
Blade element momentum (BEM) models have been used for many years for the aerodynamic analysis of 
wind turbines and propellers. Contrary to the statement on line 21, they were not introduced by Glauert 
(1935, reference in manuscript), who did however, develop them in a form that has been used for wind 
turbine analysis for nearly a century.  For example, Lock et al. (1925, reference below) gives a detailed 
account of the pre-Goldstein (1929) and pre-Glauert version of BEM. 

Since the introduction of BEM, many second order corrections to it have been studied but these are not 
considered in the present manuscript.  They include the effects of finite blade number, e.g. Clifton-Smith 
(2009), Wood et al. (2016), Schmitz & Maniaci (2017), Wimhurst & Willden (2017, 2018), the nonlinearity 
of the governing equations, Wood & Okulov (2017).  Further, Limacher & Wood (2020) showed that the 
concerns of Goorjian (1972, reference in manuscript) over the role of the forces on the expanding 
streamtubes can be avoided easily.  Therefore the claim in the manuscript to present a “state of the art” 
BEM analysis is not valid. 

The manuscript concentrates on two aspects of BEM: the effect of wake expansion and an extension of the 
model of Bak et al. (2006) for rotational effects on the blade element forces.  It is not demonstrated that 
these second order effects are more important than the others, but the reasonable agreement shown 
between the available measurements and the new model suggests that the contribution is worthwhile. 

The axial induction factors, a for the near-wake, and b for the far-wake, are assumed to be independent of 
radius, in for example, Equations (3) and (4).  This is a major simplification which is not justified.  Constant 
b in the far-wake gives a “Joukowsky” wake comprising a concentrated hub vortex of strength NΓ where Γ  
is the maximum bound circulation and N is the number of blades, and N helical vortices at the edge of the 
wake.  Then the relation between pitch and far-wake velocity is easily determined from the Kawada-Hardin 
equations (Kawada, 1936; Hardin, 1982) as 
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Where h is the vortex pitch, which contradicts Equation (12).  For a Joukowsky wake, Wood (2007) 
rediscovered the result of McCutchen (1985) that the rotational velocity contribution to the energy equation 
is cancelled by the contribution of the radial pressure gradient, and so can be ignored, contrary to the 
statement of its importance made several times in the manuscript. 

It is also unlikely that the strength of the trailing vortices is set only by the lift on a blade element.  When 
the angular momentum equation, (6) in the manuscript, is balanced against the blade element forces, the 
element drag is involved, and, therefore, the rotational induction factor a’ is partly determined by the drag.  
Since a’ is also the normalized circumferential velocity induced by the trailing helical vortices, the circulation 
of those vortices is also partly determined by the element drag.   

The manuscript is poorly written in places.  For example, “plane” is often rendered as “plan” and there are 
many examples of poor expression which should be caught by a grammar checker. 
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