstrate that there are almost no differences between both 

computational meshes for the free surface or wave height evolution. 

4 Results and discussion 

The above comparisons demonstrated the present numerical model is capable of simulating accurately the wave evolution 

by the group cylinders. The following simulations are performed for solitary wave passing through both the stationary and 10 

swaying cylinders. The surface elevation evolution, flow field variation, and the turbulent kinetic energy are analysed and 

compared between both stationary and swaying cylinders. The numerical domain and the arrangement of cylinders used in 

the following simulations are the same as in previous section. The fine mesh with 0.001 m is used for the following 

computations. 

The swaying cylinders induced by waves are set-up by the general moving object (GMO) model for coupling the 15 

cylinder’s motion and fluid flow dynamically. Similar to Kazemi et al. (2015), each cylinder end was simplified by attaching 

a torsion spring connector on the bottom in the model. The use of torsion spring could not completely reproduce the natural 

bending behaviour of the mangrove tree, but it allows the cylinders to swaying with the passing wave. Peltola et al. (2000) 

and Husrin (2013) indicated that the deflection angles for a broken trunk may range from 23 to 42 . Too higher value of the 

specific gravity and lower spring constant used in the present model scale will produce too larger deflection angle of the 20 

cylinders and no longer with elastic behaviour. Accordingly, after many numerical tests, the spring constants are set by 

values of ks = 1 – 1.8 kgw/m with the cylinder’s specific gravity of 0.25 to affirm that cylinders can return back to their 

original position after being hit by waves. 

4.1 Free surface evolution 

The numerical free surface evolutions for the swaying and stationary cylinders respectively are shown in Fig. 5. The 25 

spring constant is set by ks = 1.0 kgw/m in this case. It can be seen that the free surface elevation decays rapidly along the 

cylinder array by stationary cylinders but mildly by swaying cylinders.  

Fig. 6 shows the comparison of wave height evolution for swaying cylinders with different spring constants, which can be 

seen that the results of swaying and stationary cylinders are almost identical for ks = 1.8.  Besides, Fig. 7 shows that the 

larger spring constants the larger maximum deflection angle is. It also shows that the front rows of cylinders get larger 30 

deflection. It is noted that the spring constant ks = 1.0 kgw/m is used in the following examples. 



7 
 

Fig. 8 shows the variation of the wave height damping ratio, ( ) /D i iH H H H  , along the cylinder array for different incident 

wave heights. It can be seen that the maximum wave height damping ratio of Hi/H = 0.33 is approximately 26% for swaying 

cylinders but it could reach to 61% for stationary cylinders. The result of free surface evolution depicts that the stationary 

cylinders are working better than the swaying cylinders for the wave height damping. That is, the wave height decay can be 

overestimated if the coastal vegetation was considered as stationary state. 5 

4.2 Flow field evolution 

Fig. 9 shows the snapshots of velocity distribution at the centre line of the tank for swaying and stationary cylinders as the 

solitary wave crest is passing through gauges G3 to G6 for an incident wave height Hi = 0.05 m. It can be observed that the 

water velocity reduces rapidly along the array of stationary cylinders, but it reduces gently by swaying cylinders. The 

swaying cylinders have angular motion and even become immerse in the water under the wave crest, thus it leads to the flow 10 

velocity be larger than that of stationary cylinders. Fig. 10 shows the comparison of the horizontal velocity profile as wave 

crest is passing through gauges G3 to G6, i.e. x/L = 0, 0.33, 0.66 and 1.0, for swaying and stationary cylinders. It can be seen 

that the profiles vary oscillatory for swaying cylinders due to the motion effect of cylinder. 

4.3 Turbulent kinetic energy evolution 

The turbulent kinetic energy will be generated and dissipated during the wave interacting with the group of cylinders. The 15 

turbulent kinetic energy (k) and the turbulent kinetic energy dissipation rate () are obtained from the RNG k-  turbulent 

closure model while the general RANS equations is solving. We focus on when and where the maximum turbulent kinetic 

energy occurs for an incident wave height Hi = 0.05 m. 

Figs. 11 and 12 display the snapshots of the spatial distribution of the turbulent kinetic energy (TKE) and the turbulent 

kinetic energy dissipation rate (DTKE) for swaying and stationary cylinders, respectively, when the wave crest is passing 20 

through gauges G3 to G6. It shows that the turbulent kinetic energy start generating and dissipating as the wave crest is 

hitting on the front row of cylinders. It can be seen that the characteristics of spatial distribution of TKE and DTKE for 

swaying and stationary cylinders are very similar. Figs. 13 and 14 display the time variations of TKE at each section (x/L = 

0–1), which shows that the maximum TKE occurs at x/L = 0.33 of both cylinders. The result can be stated that the 

maximum TKE is not occurring when the wave crest is reaching the cylinders (x/L = 0). This result is similar to Maza et al. 25 

(2015), which obtained that the maximum turbulent intensity is not developing when the wave crest is reaching the cylinders.  

Fig. 13 also shows that there is a time lag between the occurrence of maximum TKE and the maximum wave elevation of 

stationary cylinders, but there is no lag for swaying cylinders. That is, the maximum TKE is produced after wave crest 

passed each section of stationary cylinders, but it is produced as wave crest is passing each section for swaying cylinders. 

However, it can also be found from Fig. 14 that multiple peaks of the TKE evolution exist in the case of swaying cylinders 30 

by the return back process to its original position.  
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Fig. 15 shows the comparisons of vertical profile of TKE between swaying and stationary cylinders as the wave crest is 

passing through gauges G3 to G6. It can be seen that the strongest shear layer of both cylinders is generated near the free 

surface where the largest turbulence occurs, and the TKE decreases along the cylinder array. We can find that the vertical 

profile of TKE exists multiple shear layers due to the swaying effect of the cylinders. Fig. 15 shows the comparisons of total 

TKE evolution along the array of both cylinders, in which the total TKE is calculated by the integral of time evolution shown 5 

in Figs. 13 and 14. It can be found that the larger TKE occurs between x/L = 0.165 and x/L = 0.495 for both cylinders and the 

TKE of swaying cylinders is obviously less than that of stationary cylinders. 

5. Conclusions 

A numerical simulation based on the general RANS equations and RNG k- turbulent model was implemented to investigate 

the swaying effect of coastal vegetation on the damping of tsunami wave. The vegetation was idealized by a group of 10 

emergent, rigid cylinders. The FAVOR technique and general moving object (GMO) model provided in Flow-3D code were 

employed in this paper for simulating the coupling of fluid and rigid body interaction. The evolutions of wave height, flow 

field and turbulent kinetic energy for both stationary and swaying cylinder are investigated. Due to the swaying effect of the 

cylinders under the wave action, the numerical results showed that the damping of wave height and turbulent kinetic energy 

were markedly less than those of stationary cylinders. That is, tsunami damping can be overestimated if the coastal 15 

vegetation is represented as a stationary state. 
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Figure 1. Cylinder cell arrangement (left), field length (right) and locations of wave probes for the computations. 
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Figure 2. FAVORized geometry of cylinders and constructed computational rectangular grid with 0.001 m (left) and 0.002 

m (right). 
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Figure 3. Comparison of free surface evolution between numerical and experimental results for Hi = 0.05 m. 
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Figure 4. Comparison between the numerical results for the wave height for Hi = 0.05 m using the field length 0.545 m. 
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Figure 5. Wave surface evolutions of the swaying and stationary cylinders for an incident wave height Hi = 0.05 m, Hi/h = 

0.33. 
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Figure 6. Comparison of wave height evolutions for swaying cylinders with different spring constants. 
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Figure 7. Comparison of the maximum deflection angles of swaying cylinders with different spring constants. 
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Figure 8. Comparison of wave height damping ratio between swaying and stationary cylinders for different incident wave 

heights. 
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Figure 9. The snapshots of the velocity distribution for the stationary cylinders (left) and swaying cylinders (right) for Hi = 

0.05 m. 
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Figure 10. Comparison of the horizontal velocity profile for the swaying and stationary cylinders as wave crest is passing 

each section for Hi = 0.05 m. 5 
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Figure 11. Snapshots of TKE for stationary cylinders (left) and swaying cylinders (right) for Hi = 0.05 m. 
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 Figure 12. Snapshots of DTKE for stationary cylinders (left) and swaying cylinders (right) for Hi = 0.05 m. 
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Figure 13.  The time evolution of TKE at each section for stationary cylinders for Hi = 0.05 m. 

 

 

Figure 14.  The time evolution of TKE at each section for swaying cylinders for Hi = 0.05 m. 5 
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Figure 15.  Comparison of vertical profiles of TKE as wave crest is passing through each section for Hi = 0.05 m. 

 

 

Figure 16.  Comparison of total TKE evolution along cylinder array for Hi = 0.05 m. 5 
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