
We are grateful to the editors and reviewers for their time and valuable comments on our 
manuscript. We have carefully considered every comment and suggestion and have provided 
detailed responses to all the comments. The reviewer comments are displayed in bold font, with our 
responses below in non-bold font. A tracked changes version of the manuscript has also been 
included below. 

Interactive comment on “Characterisation of the Offshore Precipitation Environment to Help 

Combat Leading Edge Erosion of Wind Turbine Blades” by Robbie Herring et al. 

Anonymous Referee #1 

The paper contributed by Herring et al. from the title appear relevant for the journal. The offshore 

environment precipitation climate is a relevant research topic in perspective of leading edge 

erosion of turbine blades. The paper focuses on the meteorological side of this topic and in 

particular, compares the new drop size distribution data set versus the Best model published in 

1950. 

Thank you for the positive feedback. 

There are serious shortcomings in the paper. These can be categorized into 

1) missing background information and discussion on precipitation meteorology. 

This paper evaluates the Best DSD, which is used in the current prominent leading edge prediction 

models and evaluates whether it is suitable to be used in the offshore environment. Further 

background information on lifetime prediction modelling and the relevance of the research to 

industry has been included in Introduction. This serves to demonstrate the importance and value of 

the subsequent analysis. The following has been included:  

“The aim of the industry is to develop a methodology that can predict the lifetime of a protection 

system on a wind turbine from rain erosion tests. The DNV-GL project COBRA aims to address this, 

and Eisenberg proposes using the Springer model. Due to the lack of an offshore dataset, the project 

uses the onshore Best distribution published in 1950 (Best, 1950).” 

The precipitation methodology discussion throughout has been expanded to include a number of 

studies (Montero Martinez, 2016, Johanssen, 2020, Gossard, 1992, Brandes, 2002). We believe that 

this apparent shortcoming is perhaps due to the aim of the manuscript not being clearly explained. 

This has been addressed in the above changes to the Introduction.  

2) insufficient presentation of the data processing, quality control and details on the instruments 

used 

Thank you for pointing out this shortcoming and your detailed comments below. We have expanded 

the Section 4.1 Quality Control to present the data processing and quality control in more detail, as 

well as enlarge the reference base. 

Further information has been provided on the instruments used to provide the reader with greater 

knowledge about their setup and their method of recording precipitation. The following has been 

added in Section 3 Offshore Measurement Technique: 

“Each disdrometer consists of two photodiode sensing heads, one near-IR diode laser head and one 

CS215 temperature and humidity sensor. The sensor heads are positioned 20° off-axis to the system 

unit axis, introducing a time-lag between the two sensors that enables the fall velocity and size of 

particles to be calculated.” 



3) statistical significance testing of the results. 

Thank you for this comment. Ultimately, the final statistical check is how well the proposed DSD fits 

the offshore environment, which has been presented in Figure 10. A statistical R2 check is completed 

in Figure 11 and the proposed DSD displays very good correlation to the offshore data illustrated by 

R2 values greater than 0.95 across all precipitation intensities. To assess the robustness of every step 

could be a paper in its own right and it is only necessary to assess the endpoint. It is noted in the 

manuscript that the slight reduction in R2 at higher intensities can be attributed to the reduced 

amount of heavy and violent precipitation recorded. 

It is recognised in Section 5.4 Limitations that the DSD presented is only applied to the one set of 

offshore data and to validate it, the distribution needs to be applied to another set of offshore data. 

As far as the authors are aware this is the only offshore distribution that is presented, and it is hoped 

from publication that others will be able to evaluate the DSD against their data. Offshore data is 

being collected at ORE Catapult’s Levenmouth offshore demonstration turbine to validate the DSD. 

4) relevance or implication of the new ‘constants’ and how these will influence assessment of 

precipitation in regard to leading edge erosion. 

Thank you for pointing out this shortcoming and for the relevant detailed comments below. We have 

included the section in the manuscript: 6 Impact of DSD on Leading Edge Erosion Lifetime Prediction. 

This section assesses the impact of the presented DSD against the Best DSD in terms of lifetime 

prediction. It is found that the Best DSD underestimates the severity of the offshore environment 

and the inclusion of the offshore DSD reduces the lifetime of a protection system by 23.7%. 

5) discussion of results is missing and the conclusion is a confusing mix of motivation and brief 

mention of some analysis results. 

Thank you for this point and your follow up points on the conclusion. A discussion of the results in 

terms of leading edge erosion has now been expanded on in Section 6 Impact of DSD on Leading 

Edge Erosion Lifetime Prediction. The below changes have been made to the conclusion to ensure 

that the major part of the conclusion is focused on the key findings of the paper. We believe that 

this is reflected in lines 339 to 343, where the key finding of the paper – that the Best DSD is 

unsuitable for use in offshore lifetime predictions – is clearly stated. 

“The implication of the offshore DSD was evaluated with the Springer model where it was found the 

inaccuracies in the Best DSD greatly underestimates the severity of the offshore environment in terms 

of leading edge erosion. As a result, the Best DSD is not a suitable distribution to use in lifetime 

prediction models for protection systems positioned offshore and therefore predictions determined 

using it are unlikely to be accurate.” 

The title does not reflect the content of the article. There is no analysis of or description of how 

the observed rain data connects to combatting leading edge erosion. 

Please see our response to comment “4) relevance or implication…”. The manuscript has been 

updated to include greater analysis on the relevance between the observed dataset and how it helps 

to combat leading edge erosion. 

A paragraph explaining the benefit of this dataset and its role in combatting leading edge erosion is 

presented in Section 6: 

“This dataset can be used to help to inform the lifetime of leading edge erosion protection systems 

installed offshore, helping to ensure maintenance is conducted early and further leading edge erosion 



can be combatted. The dataset can also be used to inform droplet impact models and rain erosion 

testing with the greater understanding of the environment facilitating the development of improved 

protection systems.” 

These serious shortcomings are reason for rejection. Below is given detailed review, in case the 

authors choose to improve the article and re-submit to a hydrological or meteorological journal. 

Thank you for your review and opinion on this. However, we must disagree and believe that the 

manuscript is suitable for publication. We have listed below the criteria against which Wind Energy 

Science assess manuscripts and outlined the reasons for why this manuscript meet them. 

1. Scientific significance 

As is pointed out by both reviewers, leading edge erosion is a significant challenge for the offshore 

wind industry. Currently, there is a lack of knowledge of the offshore environment and the amount, 

type and intensity of precipitation has not been quantified (Hasager, 2020). The manuscript is novel 

and presents the first offshore precipitation dataset, addressing the shortcomings and meeting a 

clear research need. The aim of the industry is to predict the lifetime of a protection system from 

rain erosion tests. This is being pursued in the DNV-GL joint industry project COBRA. In this 

manuscript, further information has been included to outline how the offshore dataset can be used 

to inform the lifetime prediction models. The results presented offer substantial new data that can 

be used by other researchers to further develop models and validate their results, greatly reducing 

the uncertainty in the offshore precipitation environment. 

2. Scientific quality 

We acknowledge that the quality control section was too brief, and this has been expanded on to 

provide more detailed information about the scientific approach and applied methods. The 

approach taken to develop a general droplet size distribution (DSD) equation is clearly outlined and 

every step illustrated with the appropriate equations and figures. A statistical check against the 

offshore environment has been completed to evaluate the accuracy of the DSD. Therefore, there is 

sufficient information provided so that other researchers could repeat this work. 

3. Presentation Quality 

The scientific results are presented clearly and concisely, with appropriate figures included to outline 

the key results and methodology. Two slight suggestions are made to improve the readability of the 

figures and these have been updated in the manuscript. As is pointed out by Anonymous Reviewer 

2, the manuscript is well structured with a clear flow from i) Introduction and problem, ii) 

methodology, iii) Results, iv) Discussion in terms of its application to leading edge erosion and v) 

Conclusions. No comments were made on the quality of written English by either reviewer. 

 

As a result, the authors believe that this manuscript meets the review criteria and that the 

manuscript is suitable for publication. 

We have addressed your further comments below. 

Line 29. It says that Weather radars are widely used to predict the offshore precipitation 

environment. Please provide references to this and substantiate the entire paragraph on the 

background to your study. The text is short and unclear. 



We are unable to publish any results in respect to the weather radars. The authors understand your 

comments and, as we unable to provide more information on this, have removed the reference to 

validating weather radars. The manuscript provides information on how the offshore dataset can be 

used to improve lifetime prediction methods and that is the focus on the manuscript. This is clearly 

stated in lines 30 to 33 and has been expanded on in Section 6 (see our response to comment “4) 

relevance or…”), bringing the paper into line with its title and abstract. 

Line 34. It says that Kathiravelu et al. 2016 find Best to be outdated. This is not clear. The 

referenced work is a review on drop-size distribution measurement techniques during time. Along 

this line, it is noted that the sensor used in the current study is not in the list of Kathiravelu et al. 

The reference Agnew 2013 is mentioned and referenced as raindrops below 0.8 mm are slightly 

underestimated. Is that the only study available using this sensor? It is relevant to provide insight 

to the type of data collected versus other relevant recent data sets. The methods from 1950 are 

obviously not in use any more so the details on this appear out of scope for the current 

investigation. 

The line points out that the manual measurement techniques used by Best – namely the stain 

method and the flour pellet method – are outdated and inaccurate, not that the Best DSD is 

outdated. Kathiravelu states on page 2 of the respective paper that “These very early, functional 

techniques were found to provide inaccurate results”. The second reference to Kathiravelu in the 

manuscript is in respect to optical disdrometers, as is stated at the start of the sentence on line 70. 

Kathiravelu reports on page 8 of the same paper that “Optical technologies [] are non-intrusive rain 

drop techniques. These methods do not influence drop behaviour during measurement and have 

successfully resolved drop break up”. 

Thank you for pointing out the shortcoming in the review of other studies using the disdrometer. 

This has now been expanded on between lines 79 and 91 in Section 3 Offshore Measurement 

Technique. 

Whilst the methods from 1950 are not in use, the DSD resulting from them are. In terms of leading 

edge erosion, the leading lifetime prediction models (Eisenberg 2018, Springer 1979) implement the 

Best DSD. This point has been made clearer in lines 30 to 36. Therefore, it is appropriate to include a 

summary of the methods used by Best to provide background to the DSD which is utilised. 

The critical perspective on the Best function need a review of existing literature on this subject. 

This is missing from the article. 

The relevance of the Best DSD has been explained more clearly in the Introduction now. Lifetime 

prediction models currently implement the Best DSD to determine the damage caused by leading 

edge erosion. Critical studies of the Best DSD are all focused onshore. This study aims to evaluate its 

appropriateness offshore and therefore it is difficult to draw comparisons between any results from 

other studies. The fact that the Best DSD is implemented onshore and there may be more 

appropriate DSDs for onshore is outside the scope of this study. 

The drop size distribution is observed offshore in the North Sea. It would be relevant to cite and 

discuss other offshore drop size distribution data sets, e.g. from research ships and other offshore 

sites (small islands), as well as coastal and land observations of drop size distribution in the UK. 

This information would be relevant as background information and introduction. 

To the authors knowledge this is the first study into the offshore precipitation environment that has 

been published and therefore the results are completely novel. Hasager states that “Quantitative 



knowledge on rain events at offshore wind farm sites is lacking in Denmark and elsewhere.” 

(Hasager, 2020). Whilst coastal studies exist, we do not believe that they are relevant to this paper 

and introducing them would have little benefit as no effective comparison could be completed. The 

aim of the paper is to evaluate the Best DSD, which is currently used in lifetime prediction 

methodologies, against the offshore environment. At most, the introduction of another onshore 

dataset (that is not currently used by the wind industry) could show that it predicts the offshore 

environment better than Best. At worst, it would serve to confuse and dilute the message of the 

paper. 

Does a weather radar cover the offshore site already with rain information available? In case, yes 

it would be interesting to have a brief background on this and the methodology in use (assuming it 

is Best model). Please add references. 

Please see our response to comment “Line 29. It says…”. 

Line 62. It says that two disdrometers are mounted, one at 25 m and the other at 55 m. Which of 

the two data series is presented in the current work? In the quality control section, it would be 

interesting to understand if both instruments observe similar precipitation and if quality check 

was done comparing the two time series. Looking at the photographs it appears that the flow field 

is different at the two heights. In case wind speed data are available it would be relevant to see if 

there is systematic influence as function of wind speed and wind direction to drop size and fall 

velocity between the two instrument’s observations. One instrument is positioned vertical and the 

other horizontal. Why? 

In respect to quality control, please see our response to comment “2) insufficient presentation…”. 

Whilst the investigation into the wind speed would be interesting, this has not been published due 

to proprietary reasons and is outside the scope of this manuscript. A follow on paper considering 

these aspects is in discussion. 

On quick glance, it does appear that the disdrometers are orientated differently, however, both 

instruments have been installed in the same orientation. Regretfully, due to the height and the fact 

that the disdrometers are offshore, it is challenging to obtain a better camera angle to display this. 

Table 1. Does this table include both liquid and solid precipitation, raw data before quality 

control? Quality control is mentioned in subsequent section, so this is confusing. Are only data 

presented after this section quality controlled? 

Thank you for pointing out this shortcoming in the manuscript. We acknowledge that this was 

confusing and have moved Table 1 to line 140 and have updated line 132 to include “quality 

controlled” to note that the data is after quality control. 

Line 81. The quality control appears too limited. It is recommended to ensure detailed quality 

control before subsequent analysis (Hasager et al. 2020 Renewable Energy). In particular, the 

hydrometeor-type frequency you present lines 114-137 was that included in the quality control? 

Did you use information on temperature to quality control hydrometeor type? 

Please see our response to comment “2) insufficient presentation…” 

Figures 2 and 3. Do they include solid precipitation?  



Both figures include solid precipitation. All precipitation is included up to the end of Section 4. At the 

start of Section 5 solid precipitation is removed. This is made clear by line 208 which states “Only 

data where rain particles were the modal hydrometeor were examined.” 

Lines 101-103. The seasonal breakdown of precipitation could be discussed later on the discussion 

section, e.g. stratiform and convective events, and the influence to drop size distribution and rain 

intensity 

Following your detailed comments, the paper focus has more clearly shifted to the implications of 

the dataset to lifetime prediction. Whilst it could be interesting to go into further detail on seasonal 

breakdowns and stratiform and convective events, the authors believe that is outside of the scope of 

this study. 

Line 108-110. The data is for one specific year. Annual variations are to be expected. So minutes 

and hours “a year” is misleading. Was this a wet year or a dry year? 

The average rainfall for the region is 650 mm a year. Therefore, this was a relatively dry year and the 

following line has been added at line 137 to present this information to the reader: 

“Including the missing data provides an annual accumulation of 500 mm, which is lower than the 650 

mm average annual precipitation reported in Northumberland (WeatherSpark, 2020), indicating that 

the measurement year was a relatively dry year for the area.” 

With the inclusion of this line now serving as a reference, we believe that it is of interest to include 

the number of minutes and hours a year to demonstrate the point that heavy and violent rain 

accounts for a low percentage of the rainfall and that a turbine would likely experience very little 

before erosion occurs.  

Line 115. please refer to work on hail and leading edge erosion, e.g. Letson et al. 2020 WES, 

MacDonald et al. 2016 Wind Energy. 

Letson and MacDonald present very interesting work on the hail environment. However, in this 

dataset, ice pellets, hail and graupel consisted of only 0.94% of the hydrometeors, with very few 

events where ice pellets were the modal hydrometeor and none where hail was. Therefore, using 

the results from this study, it is challenging to state with confidence the impact of hail and this has 

not been considered. This is something that we will continually revisit as the disdrometers collect 

more data. 

Line 115. In Bech et al., 2018 the rain intensity data were deduced from Jones and Sims, 1978, 

Maritime-temperate rain intensity frequency data. According to this data, a rain intensity of 10 

mm/hr is exceeded approximately 0.06% of the time. This was rounded up to 0.1% in the 

presented model. 20 mm/hr was exceeded 0.02% of the time, and 50 mm/hr was exceeded 

0.002% of the time. These numbers seem to be same size of order as what is reported in the 

present paper in review. Still the model and analysis presented in Bech et al. 2018 showed, that 

these few hours of heavy rain could cause the majority of damage observed on WT blades. 

However, the kinetic energy impact damage model probably over-estimates the effect of the 

droplet size, and thus the effect of rain intensity. 

How the results are interpreted depends on the damage model used. The dominant industry model 

is the Springer model (Springer 1979, Eisenberg 2018) and not a kinetic energy model. This has now 

been made clearer in the Introduction. When the Springer model is applied to these results, most 



damage would be caused by the low and medium intensities. “When considering the Springer 

model,” has been added to the start of this line to clarify the damage model assumed. 

Longitudinally overtime the question of whether erosion is driven solely by high intensity rain can be 

related to erosion data to unequivocally answer the question – that is if industry data can be at all 

presented given its highly confidential nature. Currently, the industry only uses the Springer model 

and therefore this is the appropriate damage model to assume. The point has been made to 

highlight that there is uncertainty around this by the inclusion of the word “suggests”. 

Line 118. A high amount of ‘error’ and ‘unknown’ occur (17.93%). It would be interesting to know 

if both instruments suffer ‘equal’ amounts of these and you could do ‘gap-filling’ from one 

instrument to the other, or find out what might be happening. In Table 1 it looks as July has most 

missing data. The total says 82.89% data that gives 17.11% missing data. Please clarify the 

numbers. 

With respect to the gap filling and clarifying the numbers, please see our response to comment “2) 

insufficient presentation…”. To further clarify the numbers the sentence has been updated in line 

179 to “‘Errors’ and ‘unknown’ particles accounted for 17.93% of the hydrometeors recorded. These 

may be caused by insects, particles between states or equipment failures and have been ignored in 

the subsequent analysis, with any records where they were the modal hydrometeor removed.” 

Figure 5. It is difficult to see the difference between snow grains and snowflakes with the colours 

chosen. Maybe use variation (not all open circles). It would be relevant to discuss the findings. 

How do you find your results are? As expected and reported elsewhere in literature? Give 

references in the discussion of results. 

Thank you for pointing this out. Figure 5 has now been updated to improve the visibility of the snow 

grains. Instead of open circles for all the data, each hydrometeor has been assigned a different 

marker and the colour of the snow grains has been updated from cyan to black. 

The data in the plot has been compared against the literature models for the terminal velocity of 

water particles and the results were in line with those predicted by Gossard (Gossard et al., 1992 

and Brandes (Brandes et al. 2002). The following has been included to reflect this: 

“The presented velocities for water particles are in line with those predicted in models by Gossard 

(Gossard et al., 1992) and Brandes (Brandes et al., 2002). The data presented in the above figure is 

used in the subsequent analysis to estimate the number of droplets that impact the blade per 

second and inform lifetime prediction models.” 

Figure 6. A suggestion is to use four different colours/symbols and put data into one graphics. This 

would enable more clear reading of the data set and make it possible to see the lines be different. 

Furthermore, statistical test on significance of your results are necessary to draw conclusions. This 

also goes for Figs.7 and 8. 

Thank you for the suggestion. We have updated Figure 6 to include the data into one graphic with 

different colours and symbols distinguishing them. 

In respect to the comment regarding the statistical significance of the results, please see our 

response to comment “3) statistical significance…” 

Table 4. You could include a row with the constants from Best 1950, i.e. merge table 3 and table 4. 



Table 3 presents the non-seasonal offshore DSD constants, whilst Table 4 presents the seasonal 

constants, with no mention of the Best constants. However, it is a good idea to merge Table 3 and 

Table 4 and this has been completed in the revised manuscript. The Best constants have a slightly 

different form (i.e. n instead of N and q) and therefore it sadly would not work to include them in 

the merged table as well. 

Line 207. It says “Not appropriate to validate offshore weather radar data against Best DSD”. It is 

unclear what you mean. Please clarify. It would be relevant to include reference to the work you 

have in mind stating this sentence, and explain the implication.  

Please see our response to comment “Line 29. It says…”. 

Line 215- 216. A section with discussion of the results versus state of the art research on the topic 

drop size distribution is necessary to include in the paper. It is also advisable to include 

perspectives on the drop size distribution and the impingement to turbine blades. 

Please see our response to comment “4) relevance or implication…” 

It is briefly mentioned (lines129-130) but not elaborated further. This would be a relevant 

perspective to discuss in the discussion section. The title of the paper says that you are studying 

leading edge erosion but you do not bring your data set into any perspective on this. So you will 

have to include that otherwise the title of the paper is misleading, and will need modification to 

reflect the content of the paper properly. 

Please see our response to comment “4) relevance or implication…” 

Line 227. It says “The offshore DSD aligned well with the data”. It is unclear what is meant. Please 

clarify. 

This point is in relation to the statistical significance of the offshore DSD against the offshore dataset 

shown in Figure 11, where consistently high R2 values were recorded. To clarify this, the line has 

been updated to “A statistical R2 analysis found that the offshore DSD aligned well with the data, 

whereas the Best DSD significantly overestimated the diameters of droplets.” 

The conclusion is a mixture of background, very brief sentences on the actual work, and very long 

part on future perspective. It would be beneficial to ensure the conclusion major part is related to 

the learnings from the current research. 

Please see our response to comment “5) discussion of…” 

List of references It is too short with lack of relevant meteorological literature. 

Thank you for pointing out this shortcoming. The inclusion of further literature on the use of the 

disdrometer in other studies and quality control has greatly increased the length of the literature 

review and the number of meteorological literature. 

  



Interactive comment on “Characterisation of the Offshore Precipitation Environment to Help 

Combat Leading Edge Erosion of Wind Turbine Blades” by Robbie Herring et al. 

Anonymous Review 2 

This paper is significant and supplements a research topic treated by different authors to model 

and predict leading edge erosion of wind turbine blades. It is dedicated on a critical industrial and 

scientific challenge for wind industry nowadays. The paper is focused on the offshore precipitation 

environment characterization with the motivation of offering appropriate offshore droplet size 

distribution (DSD) as erosion lifetime predictions input data. The work also ponders results with 

particular approaches found on the literature. 

Thank you for the positive assessment. 

The title and the abstract point out well the intention of the manuscript but the work lacks valid 

analysis or discussion in terms of its application on leading edge erosion lifetime modelling. I 

suggest specifying on the paper title its focus on the accuracy for the quantification of droplet size 

distribution in offshore conditions, which is an important improvement of great value for the 

scientific and industrial community. The paper does not propose any connection of the severity of 

erosion through the expected lifetime, even when its apparently focused on such influences. I 

recommend positively to complete the work on this analysis for possible scientific or industrial 

use. 

Thank you for highlighting this. We have included the section in the manuscript: 6 Impact of DSD on 

Leading Edge Erosion Lifetime Prediction. This section applies the presented DSD in lifetime 

modelling, assesses its impact against the Best DSD and discusses the implications. It is found that 

the Best DSD underestimates the severity of erosion in the offshore environment and the inclusion 

of the offshore DSD reduces the lifetime of a protection system by 23.7%. With the inclusion of this 

section, we now believe that the paper title aligns with the work presented. 

The document is well structured (many other possibilities could be also possible) and states clearly 

the scope and methodology. Introduction and references discussion improvement is necessary in 

order to set the limits of the specific offshore application. Literature reviews of well-known Best 

model is used to pointing out the weakness or strengths of other authors proposals, but one can 

achieve valuable recommendations and likely directions for the essential improvements of the 

comparing results. The authors refer with assessed particular experimental data different results 

comparing with Best model and their proposed offshore DSD model. In order to categorize the 

results as a new model definition to be used in lifetime prediction methodologies, a unique 

location case and a unique year-season is used. I recommend completing the work on the 

statistical validation of testing results with other raw data sources comparing the presented model 

with the original one and the reasons for such extensiveness and validation. 

Thank you for the feedback on the structuring. 

Improvements to the introduction have been made to consolidate the aim and relevance of the 

study to lifetime prediction modelling. The following paragraph has been included: 

“The aim of the industry is to develop a methodology that can predict the lifetime of a protection 

system on a wind turbine from rain erosion tests. The DNV-GL project COBRA aims to address this, 

and Eisenberg proposes using the Springer model. Due to the lack of an offshore dataset, the project 

uses the onshore Best distribution published in 1950 (Best, 1950).” 



 

The number of references and their discussion has been expanded to include a number of relevant 

studies (Montero Martinez, 2016, Johanssen, 2020, Gossard, 1992, Brandes, 2002). In lines X to X, 

greater detail has been provided on studies that have used the same disdrometer and their findings 

are reviewed. In line with comments from Anonymous Reviewer 1, the quality control section has 

been expanded, increasing the number of literature studies (see their comment starting “2) 

insufficient presentation”). 

In relation to comparison with other raw data sources, as far as the authors are aware this is the 

only offshore dataset that has been obtained and presented. Hasager states that “Quantitative 

knowledge on rain events at offshore wind farm sites is lacking in Denmark and elsewhere.” 

(Hasager, 2020). There are available onshore and coastal datasets, however introducing them would 

have no little benefit as no effective comparison could be made. The aim of the paper is to evaluate 

the Best DSD, which is currently used in lifetime prediction methodologies, against the offshore 

environment. It is recognised in Section 5.4 Limitations that the DSD presented is only applied to the 

one set of offshore data and to validate it, the distribution needs to be applied to another set of 

offshore data. Offshore data is being collected at ORE Catapult’s Levenmouth offshore 

demonstration turbine to provide the validation data required. It is hoped from publication that 

others will be able to evaluate the DSD against their data. 

I recommend this manuscript for publication after revision required. There have been outlined 

some recommendations to the authors to be considered. 

Thank you for the feedback and taking the time to review the manuscript. 

 

 

 

Please find the tracked changes version of the manuscript on the subsequent page. Please note that 

Mendeley has been used for reference formatting and changes to the references have not been 

marked up in the tracked changes document. 

 

 

 



 

1 

 

Characterisation of the Offshore Precipitation Environment to Help 

Combat Leading Edge Erosion of Wind Turbine Blades 

Robbie Herring1, Kirsten Dyer1, Paul Howkins1, Carwyn Ward2 

1Offshore Renewable Energy Catapult, Offshore House, Albert Street, Blyth, NE24 1LZ, UK 
2Department of Aerospace Engineering, Queen’s Building, University of Bristol, Bristol, BS8 1TR, UK 5 

Correspondence to: Robbie Herring (robbie.herring@ore.catapult.org.uk) 

Abstract. Greater blade lengths and higher tip speeds, coupled with a harsh environment, has caused blade leading edge 

erosion to develop into a significant problem for the offshore wind industry. Current protection systems do not last the 

lifetime of the turbine and require regular replacement. It is important to understand the characteristics of the offshore 

environment to model and predict leading edge erosion. The offshore precipitation environment has been characterised using 10 

up to date measuring techniques. Heavy and violent rain was rare and is unlikely to be the sole driver of leading edge 

erosion. The dataset was compared to the most widely used droplet size distribution. It was found that this distribution did 

not fit the offshore data and that any lifetime predictions made using it are likely to be inaccurate. A general offshore droplet 

size distribution has been presented that can be used to improve lifetime predictions and reduce lost power production and 

unexpected turbine downtime. 15 

1 Introduction 

The offshore wind industry’s need of larger rotors and higher tip speeds has caused blade leading edge erosion to develop 

into a major problem for the industry. Leading edge erosion is caused by raindrops, hailstone, and other particles impacting 

the leading edge of the blade and removing material. This degrades the aerodynamic performance of the blade and requires 

operators to perform expensive repairs. The issue has grown in prominence recently with reports that Ørsted had to make 20 

repairs to up to 2,000 offshore wind turbines after just a few years of operation (Finans, 2018). 

The industry attempts to prevent the onset of leading edge erosion by applying protection systems, such as coating and tapes, 

to the blade leading edge. However, currently these do not last the lifetime of the turbine and require regular replacement. 

Several analytical models that aim to estimate the expected lifetime of a protection system have been developed (Eisenberg 

et al., 2018, Slot et al., 2015, Springer et al., 1974). Finite element models that can predict the stresses and strains in a 25 

protection system from an impinging water droplet have also been produced (Keegan et al., 2012, Doagou-Rad and 

Mishnaevsky, 2019). To model leading edge erosion, it is important to understand the characteristics of the impinging 

hydrometeors and, as rain is the most frequent hydrometeor, the droplet size distribution (DSD) of the impinging rain. 
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The aim of the industry is to develop a methodology that can predict the lifetime of a protection system on a wind turbine 30 

from rain erosion tests. The DNV-GL project COBRA aims to address this, and Eisenberg proposes using the Springer 

model. Due to the lack of an offshore dataset, the project uses the onshore  

Weather radars are widely used to predict the offshore precipitation environment due to their ability to examine large 

geographical areas. To translate the radar data to DSDs, it is passed through complex algorithms and, due to the lack of 

offshore rain datasets, validated against onshore datasets collected from strain gauges and disdrometers. The most 35 

extensively used onshore distribution is the Best distribution published in 1950 (Best, 1950). However, the manual 

measurement techniques used by Best are outdated and have been found to provide inaccurate results (Kathiravelu et al., 

2016).  

The lack of an offshore dataset introduces uncertainty into radar lifetime predictions and, as a result, validation inaccuracies 

may exist. In this work, state of the art measurement techniques have been used to characterise the offshore precipitation 40 

environment and provide the required offshore dataset. A general offshore DSD is also presented. 

2 The Best Distribution 

The most widely used DSD is the Best distribution. Best takes the work of several authors and converts them into a common 

DSD defined as: 

1 − 𝐹 = 𝑒𝑥𝑝 [− (
𝑥

𝑎
)

𝑛

] ,           (1) 45 

where 𝐹 is fraction of liquid water in the air comprised by drops with diameter less than 𝑥, 𝐼 is the rate of precipitation and 

𝑎 = 𝐴𝐼𝑝 ,            (2) 

where 𝐴 = 1.30, 𝑝 = 0.232, 𝑛 = 2.25. Best concluded that the constant 𝑛 is independent of the precipitation intensity. 

This is commonly presented in literature as: 

𝐹(𝑥) = 1 − 𝑒𝑥𝑝 [− (
𝑥

1.3 𝐼0.232)
2.25

] ,         (3) 50 

Data was predominantly collected by two manual methods; the ‘Stain’ method and the ‘Flour Pellet’ method. In the Stain 

method, a sheet of absorbent paper is exposed to the rain for a short time. The stains made by the droplets are rendered 

permanent by previously treating the paper with a suitable powder dye. Then, the stains are counted, measured and 

interpreted in terms of drop sizes. A calibration curve specific to the filter paper is used to relate the stain diameter to the 

droplet diameter. The spread factor relationship is dependent upon the physical properties of the fluid, drying conditions and 55 

the impact velocity of the droplet (Sommerville and Matta, 1990). In the Flour Pellet method, rain is allowed to fall into pans 

of silted flour. The resulting dough pellets are baked and subsequently sized by passing them through graded sieves. 
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In both measurement techniques, sampling can only occur in short intervals. Best performs measurements using the Stain 

method for a maximum of two minutes. During prolonged periods of sampling, the droplet stains and pellets can overlap, 

making it difficult to accurately measure and count individual drops. Furthermore, the techniques also have a low resolution. 60 

Best registers droplet sizes in 0.5 mm intervals. Given that the distribution predicts that for a rain rate of 1 mm/hr, most 

droplets are between 0 and 2 mm, it is clear that a higher resolution is required for effective analysis. 

3 Offshore Measurement Technique 

Two Campbell Scientific PWS100 disdrometers have been installed onto Offshore Renewable Energy Catapult’s offshore 

anemometry hub, which is located three nautical miles from the coast of Blyth, Northumberland. Fig. 1 shows the position of 65 

the two disdrometers, with the first mounted on the existing platform 25 m metres above sea level (disdrometer A) and the 

second mounted 55 m above sea level (disdrometer B). Each disdrometer consists of two photodiode sensing heads, one 

near-IR diode laser head and one CS215 temperature and humidity sensor. The sensor heads are positioned 20° off-axis to 

the system unit axis, introducing a time-lag between the two sensors that enables the fall velocity and size of particles to be 

calculated. 70 

  

 

Figure 1: The optical disdrometers mounted to the platform (left) and at 55 m above sea level (right). 

The oOptical disdrometers are non-intrusive and do not influence drop behaviour during measurement. They have also been 

shown to successfully resolve droplet break-up and splatter problems experienced by other measurement techniques 75 

(Kathiravelu et al., 2016). Agnew (Agnew, 2013) explored the performance of the PWS100 at a site in Southern England, 
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findingound that the PWS100 device slightly underestimates the number of droplets with a diameter below 0.8 mm. 

However, the measurement of larger, more damaging droplets was found to be accurate. Montero-Martinez (Montero-

Martínez et al., 2016) compared the performance of the disdrometer during natural rain events in Mexico City to results from 

a beam occlusion disdrometer and a reference tipping bucket. The PWS100 recorded greater amounts of precipitation than 80 

the reference, but the study was unable to back this up statistically and no significant differences in precipitation estimation 

was found between the disdrometers. Montero-Martinez concluded that the two devices performed similarly and that the 

PWS100 provides reliable precipitation measurements. Johannsen (Johannsen et al., 2020) studied the PWS100 against a 

Thies Clima Laser Precipitation Monitor and a Parsivel OTT at a site in Austria. In contrast to Montero-Martinez, the 

PWS100 recorded less than the reference rain gauge in all but two events. The PWS100 recorded 3% less total precipitation 85 

that the rain gauge across the measurement period, outperforming the Thies and the Parsivel which recorded 20 and 30% 

less, respectively, and the PWS100 was consistently closest to the rain gauge reading throughout the period. Similar drop 

sizes were recorded between the PWS100 and the Parsivel, with Johannsen noting that the PWS100 tended to record slightly 

faster and larger drops. The studies show that there are uncertainties in the accuracy of all disdrometers, with the PWS100 

used in this study performing comparatively or better than the other examined disdrometers. 90 

DSD data from 1st September 2018 up to and including the 31st August 2019 is presented to provide a 12 month period for 

analysis. This allows analysis to also be completed seasonally. Hydrometeors diameters have been recorded with a resolution 

of 0.1 mm. Data is available with a time interval of 1 minute. 

 

Table 1 presents the percentage of available data for each month and the percentage of the available data in which 95 

precipitation was recorded. An estimation of the actual percentage of precipitation can be obtained by assuming that the 

same proportion of precipitation occurred across the unavailable data. A total of 82.89% of the data was available during the 

entire measurement period. Precipitation was recorded in 8.71% of the available data giving a yearly precipitation estimate 

of 10.50%. Winter had the highest estimation of total time with precipitation with 12.07%, whilst spring saw the lowest with 

an estimation of 8.65%. 100 

Table 1: Percentage of available data for each month. 

Month 

 

 

Percentage of available 

values (%) 

Percentage of time with 

precipitation (%) 

Estimation of total time 

with precipitation (%) 

September 2018 88.84 5.81 6.54 

October 2018 98.55 8.57 8.70 

November 2018 96.29 10.30 10.70 

December 2018 90.11 9.73 10.80 

January 2019 81.42 10.69 13.13 
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February 2019 68.43 7.35 10.74 

March 2019 75.94 7.82 10.30 

April 2019 91.24 4.83 5.29 

May 2019 72.50 11.19 15.43 

June 2019 83.28 13.31 15.98 

July 2019 53.43 5.53 10.35 

August 2019 94.66 9.35 9.88 

Total 82.89 8.71 10.50 

4 The Offshore Dataset 

4.1 Quality Control 

Raw data was received from the disdrometers and, therefore, detailed quality control was completed before subsequent 

analysis Iin line with recommendations from (Hasager et al., 2020), Chen (Chen et al., 2016) and Vejen (Vejen et al., 2018), 105 

quality control was performed on the raw data collected from the disdrometers. Duplicate records were assessed by 

comparing time stamps, with any identical timestamps eliminated from the dataset. The meteorological parameters were also 

evaluated to remove entire duplicate records. It may be possible for a few parameters to be the same, however an entire row 

of identical parameters is extremely unlikely and consequently duplication has almost certainly occurred. A gross value 

check was completed to remove unrealistic and impossible values. Certain parameters are constrained within limits, such as 110 

relative humidity, which is given as a percentage, whereas other parameters, such as droplet size, can be evaluated against 

sensible threshold values. Furthermore, precipitation events where the disdrometer recorded a rain rate of 0 mm/hr, but 

hydrometeors were recorded were removed, as were events within the bounds of disdrometer error, such as those with a 

duration of 1 minute or where less than 10 total hydrometeors were recorded. Particle type classification is determined by the 

C215 sensor on the disdrometer, which distinguishes particles based on an algorithm using the temperature, wet bulb 115 

temperature and relative humidity. The outputs from the sensor were evaluated against an air temperature threshold, 

commonly used to distinguish between snow and rain events (Jennings et al., 2018), with any errors being manually 

inspected. 

The consistency between disdrometers was also explored. No sensible results were recorded by disdrometer A from 23rd 

November 2018 until its repair at the start of May 2019, whilst disdrometer B remained operating throughout the year with 120 

short, infrequent gaps in data gathering. Of the available recordings, the two disdrometers agreed on the occurrence of 

precipitation 97.40% of the time, with this increasing to 99.74% when evaluating precipitation intensities above 0.5 mm/hr. 

Between the two disdrometers, 0.9% of the data recorded a difference in precipitation intensity greater than 1 mm/hr, with 

these almost exclusively occurring in the higher precipitation intensities. A manual inspection of the greatest differences 
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found that where large values were recorded in one disdrometer, the other recorded a comparable value in the surrounding 125 

minutes. This indicates that the large differences are correct and may suggest a small time discrepancy between the 

disdrometers, only noticed in the short, high intensity events. 

The comparable data gathered by disdrometer A and B enabled some gaps in disdrometer B’s dataset to be filled with the 

respective data from disdrometer A, where available. In total, 34.25 hours were gap filled, of which 229 minutes experienced 

precipitation and 111 minutes experienced a precipitation greater than 0.5 mm/hr. 130 

Table 1 presents the percentage of available quality controlled data for each month and the percentage of the available data 

in which precipitation was recorded. An estimation of the actual percentage of precipitation can be obtained by assuming 

that the same proportion of precipitation occurred across the unavailable data. A total of 82.89% of the data was available 

during the entire measurement period. Precipitation was recorded in 8.71% of the available data giving a yearly precipitation 

estimate of 10.50%. Winter had the highest estimation of total time with precipitation with 12.07%, whilst spring saw the 135 

lowest with an estimation of 8.65%. Including the missing data provides an annual accumulation of 500 mm, which is lower 

than the 650 mm average annual precipitation reported in Northumberland (WeatherSpark, 2020), indicating that the 

measurement year was a relatively dry year for the area.  

Table 1: Percentage of available data for each month. 

Month 
Percentage of available 

values (%) 

Percentage of time with 

precipitation (%) 

Estimation of total time 

with precipitation (%) 

September 2018 88.84 5.81 6.54 

October 2018 98.55 8.57 8.70 

November 2018 96.29 10.30 10.70 

December 2018 90.11 9.73 10.80 

January 2019 81.42 10.69 13.13 

February 2019 68.43 7.35 10.74 

March 2019 75.94 7.82 10.30 

April 2019 91.24 4.83 5.29 

May 2019 72.50 11.19 15.43 

June 2019 83.28 13.31 15.98 

July 2019 53.43 5.53 10.35 

August 2019 94.66 9.35 9.88 

Total 82.89 8.71 10.50 
 140 

Data was neglected if it met any of the following criteria: 

• Event had a duration of 1 minute or under, 

• Event had less than 10 hydrometeors recorded in total, 

• Events where the disdrometer recorded a rain rate of 0, but hydrometeors were recorded. 
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4.1 Precipitation Intensity Frequency 145 

The average precipitation intensity was recorded every minute. Fig. 2 presents its variation across the measurement period, 

and Fig. 3 presents the cumulative frequency of the recorded intensities. The median precipitation intensity for the 

measurement period was 0.311 mm/hr. 

Precipitation is classified according to its intensity with the following categories defined by the Met Office (Met Office, 

2007): 150 

• Light – precipitation intensity less than 2.5 mm/hr, 

• Moderate – precipitation intensity between 2.5 mm/hr and 10 mm/hr, 

• Heavy – precipitation intensity between 10 mm/hr and 50 mm/hr, 

• Violent – precipitation intensity greater than 50 mm/hr. 

 155 

Figure 2: Precipitation intensity during the measurement period. 

 

Figure 3: Cumulative distribution of precipitation for the respective seasons. 

Table 2: Precipitation intensity distribution for seasons and intensity categories. 

 Median precipitation 

intensity (mm/hr) 

Percentage of precipitation category (%) 

Light Moderate  Heavy Violent 

Autumn 0.3492 89.42 10.09 0.46 0.03 

Winter 0.2217 96.43 3.49 0.08 0 

Spring 0.2778 98.56 1.44 0 0 
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Summer 0.4321 89.87 8.85 1.16 0.12 

Total 0.3111 92.58 6.89 0.50 0.03 
 160 

The seasonal breakdown of precipitation categories is shown in Table 2. Summer had the highest median precipitation 

intensity with the highest amount of recorded heavy and violent precipitation. In contrast, winter and spring saw minimal 

heavy precipitation and no violent precipitation. Light precipitation dominated across the entire measurement period 

accounting for 92.58% of all precipitation. Furthermore, 78.31% of the recorded minutes had an intensity lower than 1 

mm/hr. Moderate precipitation was recorded in 6.89% of all cases, whilst heavy and violent rain occurred in 0.50% and 165 

0.03% cases, respectively. This corresponds to a total of 151 minutes of heavy precipitation and only 9 minutes of violent 

precipitation across the year. This gives a total of 193 minutes a year of heavy and violent rain once the unavailable data is 

factored in.  

Therefore, a wind turbine in this location would experience less than 3.5 hours a year of precipitation with an intensity 

greater than 10 mm/hr. Without corresponding erosion data, it is not possible to conclude if erosion damage is predominantly 170 

caused by heavy and violent precipitation. However, given that erosion can occur within just a few years of installation and 

assuming that heavy and violent precipitation occurs with the same frequency as found in this dataset, a turbine would 

experience less than a day of high intensity rain before erosion occurs. When considering the Springer model, Tthis suggests 

that erosion damage is not driven solely by heavy and violent precipitation disagreeing with current research theories (Bech 

et al., 2018). 175 

4.2 Hydrometeor Frequency 

Fig. 4 presents the number of recorded hydrometeors by type during the data collection period. The hydrometeor type is 

clearly dominated by rain droplets. ‘Errors’ and ‘unknown’ particles accounted for 17.93% of all datathe hydrometeors 

recorded. These may be caused by insects, particles between states or equipment failures and have been neglectedignored in 

the subsequent analysis, with any records where they were the modal hydrometeor removed. Drizzle and rain droplets make 180 

up a combined 98.45% of all hydrometeors recorded. The number of ice pellets, hail and graupel particles recorded was low, 

accounting for only 0.49% of hydrometeors recorded. 
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Figure 4: Number and type of hydrometeors recorded during the total measurement period. 

As expected, ice and snow based hydrometeors occurred most frequently in winter. Ice pellets, hail and graupel accounted 185 

for 0.94% of the hydrometeors recorded in the season with snow grains and snowflakes accounting for 3.56%. In contrast, 

only 0.16% of hydrometeors recorded in summer were ice pellets or hail, with no graupel, snow grains or snowflakes. Spring 

and autumn respectively recorded 0.31% and 0.57% of ice pellets, hail and graupel.  

4.3 Hydrometeor Velocity 

The severity of a hydrometeor impact is governed by its kinetic energy. Whilst the blade speed provides most of the impact 190 

velocity, the hydrometeor fall velocity and mass are important. For each minute, the average diameter and velocity was 

plotted for the modal hydrometeor type. This is presented in Fig. 5. 
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Figure 5: Relationship between size and velocity for the modal hydrometeor at each minute. 195 

There is a clear distinction between water particles and snow particles, with snow particles occurring across a wider range of 

diameters and lower velocities than rain particles. For the few cases where ice pellets were the model hydrometeors, they all 

occurred to the right of the rain droplet scatter, indicating that they have a lower fall velocity that rain droplets. There were 

no cases where hail or graupel were the modal hydrometeor and they were found to be mixed in with rain particles. The 

presented velocities for water particles are in line with those predicted in models by Gossard (Gossard et al., 1992) and 200 
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Brandes (Brandes et al., 2002). The data presented in the above figure is used in the subsequent analysis to estimate the 

number of droplets that impact the blade per second and inform lifetime prediction models.   

 

5 Offshore Rain Distribution 

To inform lifetime prediction models, accurately translate weather radars into DSDs and reduce uncertainties in radar 205 

predictions, a general equation for an offshore DSD is required. The Best DSD has been reproduced, both seasonally and 

non-seasonally, with updated constants for the offshore rain data presented. Only data where rain particles were the modal 

hydrometeor were examined. 

5.1 Constant Derivation 

For each recorded minute, the cumulative function, 𝐹, has been evaluated.  210 

Rearranging Eq. (1) gives: 

ln ln (
1

1−𝐹
) = 𝑛 ln 𝑥 − 𝑛 ln 𝑎 ,          (4) 

Values of 𝑛 and 𝑎 for the average precipitation intensity over the minute can therefore be determined by plotting Eq. (4). Fig. 

6 presents the evaluation of Eq. (4) across a range of precipitation intensities. 

 215 
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a) I = 0.1058 mm/hr 

 

b) I = 0.2708 mm/hr 

 

c) I = 4.9865 mm/hr 
 

 

d) I = 10.2624 mm/hr 

Figure 6: Evaluation of Eq. (4) for precipitation intensities a) 0.1058, b) 1.2708, c) 4.9865 and d) 10.2624 mm/hr. 

Rearranging Eq. (2) gives: 

ln 𝑎 = 𝑝 ln 𝐼 + ln 𝐴 ,           (5) 

By plotting Eq. (5), the constants 𝐴 and 𝑝 can be obtained. Fig. 7 evaluates Eq. (5) across the whole dataset. 
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 220 

Figure 7: Evaluation of Eq. (5) to derive the constants 𝑨 and 𝒑. 

The constants 𝐴 and 𝑝 are determined as 1.0260 and 0.1376, respectively.  

Best concluded that the constant 𝑛 is independent of the precipitation intensity. However, for the data presented, 𝑛 has 

dependence on the rain rate. The following relationship applies: 

𝑛 = 𝑁𝐼𝑞 ,            (6) 225 

This can be evaluated as: 

ln 𝑛 = 𝑞 ln 𝐼 + ln 𝑁 ,           (7) 

Fig. 8 presents the plot of Eq. (7) from which the constants 𝑁 and 𝑞 can be obtained. 
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Figure 8: Evaluation of Eq. (7) to derive the constants 𝑵 and 𝒒. 230 

The constants 𝑁 and 𝑞 are determined as 2.8264 and -0.0953, respectively. Fig. 8 shows substantial scatter in determining 

these constants. However, as 𝑞 is small there is only slight dependence of 𝑛 on the precipitation rate and whilst the scatter is 

likely to introduce some error, it does not have a significant effect on the resulting DSD. Table 3 summarises the constants 

for the non-seasonal distribution alongside the constants for seasonal DSDs. For detailed modelling and lifetime predictions 

it may be favourable to use season dependent DSDs.. 235 

Table 3: Determined constants for the non-seasonal and seasonal offshore DSDs. 

Season Data used (%) 𝐴 𝑝 𝑁 𝑞 

Non-seasonal 100.00 1.0260 0.1376 2.8264 -0.0953 

Autumn 27.62 0.9723 0.1335 2.7762 -0.0911 

Winter 24.95 0.9831 0.1338 2.6581 -0.1136 

Spring 20.43 1.0393 0.1270 2.8282 -0.1065 

Summer 27.00 1.0937 0.1410 2.9657 -0.0893 
 

Constant Value 

𝐴 1.0260 

𝑝 

𝑁 

𝑞 

0.1376 

2.8264 

-0.0953 

 

Reproducing Eq. (1) with the derived non-seasonal constants gives a general non-seasonal offshore DSD: 

𝐹(𝑥) = 1 − 𝑒𝑥𝑝 [− (
𝑥

1.03 𝐼0.138)

2.83

𝐼0.0953
] ,         (8) 240 
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This is presented for various precipitation intensities in Fig. 9. Table 4 presents the constants for seasonal DSDs. For detailed 

modelling and lifetime predictions it may be favourable to use season dependent DSDs. 

 

Figure 9: The non-seasonal offshore DSD at different precipitation intensities. 

Table 4: Determined constants for the seasonal offshore DSDs. 245 

Season Data used (%) 𝐴 𝑝 𝑁 𝑞 

Autumn 27.62 0.9723 0.1335 2.7762 -0.0911 

Winter 24.95 0.9831 0.1338 2.6581 -0.1136 

Spring 20.43 1.0393 0.1270 2.8282 -0.1065 

Summer 27.00 1.0937 0.1410 2.9657 -0.0893 

5.2 Sensitivity Analysis 

The sensitivity of the constants to the data selected has been evaluated. The following cases have been examined: 

• Low and high precipitation intensity have been individually and collectedly neglected. Precipitation intensities 

below 0.1 mm/hr and above 10 mm/hr were neglected. 

• Precipitation intensities that account for a small number of the recorded intensities have been individually and 250 

collectively neglected. These are the bottom 1% and the top 1%. 

Minutes where the measured precipitation intensity is low generally record fewer droplets than those with higher 

precipitations. Conversely, a significant number of droplets are generally seen in heavy precipitation. Low and heavy 

intensity rain may, therefore, have a high scatter that could influence the determined constants. Fig. 3 presented the 

cumulative distribution of the recorded precipitation intensities. The bottom and top 1% of precipitation intensities may also 255 
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skew the data by providing a point significantly different to the trend. The impact of these conditions on the constants is 

shown in Table 54. 

Table 4: Sensitivity of constants to the selected cases. 

Precipitation 

Intensities (mm/hr) 

Data Used 

(%) 
𝐴 𝑝 𝑁 𝑞 

I 100 1.0260 0.1376 2.8264 -0.0953 

I > 0.1 77.68 1.0218 0.1249 2.8132 -0.1067 

I < 10 96.85 1.0269 0.1382 2.8227 -0.0961 

0.1 < I < 10 6.89 1.0219 0.1252 2.8071 -0.1090 

I > 0.0158 99 1.0245 0.1350 2.8223 -0.0979 

I < 6.95  99 1.0280 0.1388 2.8192 -0.0969 

0.0158 < I < 6.95 98 1.0263 0.1360 2.8144 -0.0997 
 

In general, the constants are consistent across all the examined cases. The constant 𝑝 is the most sensitive to the data 260 

included. Neglecting low precipitation intensities reduces its value, whilst neglecting higher intensities increases its value. 

Removing precipitation intensities below 0.1 mm/hr has the greatest effect on the constants. However, ignoring these 

intensities loses 22.32% of the data available. It can be concluded that the proposed constants are acceptable. 

5.3 Comparison to Best DSD 

The general offshore DSD has been compared to the Best DSD at various precipitation intensities in Fig.10. The 265 

precipitation intensities 0.1, 1, 2.5, 5, 10, 20 mm/hr were selected to enable comparison of the two DSDs across a range of 

intensities. To account for variability in the recorded results, minutes which recorded an intensity within ±5% of the selected 

intensity were included. For each data group, the intensities were averaged and the offshore DSD and Best DSD for the 

average intensity plotted against them. 

 

a) I = 0.10005 mm/hr 

 

b) I = 0.99612 mm/hr 
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c) I = 2.501 mm/hr 

  

d) I = 4.9818 mm/hr 

 

e) I = 10.0194 mm/hr 

 

f) 19.9687 mm/hr 

Figure 10: Comparison between the offshore DSD and the Best DSD at precipitation intensities a) 0.09998 mm/hr, b)0.9971, c) 270 
2.5493, d) 5.0769, e) 9.9653 and f) 20.3311 mm/hr. 

Fig 10. reveals that the Best DSD significantly overestimates the diameter of droplets. This is particularly true at the higher 

precipitation intensities. The goodness of fit of the offshore and Best DSD has been evaluated across the range of 

precipitation intensities in Fig. 11. The offshore DSD aligns well with the raw data and possesses a high coefficient of 

determination (R2) across the precipitation intensity range. The slight reduction in R2 at higher intensities can be attributed to 275 

the reduced amount of heavy and violent precipitation recorded. The coefficient of determination of the Best DSD reduces 

significantly as the precipitation intensity increases. Therefore, it is not appropriate to validate offshore weather radar data 

against the Best DSD. 
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Figure 11: Coefficient of determination of the offshore DSD and the Best DSD across a range of precipitation intensities. 280 

5.4 Limitations 

The offshore DSD presented has two main limitations. Firstly, the presented measurement period may be a limiting factor. 

As the disdrometer continues to collect data, the DSD can be further refined. Secondly, data has only been collected at one 

point. Offshore DSDs may vary from location to location. To address this, a disdrometer has been positioned at ORE 

Catapult’s Levenmouth offshore demonstration turbine for future comparison and validation. 285 

 

6 Impact of DSD on Leading Edge Erosion Lifetime Prediction 

The implications of the offshore DSD has been assessed using the Springer model, which is used by Eisenberg to predict a 

protection solution’s in-situ lifetime from leading edge erosion. The model uses the median droplet diameter for a given rain 

rate to determine the number of impacts to failure, 𝑁𝑖𝑐, and the number of impacts on the blade per m2 per second, �̇�. The 290 

number of impacts to failure is found from: 

𝑁𝑖𝑐 =
8.9

𝑑2 (
𝑆𝑒𝑐

𝜎𝑜̅̅ ̅̅
)

5.7

 ,           (9) 

where 𝑆𝑒𝑐  is the effective strength of the protection system found from rain erosion test results, and 𝜎𝑜̅̅ ̅ is the pressure at the 

interface between the droplet and protection system, and is a function of the droplet diameter and the relative properties of 

the system to the substrate it is applied on. The number of impacts on the blade per m2 per second is given as: 295 

�̇� = q 𝑉𝑠 𝛽 ,            (10) 
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where q is the number of droplets in a cubic metre of air,  𝑉𝑠 is the velocity of the drop impact and 𝛽 is the impingement 

efficiency of the droplets, which is dependent on the aerofoil geometry and droplet diameter. The number of droplets per 

cubic metre is found from geometry and is presented by Springer as: 

𝑞 = 530.5
𝐼

𝑉𝑡𝑑3 ,            (11) 300 

where 𝑉𝑡 is the terminal velocity of the droplets. 

The rate of damage, �̇�, from a given precipitation intensity is found from: 

�̇� =
�̇�

𝑁𝑖𝑐
 ,            (12) 

The analysis presented here has shown that the Best DSD currently used in the Springer model overestimates the size of 

impinging offshore droplets.  305 

The exact number of impacts to failure is dependent on the protection system and substrate used. For a commercial erosion 

resistant polyurethane coating system, the offshore DSD has been applied to the above equations and the relative effect on 

leading edge erosion prediction of the DSD in relation to the Best DSD is presented in Figure 12.    

 

Figure 12: Percentage change in leading edge erosion damage values from implementing the offshore DSD relative to 310 
implementing the Best DSD. 

The smaller median droplet diameter for precipitation intensities above 0.15 mm/hr requires a greater number of impacts to 

reach initiation. However, the equations show that there are a far greater number of droplet impacts per second, giving a 

higher damage rate for precipitation intensities, with the difference becoming substantial at the higher intensities. The impact 

of this is dependent on the site conditions and frequency of precipitation intensities. However, for the dataset presented here 315 

and the above material properties, the implementation of the offshore DSD causes the Springer model to predict a 23.7% 
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reduction in lifetime in comparison to when the Best DSD is implemented. As a result, employing the Best DSD in leading 

edge erosion prediction models underestimates the severity of the offshore environment in terms of leading edge erosion. 

Therefore, the lifetime of protection systems installed offshore is greatly overestimated, resulting in earlier than expected 

maintenance and ultimately a higher cost of energy. 320 

This dataset can be used to help to inform the lifetime of leading edge erosion protection systems installed offshore, helping 

to ensure maintenance is conducted early and further leading edge erosion can be combatted. The dataset can also be used to 

inform droplet impact models and rain erosion testing with the greater understanding of the environment facilitating the 

development of improved protection systems. 

 325 

67 Conclusions 

DSDs are important in predicting and modelling leading edge erosion. Currently, there is a lack of an offshore dataset and 

the industry validates weather radars against onshore datauses onshore distributions in lifetime predictions. In this work, a 

disdrometer has been positioned three nautical miles offshore to collect and characterise the offshore precipitation 

environment and to provide an offshore dataset for validating weather radar predictions.DSD for lifetime prediction models. 330 

Heavy and violent precipitation was rare in the measurement period, accounting for less than 3.5 hours of precipitation 

across the year. Therefore, erosion damage is not likely to be driven exclusively by heavy and violent precipitation. Rain was 

the most frequently occurring hydrometeor, whereas snow, ice and hail particles were scarce. A clear distinction was visible 

in the diameter-velocity plots for each hydrometeor, with snow particles occurring across a wider range of diameters and 

lower average velocities. The majority of raindrops observed had a diameter below 2 mm. 335 

A general offshore DSD has been presented. The raw data was compared to the presented DSD and the most widely used 

DSD proposed by Best. A statistical R2 analysis found that Tthe offshore DSD aligned well with the data, whereas. In 

contrast, the Best DSD significantly overestimated the diameters of droplets. The implication of the offshore DSD was 

evaluated with the Springer model where it was found the inaccuracies in the Best DSD greatly underestimates the severity 

of the offshore environment in terms of leading edge erosion. As a result, the Best DSD and is not a suitable distribution to 340 

validation for weather radars and use in lifetime prediction models for protection systems positioned offshore and therefore 

predictions determined using it are unlikely to be accurate.. 

The results presented address the lack of an offshore dataset and provide a general offshore DSD that can be used to validate 

weather radar predictionsinform lifetime prediction models for the offshore environment. A disdrometer has been placed at 

ORE Catapult’s Levenmouth offshore wind turbine to provide further information about the precipitation environment and 345 

validate the presented DSD. The offshore dataset can be used to improve prediction and modelling techniques, helping to 

inform the design of new protection solutions and help combat leading edge erosion, whilst reducing lost energy production 

and unexpected turbine downtime. 
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The aim of the industry is to develop a methodology that can predict the lifetime of a protection system on a wind turbine 350 

from rain erosion tests. The DNV-GL project COBRA aims to address this. The project uses the Best DSD to characterise 

the offshore environment. However, this DSD has been shown to be unsuitable for the offshore environment and any 

offshore lifetime prediction determined using it is unlikely to be accurate. 
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