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Abstract. In common industrial practice based on IEC standards, wind turbine simulations are computed in the time domain

for each mean wind speed bin using six unsteady wind seeds. Different software such as FAST, Balded or HAWC2 can be used

to this purpose, to capture the unsteadiness and uncertainties of the wind in the simulations. The statistics of these simulations

are extracted and used to calculate fatigue and extreme loads on the wind turbine components. Having only six seeds does not

guarantee an accurate estimation of the overall statistics. One solution might be running more seeds; however, this will increase5

the computation cost. Moreover, to move beyond Blade Element Momentum (BEM)-based tools toward vortex/potential flow

formulations, a reduction in the computational cost associated with the unsteady flow and uncertainty handling is required.

This study illustrates the stationary character of the unsteady aerodynamic statistics based on the standard turbulence models.

Afterwards, we propose a non-intrusive Polynomial Chaos Expansion (PCE) to build a surrogate model of the loads’ statistics

at each time step, to estimate the statistics more accurately and efficiently.10

1 Introduction

The process of calculating loads on wind turbine components is one of the core parts of wind turbine aerodynamic and structural

design and optimization. In the last few decades, international organizations have developed different aeroelastic codes such

as FAST (Jonkman et al., 2005), BLADED (Bossanyi, 2003) and HAWC2 (Larsen and Hansen, 2007) to calculate load time

series based on the standardized or site-specific environmental conditions accurately. Engineers and researchers use simulation15

output statistics to calculate extreme and fatigue loads wind turbine structure and estimate the unsteady power. To take into

account the randomness in the unsteady wind, according to IEC standards (IEC 61400-1), the simulation process must use

a Monte Carlo (MC) method. Therefore, the simulation setup should include a limited number of seeds for generating wind

speed time series of 600s. In normal practice, for each mean wind speed, at least six different seeded unsteady wind time

series is required as the minimum to take into account the uncertainties. This limited number of deterministic but unsteady20

simulations do not yield an accurate and smooth estimation of the statistics. Gradient-based optimization algorithms may not

deal with these non-smooth statistics well. One option to solve this problem is running more seeds, which will increase the

computational cost. The increase in the computational cost will play a more important role in our decision making if we want

to move towards vortex (van Garrel, 2003) and potential flow codes for load calculations, as they require more computation
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resources inherently. An alternative approach is to use a surrogate model that can provide us with a smooth set of statistics25

based on a limited number of simulations.

The origin of the surrogate model lies in Uncertainity Quantification (UQ) analysis (Sudret, 2007). There are many uncer-

tainty quantification implementations in wind energy. More specifically, in wind farm load estimation or optimization, surrogate

models show much potential. Many researchers have investigated these potentials (Dimitrov et al., 2018; Schröder et al., 2018;

Dimitrov, 2019; Ashuri et al., 2016). However, very few have looked at building a surrogate model of the aerodynamic model30

of wind turbine. Fluck and Crawford showed an initial attempt to build a surrogate model based on intrusive Polynomial Chaos

Expansion (PCE) on simple lifting line and BEM models (Fluck, Manuel and Crawford, Curran, 2016; Fluck and Crawford,

2018). As they quickly faced with curse of dimensionality, they showed it is possible to reduce the number of random vari-

ables in Veers’ unsteady wind model significantly. Afterwards, they used this reduced dimension wind model to propagate

stochasticity thorough a simple lifting line (Fluck and Crawford, 2016) or BEM (Fluck and Crawford, 2018) model. However,35

with intrusive PCE it is necessary to change the model fundamentally to be able to incorporate the random variables (Sudret,

2007). For a simple model, this might work, but when we want to utilize commercially available aeroelastic codes, this will be

challenging or even impossible.

This paper is an initial attempt to build a non-intrusive PCE surrogate model (Sudret, 2007) on a deterministic aerodynamic

model. The motivation is building a surrogate model based on a few numbers of simulations to be able to estimate the statistics40

of aerodynamic model output at each time step of the time series quickly and accurately. As the surrogate models are inherently

cheap to run, we take this surrogate model through a Monte Carlo simulation (MCs) for a large number of times. The input

of these MCs is the samples which are drawn from the uniform random variables. An unsteady wind generator uses the same

random variable distribution. The output of the surrogate model provides us with the aerodynamic model output distribution

quickly. This process is presented in Figure 1 schematically. By this method, we can reduce the computational cost and time45

for the aerodynamic simulation, without compromising the validity of the results. One can interpret this model as a tool to map

the input distribution (in this case, an uniform distribution of random seeds-phases) to the output distribution (in this case, a

normal distribution of Γ).

As fitting a surrogate model of each time step of a 600s times series is computationally expensive and redundant to current

practice, we start by showing that the aerodynamic simulation results based on Veers reduced model (Fluck, M. and Craw-50

ford, C., 2017) statistically converges. This means that the statistical properties of the unsteady process are constant in time.

Therefore, by keeping the computational effort the same, it is possible to run more simulations while shortening the length of

simulations. More simulations with the same computational effort give us the chance to fit higher degree PCEs, which provides

a more accurate estimation of the statistics. We build four different PCEs surrogate models, with four different polynomial

degrees. These surrogate models have been used for MCs for a large number of runs (cheaply). The results of the MC runs of55

the surrogate models are compared with 48000 unsteady wind aerodynamic simulations. We compare the results by looking at

the circulation distribution from both the deterministic model and the surrogate model.
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Figure 1. The common deterministic process of aerodynamic modeling vs the suggested surrogate model method schematic flow chart.

2 Methodology

This section starts by providing an overview of the basic wind environment and statistical elements that we use in this study.

Afterwards, we explain in detail the simulation and PCE method that we use in this study.60

2.1 Reduced Veers unsteady wind model

One famous unsteady wind model in the wind turbine community is the Veers model (Veers, 1988). The history of the model

goes back to the late 80s’ and has a long record in wind turbine load calculation practice. Veers’ model for the unsteady wind is

the method to generate turbulent boxes, commonly implemented in TurbSim (Jonkman, 2009). The method is briefly explained

in Fluck, M. and Crawford, C. (2017) and extensively in Veers (1988). To make the unsteady wind, this method roughly needs65

5× 104 random variables based on typical wind frequency bins for each phase φj . For reasons that we will explain in the

next sections, this number of random variables makes building a PCE surrogate model almost impossible. Fluck and Crawford

(2016) showed that using only ten uniformly distributed independent random variables with ten frequencies logarithmically

sampled from the Kaimal spectrum (Veers, 1988) are enough for building unsteady wind time series. This Reduced Veers’

model generated unsteady wind that can capture the same level of randomness and probability distribution as the full model.70

In this study, we used this reduced Veers model to generate unsteady wind time series.

2.2 Statistical convergence

For this study, we want to investigate if the probability distribution of n wind seeds and aerodynamic simulation results at each

time step are similar or not. In other words, we want to know if the statistical properties of the output at each time step converge.
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Figure 2. A schematic drawing presenting possible distributions at each time step based on a set of time trajectories for a Quantity of

Interest (QoI)

Figure 2 presents a generic example of distributions (histogram fits) at each time step for a set of random processes. The figure75

shows a schematic plot; therefore, histograms and fitted distributions do not represent the plotted trajectories. To show that

the combination of n seeds is statistically convergent, we need a metric to quantify the difference between the distributions

and each time step. There are different metrics for this purpose (Basu et al., 2011); for this study, we use Hellinger distance

(Hellinger, 1909) as a metric. The Hellinger distance is a metric to quantify how two normalized probability distributions are

similar to each other. The distance is zero if they are the same and reaches to one when one of the probability distributions is80

zero uniformly. The Hellinger distance for two discrete probability distributions of P and Q, where they are both normalized

and have an equal number of bins can be formulated as:

H(P,Q) =
1√
2

√√√√
k∑

i=1

(
√
pi−
√
qi)2 (1)

In Eq.(1), pi and qi are the normalized probabilities for P and Q at every bin.

2.2.1 Aerodynamic model85

For the sake of simplicity, the aerodynamic model in this study is a simple rectangular lifting surface (wing) in an unsteady

flow u∞ assumed constant across the span and one dimension flow, i.e. αg incidence angle constant. This is modelled using a

single Prandtl lifting line, with shed wake elements to take into account the previous time step wake effects on the lifting line
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Figure 3. Unsteady lifting line model. Dimensions are in meters.

circulation (Figure 3) along with a single set of trailed vorticies. Again for simplicity, the wake elements are fixed geometrically,

and a single spanwise element is used to represent the wing. Relaxing this constraint into a free wake model, and increasing90

the number of wake elements will not change the method introduced here. However, it increases the number of unknowns and

makes the aerodynamic model simulations more expensive. For a more detailed explanation of lifting line theory, see Prandtl

(1919) or the more recent work of Phillips and Snyder (2000). This model assumes a small angle of attack αg and small induced

velocities w. Therefore, one can claim the modelled lifting surface has linear airfoil properties (Anderson and Hughes, 2009).

The model formulation is taken directly from Fluck and Crawford (2016):95

Γ0(tn) =
A.u∞(tn) +C.Γ0(tn−1)

1−B (2)

where:

A= cπαg

B = (G1 +G2 +G3−G5) (3)100

C = (G1 +G4 +G5)

Eq. (2) provides the ability to calculate the bound circulation (and thus loads) Γ0(tn) at each time step tn. This is based on

the free-stream wind u∞ and the circulation at the previous time steps Γ0(tn− 1). In Equation set (3), c is the chord, αg is the

angle of attack and Gi is Biot-Sawart influence term from each vortex at the middle of the blade element (Phillips and Snyder,

2000). By having a u∞ time series in hand from TurbSim of any other unsteady wind generator, Eq. (2) can be solved using105

general numerical methods. The previous circulations advect out of the model in 1 time step. Initial transient in the simulations

are quickly advected out of the results time history. The mathematical model in Eq. (2) is an Autoregressive order one model.

Therefore, if the input is a stationary process, the output of the model is stationary also, based on this order and type of model.

The numerical experiment in section 3 will validate this analytic prediction and explore the statistical convergence to that limit.
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2.3 Polynomial Chaos Expansion110

Uncertainty propagation of mathematical models has been the subject of many studies in the last thirty years. One method to

propagate uncertainty is using models or surrogate models. A surrogate model is a cheap-to-run approximation of the actual

model (Kim and Boukouvala, 2019). Among the surrogate models, Polynomial Chaos Expansion (PCE) has gained attention

especially after the work of Ghanem and Spanos (2003) and Xiu and Karniadakis (2003). PCE is a method that can describe

the uncertainty in the input variable, and propagate it through the model using a basis of polynomials. This way, the uncertainty115

can be propagated through the model with a limited number of simulations (Tyson et al., 2015). In other words, PCE tries to

estimate the response of a mathematical or numerical model based on a series of orthogonal polynomials depending on random

variable ξ. The solution is expanded and described in stochastic space spanned by ξ and the associated polynomial basis set.

The main reasons to use PCE instead of other surrogate model methods are: a) with minimum computational effort one can

extract statistical properties from PCEs; b) PCEs are easy to integrate into deterministic linear and nonlinear mathematical120

models; c) One can build PCE surrogate model by treating the model as a black box (Kaintura et al., 2018; Sudret, 2015).

In order to make it easier to explain, lets assume Y (t) = M(t,ξ) where t is time and ξ is the random variable vector, M(t,ξ)

is our deterministic mathematical or numerical model and Y (t) is the output of the model. Therefore, the stochastic output of

the model Y (t,ξ) can be expanded as:

Y (t,ξ) =
∞∑

i=1

yi(t)Ψi(ξ) (4)125

where yi(t) are PCE coefficients at each time step and ψi(ξ) is a member of an orthogonal polynomial class. These polynomials

are orthogonal with respect to the probability space of random variable ξ. The selection of polynomial type is a function of

the probability distribution on the random variable ξ. For example, if a random variable ξ has a normal distribution, then a

Hermite polynomial is selected (Xiu and Karniadakis, 2002). The polynomials do not necessarily need to be selected from the

specific family of polynomials as long as they are orthogonal polynomials. For instance, Fluck and Crawford (2018) showed130

exponentials components work at best for their purposes. As the randomness in this study comes in the form of a uniform

distribution for φj , the surrogate model is based on the Legendre polynomials (Xiu and Karniadakis, 2003). In practice, the

PCE summation in eq (4) is truncated at a reasonably high order p. The main objective of the expansion in eq (4) is finding the

coefficients yi(t). There are two main approaches to solve this problem;

– the intrusive approach where the model is projected on the orthogonal polynomials using Galerkin projection (Ghanem135

et al., 2017). This approach requires building a detailed stochastic model from the deterministic model governing equa-

tions.

– the non-intrusive approach allows calculating the PCE coefficients from a series of deterministic model evaluations.

This approach considers the model as a black box and does not require any model modification (Sudret, 2007; Eldred

et al., 2008). There are two sub-categories to calculate the coefficients, namely simulation methods and quadrature140
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Figure 4. Two sampling methods drawing 512 samples from two uniform distributions using MC and Sobol methods

methods (Sudret, 2007).The presented work use simulation methods from the non-intrusive category to calculate the

PCE coefficients.

The intrusive approach was used by Fluck and Crawford (2016, 2018) to build a surrogate model on a lifting line and

BEM models. In this study, we used the non-intrusive approach to calculate the PCE coefficients. The surrogate model in

this work is built employing the Python toolbox Chaospy (Feinberg and Langtangen, 2015). Chaospy is a numerical tool145

for uncertainty quantification using different methods, including PCE. For this study, we used point collocation method to

calculate the coefficients. This method has been explained well in the literature. The interested reader is referred to (Xiu et al.

(2002),Ghanem and Spanos (2003),Sudret (2007)).

2.4 Random variable sampling

The randomness in the generated unsteady wind comes from the ten random variables in ξ described frequency components’150

phases φj in the reduced Veers model (Fluck, M. and Crawford, C., 2017). Based on the Veers methods (Veers, 1988) and in

TurbSim (Jonkman, 2009), the employed sampling method is a pseudo-Random Number Generator (pRNG) which is the basis

of MCs. However, the problem with this way of sampling for MCs is the lack of control on the random variables’ domain as

it may fill some voids in the domain, and may leave some of the empty (Niederreiter, 1992). Therefore, for the same reason,

the random domain may not be filled evenly. For this study, a low discrepancy Quasi Monte Carlo (QMC) sampling method,155

namely the Sobol sequence (Sobol’, 1967) is used to draw samples from the random variables. A customized random wind

generator based on the reduced Veers model used these samples to generate unsteady wind. The difference between these two

sampling methods can be visualized. In Fig. 4, the difference is illustrated by sampling two random variables of x1 and x2 each

uniform distribution for 512 sample points. The Sobol method distributes the points relatively uniformly over the full space.
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Erik Quaeghebeur
Did you test whether this actually makes a difference relative to plain pseudo-random sampling?



Polynomial Degree Number of Coefficients + 1 No of Required simulations Sims. Length to fit PCEs [s]

1 11 22 163.6

2 66 132 27.3

3 268 536 6.7

4 1001 2002 1.8

5 3003 6006 0.6
Table 1. The number of coefficients and required data points to calculate the coefficients for 10 random variables and collocation method.

This number of coefficients should be calculated for every time step. The last column demonstrates the simulation length for the fitted PCEs

as explained in Section 3.

2.5 Approach160

This study starts with running an extensive set of simulations based on the reduced Veers model and aerodynamic model

explained previously. As we have a large number of simulations, we can show that the circulation statistics with time are not

changing significantly, and therefore the process statistics converge as analytically expected. Knowing the process statistics

converge, we conclude only building a single surrogate model, i.e. for a single time-step or a few ones, would suffice for our

purpose. The accuracy of the PCEs depends on the polynomial degree. However, an increase in the polynomial degree pushes165

the problem further toward the curse of dimensionality. The number of required coefficients to build the surrogate model, and

the required number of simulations are presented in Table 1. The table shows we need a large number of simulations to build an

accurate PCE. Also, we want to limit the computational cost to 6 times 600s simulations (in total 3600s) to be competitive with

the common practice in wind turbine aerodynamic simulation. The combination of these requirements leads to a large number

of short simulations instead of a few long ones. To make this trade-off fair, we kept the cumulative length of the simulation at170

3600 seconds. This means that as the length of the simulations decreases, the number of simulations increases. Sobol sampling

is the base of the simulations setup. For every set of the required number of simulations in Table 1, the random phases are

drawn independently from the rest of the sets. For example, for the second row of Table 1, when we need 132 simulations,

132 unique samples of ξ drawn from the random domain. These ξ have not been used for other simulation sets. By having a

large number of data points at each time step, we built a few surrogate models in time and compared the results with the main175

database of the simulations. For the sake of accuracy, in this study, we do not build any surrogate model based on 1st-degree

polynomials.

Calling back Eq. (2), we recognized the model is an autoregressive model. For a stationary input, the sample statistics of

output converges at the rate of 1/
√
n, where n is the number of data points (in this case, 48000 data points for each sample).

Consequently, it is possible to estimate the statistical parameters of the output distribution by different methods; such as, using180

the maximum likelihood estimator Rao (2008). Then a question that arises is why we go through the complication of building

a surrogate model. The goal of the research we present here is building a surrogate model of an aerodynamic model whether
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Erik Quaeghebeur
using the

Erik Quaeghebeur
Say explicitly how this depends on the degree and the number of random variables. (Give the formula.)

Erik Quaeghebeur
Say why the required number of simulations is twice the number of coefficients. (This seems low.)

Erik Quaeghebeur


Erik Quaeghebeur
are drawn

Erik Quaeghebeur
Split this paragraph in three or at least two.

Erik Quaeghebeur
Recalling

Erik Quaeghebeur
Do you mean that the data in your database of simulations shows this?

Erik Quaeghebeur
This is very vague. Please state what statistics converge how (to what, with what speed).

Erik Quaeghebeur
Can you be explicit as to how the reduced-length output is used to derive the full-length one?

Erik Quaeghebeur
the otput

Erik Quaeghebeur


Erik Quaeghebeur
Normally, I am used to sample meaning the same thing as data point. Here, I guess sample refers to the value of the output at one time instance. In any case, please avoid using sample in this way.

Erik Quaeghebeur
Which?



the aerodynamic model is simple or complex. We choose this simple aerodynamic model for the ease of simulations; hence,

the simplicity of the aerodynamic model does not compromise the validity of the method.

3 Results185

As mentioned before, in Section 2.5, we started by running a broad set of reference simulations. For this case, we ran 48000

simulations for a 5m/s wind speed and turbulence intensity of 0.16. The wind generator code took 48000 samples from a

10 dimensional uniform distribution domain based on the Sobol sampling method. Each sample is a 10 by 1 vector of ξj ,

and we have 48000 of them. 48000 wind speed histories were generated and simulations on the aerodynamic model run

with a time step of 0.1s for 600s (in total 6000 time steps per simulation). This simulation setup builds a database for the190

investigation, and to show that the process distributions at each time step changes are insignificant. The histogram at each

time step was calculated and normalized. Afterwards, using the Hellinger distance formulation, the distance between each

histogram to the other histograms (5999 other histograms) was calculated and stored in a matrix. Each row of this matrix

shows the difference to the histogram at one-time step compared to the other ones. Therefore, this is a symmetric matrix with

zeros on the diagonal. What is important is the maximum of all of the data in the matrix; in Figure 5, we show the max of the195

Hellinger distance at each time step. The Hellinger distance is a normalized metrics and the distances shown in the percentage.

The plot shows a comparison of all the 18 million possible combinations to calculate the Hellinger distance; the difference

between the distributions does not exceed 2.42%. Therefore, we can conclude that building a surrogate model on a limited

number of time steps is enough, and it is not necessary to build a surrogate model on every time step as predicted by the

aerodynamic model form.200

Referring to the varying number of simulations with respect to PCE degree in Table 1, the first 100s of the simulations is

plotted in Figure 6. These simulations are input for building the surrogate models. The number of samples that are drawn from

the 10 dimensional random space is equal to the number of simulations. The employed sampling method is Sobol. This manner

is similar to the way that we run our reference case with 48000 simulations.

Since the statistics of the simulations are essential for this study, for the presented simulations in Fig 6, one can calculate205

mean and standard deviation and their propagation in time. Figure 7 shows these values for the first 100s of the simulations and

compares it with the reference case mean and standard deviation propagation in time. Figure 7 shows by visual inspection the

mean value for these number of simulations is close to the reference case; however, the standard deviation is not yet convergent.

As it may not be clear, the plots in Figure 7, Figures 8 and 9 present the mean and standard deviation of the reduced set

of simulations histograms in comparison with the reference case. In other words, these plots show the histograms of the 6000210

time steps mean and standard deviations. In Figure 7, it seems the mean and standard deviation values are very similar to the

reference case; they have a wider distribution.

Referring to the discussion at the beginning of this section, for the reference case, the changes in statistical properties at

each time step are minimal (Figure 5). Therefore, a few accurate surrogate models would suffice to emulate the aerodynamic

simulations. By this assumption, building surrogate models is more feasible from a computational cost point of view. As215
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Erik Quaeghebeur
I disagree a priori: it may well be that the method works for this simple model, but not for more complicated ones. There is no indication that it would work. You would need to substantiate this claim. This is all the more so important, because you rely on a feature of this setup (small Helliger distance), which is not guaranteed to be present in more complex models.

Erik Quaeghebeur
Split paragraph.

Erik Quaeghebeur
This is too vague. The distributions for which random variables? What is the criterion for significance and how did you evaluate it?

Erik Quaeghebeur


Erik Quaeghebeur
are shown

Erik Quaeghebeur
of Γ_0(t)?

Erik Quaeghebeur
What does that mean physically? That Γ_0 is not appreciably affected by the variations in u_∞? Also, what I am missing here is a similar look at the input distributions: what does the picture look like for u_∞ instead of Γ_0?

Erik Quaeghebeur
But can't you similarly conclude that it is in fact unnecessary to actually perform the full simulation? So what does that mean for the relative computational advantage of using a surrogate?

Erik Quaeghebeur
?

Erik Quaeghebeur
, but actually

Erik Quaeghebeur
I think you may be comparing apples and oranges here. Isn't it possible that the the process dynamics may cause values for later times to have tighter distributions. So shouldn't you compare with first 100 s of the reference, instead of all? There are the transients, perhaps, and you haven't shown that the time constant is really insignificant relative to the 100 s considered here.

Erik Quaeghebeur
evolution over

Erik Quaeghebeur
There is some repetition in this section. For example (there are other instances) regarding the use of shortened simulation runs for learning the higher-order PCEs.

Furthermore, the section could benefit from more structure, such as subsectioning.

Also, some more systematic quantitative overviews would be informative, for example concerning time efficiency and accuracy, so that the trade-off between both (if it is there), becomes visible.
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Figure 5. Maximum of Hellinger distance at each time step. The upper and lower bounds for the the maximum of the Hellinger distance are

indicated.

explained in Section 2.5, we fit surrogate models on a large number of short simulations instead of a few long ones. The

number of simulations is the same as mentioned in Table 1, and the length of the simulations that the surrogate model is built in

the last column. We used those shorter simulation lengths to build the surrogate model, as visualized in Figure 10. The vertical

line shows where the cumulative simulation length is 3600s. Specifically, the vertical line shows the cut off for PCE building.

Using Chaospy (Feinberg and Langtangen, 2015), we fit PCEs on the length of the simulations indicated in Table 1. Namely,220

for every time step, we create a surrogate model based on the number of simulations and the polynomial degree by calculating

the coefficients of the polynomials (Eq. (4)). In Figure 10, the calculated mean value and standard deviation from the reference

case are compared with the estimated ones from the PCEs computed from the PCE coefficients directly. The results in Figure

10 show the PCEs fit for four polynomial degrees; P on each plot indicate the polynomial degree. As the polynomial degree

increases, the fit to the reference case improves, which is expected. Although it was not necessary, for polynomial degrees 3 to225

5, the PCEs are fit to the whole 10s of the simulations to have an acceptable sample size for comparison.

The goal of building surrogate models is to create an emulator that we can run quickly and can provide statistics for the simu-

lations without actually running the simulations. To test the accuracy of the surrogate models, initially, we ranked the surrogate

models based on their mean values and standard deviations. Then we selected the fist, middle and the last surrogate models (3
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Erik Quaeghebeur
first



Figure 6. The first 100s of the time series used to build the surrogate models with polynomial degrees 2-5 respectively

surrogate model for each polynomial degree, in total 24 surrogate models) and took them thorough MCs 106 times. Essentially,230

we took random samples from our 10 dimensional random domains for 106 times and inserted those in the PCEs (Eq. (4)).

Afterwards, we compare the histogram of those with one arbitrary time step of the reference case of 48000 simulations.

For each polynomial degree, regardless of the surrogate model location in the time series, the difference between the refer-

ence case and the MCs runs results change slightly. In other words, the difference between the MCs result histogram and the

reference case histogram was only dependent on the polynomial degree, and not the position of the surrogate model in the time235

series as expected with the stationary process.

For the sake of space, we only show the MCs results for one set of four surrogate models. Figure 11 compares the his-

togram of 1 million MCs for the middle mean ranked surrogate model to the reference case at one arbitrary time step for four

polynomial degrees.
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Erik Quaeghebeur
Plotting all the simulations is not that enlightening. Consider plotting, e.g., mean, min/max bounds, standard deviation, and an example signal instead. Actually, that means to just drop these plots and add the min/max bounds and an example signal to Fig. 7.

Erik Quaeghebeur


Erik Quaeghebeur
Clarify what you mean by this.

Erik Quaeghebeur
Could you give a measure describing the correspondence between the distributions from the model and the surrogate? (You used Helliger distance before for comparing distributions.)
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Figure 7. The first 100s of the time series mean and standard deviation bounds compared with the reference case

Figure 11 also shows the evaluation time for the 106 MCs. As the polynomial degree increases, the evaluation time for the240

MCs increases. To give a sense of the efficiency of the results, one million time steps is almost equal to 167, 600s simulations.

As we have seen before, the extracted statistics from a small number of simulations do not represent the actual statistics and

change enormously with progress through time. The reference case computation time was around 4 hours. Therefore, almost

7.5 minutes of emulation time to have statistical properties close to the reference case is justifiable. We performed all the

simulations and emulations on the same computer. From a computational cost point of view, a combination of running 6006245

simulations for 2s, building surrogate models on each time step, and then running the MCs for 106 times, is cheaper than

running 48000 simulations in order to have smooth statistics.
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Erik Quaeghebeur
?

Erik Quaeghebeur
So, essentially, surrogate building time vastly dominates the emulation time. But running the simulations only takes about four times as much time. That is not that big of a difference. Can you justify whether this is enough to justify the surrogate? 

Also, I don't see time required for building the surrogates from simulations mentioned explicitly. How do things look if that is added to the mix?
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Figure 8. Mean values histogram compared with the reference case for 6000 time steps. The binning on the horizontal axis changes to

accommodate the mean value range.

4 Conclusion

This paper is our initial attempt to build a surrogate model of time marching aerodynamic simulations. The form of the surrogate

model that we used in this paper is a PCE. In Section 2.5, we explained the simple aerodynamic model used for this study. Also,250

we briefly described the method that we are using to build the PCEs. One major challenge with the building of the surrogate

models is the curse of dimensionality, which we tried to tackle by using a reduced Veers model.

We showed how by increasing the number of simulations, the statistics of the results converge and do not change in time. As

a result of this, building a few accurate surrogate models for a small length of time would suffice for our purpose. Therefore,

to build an accurate surrogate model, we can reduce the simulation length significantly while increasing the number of simu-255
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Erik Quaeghebeur


Erik Quaeghebeur
you tackled it

Erik Quaeghebeur
Why not go further: if the statistics are time-invariant, only one time step is needed, no? In other words: time loses its meaning. This point should be discussed: why still do the effort you have done?

Erik Quaeghebeur
But this seems to be very model-dependent and your model may not be representative of what is actually needed in a real-life setting, no?
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Figure 9. Standard deviation histogram compared with the reference case for 6000 time steps. The binning on the horizontal axis changes to

accommodate the standard deviation value range.

lations. In the results section, we showed the surrogate model using a fifth-order polynomial built on 6006 simulations with a

length of 2s gives us sufficiently accurate results in large MC runs to obtain output statistics.

The aerodynamic model is straightforward; therefore, the initial transient was less than 2 seconds (in fact 0.1s equal to one-

time step). However, for future work, a smart way to deal with initialization time is essential; otherwise, increase the number

of simulations would be very expensive. For example, if the required initialization time is 60s, and we want to increase the260

number of simulations from 6 six hundred second simulations to 6006 two-second simulations, we are not doing any good in

terms of computational cost. Aeroelastic and longer wakes will be studied for this challenge.

Another challenge is the practical application of this surrogate model. The surrogate model that we build in this study is one

or a few time steps each efficiently the same due to stationarity. If we want to build a time series from this surrogate model,

we have to sample the 10 dimensional random domain for the number of time steps to have a time series to post-process.265
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Erik Quaeghebeur
A transient is always ‘initial’, no?

Erik Quaeghebeur
How did you obtain this time constant?

Erik Quaeghebeur
ing

Erik Quaeghebeur
I thought you had done that. Isn't that at the basis of what is shown beyond the Cum Sim Length line in Fig. 10?

Erik Quaeghebeur
It is not clear to me what the procedure is you have in mind.
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Figure 10. The mean and standard deviation comparison from the reference case (48K simulations) and extracted values from PCEs. The

number of simulations used to build the PCEs and polynomial degree P are mentioned on the plots. The cumulative length of 3600s is shown

with the vertical line.

However, the current method will miss the auto-correlation in the surrogate model result. This is important if we, for example,

want to calculate fatigue loads from the surrogate model. This will require a surrogate form capable of resolving the correlation

between time-steps. Fluck and Crawford did this previously for intrusive PCEs of an aerodynamic model.

It will be necessary to test the assumption that the sample statistical properties of the signal are not changing in time for the

reference case against a nonlinear model. The current work uses a simple aerodynamic model, and therefore this assumption270

may not be valid if the model is a nonlinear or more complicated aeroelastic model.

For future work, we want to test the possibility of truncation of the polynomials in order to make the MCs of the surrogate

model more cost-efficient. Also, using non-conventional polynomials, such as what Fluck and Crawford (2018) did, might

result in a more efficient polynomial. In this study, we used the collocation method for calculating the PCE coefficients. There
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Which paper?

Erik Quaeghebeur
Indeed, and that is an important issue I see in the method you describe: it is valid for stationary output processes of linear systems, but there is no indication that it will still (sufficiently) work for nonlinear models

Erik Quaeghebeur
There is no indication this was needed. Relative to the other computational requirements (PCE construction), the emulation was already insignificant.

Erik Quaeghebeur
What do you mean by this? (You already have control over the order of the polynomials, so this must be something different.)

Erik Quaeghebeur
Why do you think so? Please justify.
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Figure 11. Surrogate model one million MCs vs the reference case

are more advanced quadrature and sparse methods (Sudret, 2007) that may need a smaller number of simulations at each time275

step using sparse techniques. Therefore, it is necessary to employ them in future studies. Finally, as mentioned before, this is

an initial study with a simple aerodynamic model. In future work, we want to implement the method on a BEM or Lagrangian

Vortex Models (LVM) and use commercial wind turbine simulation packages such as FAST to test the approach.
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