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Abstract. A model-independent first principle first order investigation of the shape of turbulent density power spectra in

the ion-inertial range of the solar wind at 1 AU is presented. De-magnetised ions in the ion inertial range of quasi-neutral

plasmas respond to Kolmogorov or Iroshnikov-Kraichnan inertial range velocity turbulence power spectra via the spectrum

of the velocity turbulence related random mean square induction electric field. Maintenance of electrical quasi-neutrality by

ions causes deformation in the power spectral density of the density turbulence. Experimentally confirmed Kolmogorov inertial5

range spectra in solar wind velocity turbulence and observations of density power spectra suggest that the occasionally observed

scale-limited bumps in the density power spectrum may be traced back to this electric ion response. Magnetic power spectra

react passively to the density spectrum by warranting pressure balance. This approach still neglects contribution of Hall currents

and is restricted to the ion inertial range scale. While both density and magnetic turbulence spectra in the affected range of ion

inertial scales deviate from Kolmogorov or Iroshnikov-Kraichnan, the velocity turbulence preserves its inertial range shape in10

this process to which spectral advection turns out to be secondary but may become observable under special external conditions.

We discuss various aspects of this effect including the scale range.

1 Introduction

The solar wind is a turbulent flow of origin in the solar corona. It is believed to become accelerated within a few solar radii in

the coronal low beta region. Though this awaits approval, it is also believed that its turbulence originates there. Turbulent power15

spectral densities in the solar wind have been measured in situ around 1 AU for several decades already. They include spectra

of the magnetic field (cf. e.g., Goldstein et al., 1995; Tu & Marsch, 1995; Zhou et al., 2004; Podesta, 2011, for reviews among

others), but with improved instrumentation also of the fluid velocity (Podesta et al., 2007; Podesta, 2009; Šafránková et al.,

2013), electric field (Chen et al., 2011, 2012, 2014a, b), temperature (Šafránková et al., 2016) and (starting with Celnikier et al.,

1983, who already reported its main properties) also of the (quasi-neutral) solar wind density (Chen et al., 2012; Šafránková20

et al., 2013, 2015, 2016). Complimentary to these in situ measurements ground-based observations of radio scintillations

from distant stars, originally applied (Lee & Jokipii, 1975, 1976; Cordes et al. , 1991; Armstrong et al., 1995) to the interstellar
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medium (ISM) (for early reviews cf., e.g., Coles, 1978; Armstrong et al., 1981) and used for extra-heliospheric plasma diagnosis

(cf., Haverkorn & Spangler, 2013) also provided information about the solar wind density turbulence (Coles & Harmon, 1989;

Armstrong et al., 1990; Spangler & Sakurai, 1995; Harmon & Coles, 2005) mostly at solar radial distances < 60R� ≈ 0.25

AU in the innermost solar wind very low 0.1< βi < 1 (cf., e.g., the model of McKenzie et al., 1995) region, which is of

particular interest because it is the presumable source region of the solar wind being accessible only from remote. of solar wind5

turbulence generated here seems frozen to the solar wind,1 afterwards being transported radially outward by the flow. Radio-

phase scintillation of spacecraft signals from Viking, Helios and Pioneer have been used early on (Woo & Armstrong, 1979)

to determine solar wind density power spectra in the radial interval ≤ 1 AU reporting mean spectral Kolmogorov slopes ∼− 5
3

with a strong flattening of the spectrum near the Sun at distances < 30R� where the slope flattens down to ∼− 7
6 =−1.1,

a finding which suggests evolution of the density turbulence with solar distance. In the ISM radio scintillation observations10

covered a huge range of decades from wavelength scales λ≈ 15 AU down to close to the Debye length λD ≈ 50 m, suggesting

an approximate Kolmogorov spectrum over 7 decades. From recent in situ Voyager 1 observations of ISM electron densities

(Gurnett et al., 2013) a Kolmogorov spectrum has been inferred down to wavelengths of λ∼ 106 m that is followed by an

adjacent spectral intensity excess on the assumed kinetic scales for wave lengths λ& λD (Lee & Lee, 2019)

Density fluctuations δN are generally inherent to pressure fluctuations δP . From fundamental physical principles it follows15

that density turbulence does not evolve by itself. Through the continuity equation it is related to velocity turbulence, which

in its course requires the presence of free energy, being driven by external forces. It is primary while turbulence in density,

temperature, and magnetic field is secondary. Density turbulence may signal the presence of a population of compressive

(magnetoacoustic-like) fluctuations in addition to the usually assumed (cf., e.g., Biskamp, 2003; Howes, 2015) alfvénic turbu-

lence, the dominant fluid-magnetic fluctuation family dealing with the mutually related alfvénic velocity and magnetic fields20

made use of in MHD theory based on Elsasser variables (Elsasser, 1950).

Inertial range velocity turbulence is subject to Kolmogorov (Kolmogorov, 1941a, b, 1962) or Iroshnikov-Kraichnan (Irosh-

nikov, 1964; Kraichnan, 1965, 1966, 1967) turbulence spectra respectively their generalisation to anisotropy with respect to

any mean magnetic field (Goldreich & Sridhar, 1995). In the solar wind, Kolmogorov inertial range spectra reaching down into

the presumable dissipation range have been confirmed by a wealth of in situ observations (cf., e.g., Goldstein et al., 1995; Tu &25

Marsch, 1995; Zhou et al., 2004; Alexandrova et al., 2009; Boldyrev et al., 2011; Matthaeus et al., 2016; Lugones et al., 2016;

Podesta, 2011; Podesta et al., 2006, 2007; Sahraoui et al., 2009, and others). Since the mean fields B0,T0,N0,U0 themselves

obey pressure balance, one has for pressure balance among the turbulent fluctuations

〈|δB|2〉
B2

0

=

√
〈|δN |2〉
N0

+

√
〈|δT |2〉
T0

(1)

The angular brackets 〈. . .〉 indicate averaging over the spatial scales of the turbulence respectively turbulent fluctuations.30

Alfvénic fluctuations (cf., e.g., Howes, 2015, for a recent theoretical account of their importance in MHD turbulence) com-
1We do not touch the subtle question whether in a low-beta/strong-field plasma any frozen turbulence on MHD-scales above the ion cyclotron radius can

evolve. According to inferred spatial anisotropies, it seems that close to the Sun turbulence in the density is almost field-aligned. On the other hand, ion-inertial

range turbulence at shorter scales will be much less affected. It can be considered to be isotropic. Near 1 AU, where most in situ observations take place, one

has β & 1. One may expect that turbulence here also contains contributions which are generated locally, if only some free energy would become available.
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Figure 1. Normalised solar wind power spectra of turbulent temperature and density fluctuations. The curves are based on data from

Šafránková et al. (2016) obtained on July 6, 2012 from the Bright Monitor of the Solar Wind (BMSW) instrument on board the Spektr-

R spacecraft. The solar wind conditions of these observations have been tabulated (Chen et al., 2014a). They indicate rather slow than

medium conditions. The data have been rescaled and normalised to the main density N0 and temperature T0 in order to show their relative

contributions to an assumed solar wind pressure balance. The interesting result is that in the lowest MHD frequency range density fluc-

tuations are irrelevant with respect to pressure balance. At higher frequencies, however, the density fluctuations dominate the temperature

fluctuations.

pensate separately due to their magnetic and velocity fluctuations being related; they do not contribute to extra compression.

In order to infer the contribution of density fluctuations, one compares their spectral densities with those of the temperature

δT or magnetic field δB. This requires normalisation to the means. Solar wind densities at 1 AU are of the order of N0 ∼ 10

cm−3, while ion thermal speeds are of the order of vi ∼ 30 km s−1. Moreover, mean plasma betas are of order βi ∼ 1 here. For

checking pressure balance, measured density fluctuations can be compared with those two.5

An example is shown in Fig. 1 based on solar wind measurements on July 6, 2012 (Šafránková et al., 2015, 2016). There

is not much freedom left in choosing the mean densities and temperatures in Fig. 1. Densities at 1 AU barely exceed 10

cm−3. Electron temperatures are insensitive to those low frequency density fluctuations. High mobility makes electron reaction

isothermal.
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The data in Figure 1 show the relative dominance of density fluctuations over ion temperature fluctuations under moderately-

low speed solar wind conditions at all frequencies larger than the lowest accessible MHD frequencies. This is not surprising

because one would not expect large temperature effects. Ion heating is a slow process which does not react to any fast pressure

fluctuations caused by density or magnetic turbulence. It just shows that the turbulent thermal pressure is mainly due to density

fluctuations over most of the frequency range. In the low frequency MHD range the kinetic pressure of large-scale turbulent5

eddies dominates.

Inertial range power spectra of turbulent density fluctuations are power laws. Occasionally they exhibit pronounced spectral

excursions from their monotonic course prior to drop into the dissipative range. Whenever this happens, the spectrum flattens

or, in a narrow range of scales, even turns to positive slopes, sometimes dubbed spectral “bumps”. The reason for such spectral

excesses still remains unclear. Similar bumps have also been seen in electric field spectra (cf., e.g., Chen et al., 2012) where10

they have tentatively been suggested to indicate the presence of kinetic Alfvén waves which may be excited in the Hall-MHD

(cf., e.g., Huba, 2003) range as eigenmodes of the plasma. Models including Alfvén ion-cyclotron waves (Harmon & Coles,

2005), or kinetic Alfvén waves (Chandran et al., 2009) have been proposed to cause spectral flattening. Kinetic Alfvén waves

may also lead to bumps if only βi� 1. In fact, kinetic Alfvén waves possess large perpendicular wave number k⊥λi ∼ 1 of

the order of the inverse ion-inertial length (cf., e.g., Baumjohann & Treumann, 1996), the scale on that ions demagnetise. If15

sufficient free energy is available, they can thus be excited and propagate in this regime (cf., e.g., Gary, 1993; Treumann &

Baumjohann, 1997). Recently Wu et al. (2019) provided kinetic-theoretical arguments for kinetic Alfvén waves contributing

to turbulent dissipation in the ion-inertial scale region. Causing bumps, the waves should develop large amplitudes on the

background of general turbulence, i.e. causing intermittency. This requires the presence of a substantial amount of unidentified

free energy, for instance in the form of intense plasma beams, which are very well known in relation to collisionless shocks both20

upstream and downstream (cf., e.g., Balogh & Treumann, 2013). If kinetic Alfvén waves are unambiguously confirmed, the

inner solar wind at . 0.6 AU must be subject to the continuous presence of small scale collisionless shocks, a not unreasonable

assumption which would be supported by observation of sporadic nonthermal coronal radio emissions (type I through type IV

solar radio bursts).

In the present note we take a completely different model independent point of view avoiding reference to any superimposed25

plasma instabilities or intermittency (e.g., Chen et al., 2014b). We do not develop any “new theory” of turbulence. Instead,

we remain in the realm of turbulent fluctuations, asking for the effect of ion inertia, respectively ion-demagnetisation in the

ion-inertial Hall-MHD range, on the shape of the inertial-range power spectral density which will be illustrated referring to a

few selected observations. To demonstrate pressure balance we refer to related magnetic power spectra, both measured in situ

aboard spacecraft which require a rather sophisticated instrumentation. Those measurements were anticipated by indirectly30

inferred density spectra in the solar wind (Woo, 1981; Coles & Filice, 1985; Bourgeois et al., 1985) and the interstellar plasma

(Coles, 1978; Armstrong et al., 1981, 1990) from detection of ground based radio scintillations.

In the next section we discuss the response of demagnetised ions to the presence of turbulence on scales between the ion

and electron inertial lengths. This response we interpret as the consequence of electric field fluctuations in relation to the

turbulent velocity field. Requirement of charge neutrality maps them to the density field via Poisson’s equation. The additional35
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contribution of the Hall effect can be separated. We then refer to turbulence theory, assuming that the mechanical inertial-range

velocity turbulence spectrum is either Kolmogorov (K) or Iroshnikov-Kraichnan (IK) and, in a fast streaming solar wind under

relatively weak conditions (Treumann et al., 2018), maps from wavenumber k into a stationary observer’s frequency ωs space

via Taylor’s hypothesis (Taylor, 1938).

In order to be more general, we split the mean flow velocity into bulk V 0 and large eddy U0 velocities, the latter known5

(Tennekes, 1975) to cause Doppler broadening of the local velocity spectrum at fixed wavenumber (reviewed and backed by

numerical simulations by Fung et al., 1992; Kaneda, 1993). Imposing the theoretical K or IK inertial range spectra, we then

find the deformed power density spectra of density turbulence versus spacecraft frequency. We apply these to some observed

spectral density bumps which we check on a measured magnetic power spectrum for pressure balance. The results are tabulated.

Since bumpy spectra are rather rare, we also consider two more “normal” bumpless though deformed density-power spectra10

which exhibit some typical spectral flattening and were obtained under different solar wind conditions. The letter concludes

with a brief discussion of the results.

2 Inertial range ion response

Our main question concerns the cause of the occasionally observed scale-limited bumps in the turbulent density power spectra,

in particular their deviation from the expected monotonic inertial range power law decay towards high wavenumbers prior to15

entering the presumable dissipation range.

2.1 Electric field fluctuations in the ion-inertial range

The steep decay of the normalised fluctuations in ion temperature above frequencies > 10−1 Hz is certainly due to the drop in

ion dynamics at frequencies close to and exceeding the ion cyclotron frequency, which at 1 AU distance from the sun is of the

order of fci = ωci/2π ∼ 1 Hz for a nominal magnetic field of ∼ 10 nT. In this range we enter the (dissipationless) ion inertial20

or Hall (electron-MHD) domain where ions demagnetise, currents are carried by magnetised electrons, both species decouple

magnetically and Hall current arise. At those frequencies, far below the electron fe = ωe/2π ∼ 35 kHz and (assuming protons)

ion fi = ωi/2π ∼ 0.8 kHz plasma frequencies, ions and electrons couple mainly through the condition of quasi-neutrality, i.e.

via the turbulent induction electric field which becomes2

δE = − δV ⊥×B0− (V 0 +U0)× δB−25

− 1

eN0
B0× δJ + (2)

+
〈
δV × δB+

1

eN0
δJ ×

(δN
N0

B0− δB
)〉

2This equation is easily obtained by standard methods when splitting the fields in the ideal (collisionless) Hall-MHD Ohm’s law E =−V ×B+

(1/eN)J ×B with E,B,V,J electric, magnetic, and current fields, respectively, into mean (index 0) and fluctuating fields according to E =E0 + δE

etc.; averaging over the fluctuation scales, with 〈. . .〉 indicating the averaging procedure, yields the mean field electric field equation. Subtracting it from the

original equation produces the wanted expression of the turbulent electric fluctuations δE through the mean and fluctuating velocity and magnetic fields.
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For later use, we split the main velocity field 〈V 〉= V0 +U0 into the bulk flow (convection) V 0 and an advection velocity

U0. The latter is the mean velocity of a small number of large eddies which carry the main energy of the turbulence. Even for

stationary turbulence they advect the bulk of small-scale eddies around at speed U0 (Tennekes, 1975; Fung et al., 1992).

The last three averaged nonlinear terms within the angular brackets 〈. . .〉 on the right are the nonlinear contributions of

the fluctuations to the mean fields yielding an electromotive force which contributes to mean field processes like convection,5

dynamo action, and turbulent diffusion. They vary only on the large mean-field scale. On the fluctuation scale they are constant

and can be dropped, unless the turbulence is bounded, in which case boundary effects must be taken into account at the large

scales of the system. Generally, in the solar wind this is not the case. The remaining three linear terms distinguish between

directions parallel and perpendicular to the main magnetic field B0. The third linear term being the genuine perpendicular

Hall contribution. From Ampere’s law for the current fluctuation µ0δJ =∇× δB we have for the perpendicular and parallel10

components of the turbulent electric field

δE⊥ = B0×
[
δV ⊥−

U0‖

B0
δB⊥−

− 1

eµ0N0

(
∇× δB

)
⊥

]
−U0⊥× δB‖ (3)

δE‖ = − U0⊥× δB⊥ ===⇒ 0

The second of these equations is of no interest, because the low frequency parallel electric field its right-hand side produces is15

readily compensated by electron displacements along B0.

This leaves us with the fluctuating perpendicular induction field in the first Eq. (3). Here, any parallel advectionU0‖ attributes

to the perpendicular velocity fluctuations from perpendicular magnetic fluctuations δB⊥. On the other hand, any present

parallel compressive magnetic fluctuations δB‖ =B0(δB‖/B0) add through perpendicular advection U0⊥. In their absence,

when the magnetic field is non-compressive, the last term disappears.20

The complete Hall contribution to the electric field, viz. the last term in the brackets in Eq. (3), can be written as

δEH
⊥ =− B0

eµ0N0

(
∇⊥δB‖−∇‖δB⊥

)
(4)

Even for U0‖ = 0 it contributes through the turbulent fluctuations in the magnetic field. As both these contributions depend

only on δB we can isolate them for separate consideration. One observes that, in the absence of any compressive magnetic

components δB‖ and homogeneity along the mean field ∇‖ = 0, there is no contribution of the turbulent Hall term to the25

electric induction field. In that case only velocity turbulence contributes. Below we consider this important case.

2.2 Relation to density fluctuations: Poisson’s equation

Let us assume that advection by large-scale energy-carrying eddies is perpendicular U0 =U0⊥, and there are no compressive

magnetic fluctuations δB‖ = 0. In Eq. (2) this reduces to considering only the first term containing the velocity fluctuations.

We ask for its effect on the density fluctuations in the ion-inertial domain on scales where the ions demagnetise.30

On scales in the ion-inertial range shorter than either the ion thermal gyroradius ρi = vi/ωci or – depending on the direction

to the mean magnetic field B0 and the value of plasma beta β = 2µ0N0T0/B
2
0 , with ωci = eB0/mi ion cyclotron and ωi =
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e
√
N0/ε0mi ion plasma frequency, respectively – inertial length λi = c/ωi, the ions demagnetise. Being non-magnetic, they

do not distinguish between potential and induction electric fields. They experience the induction field caused by the spectrum

of velocity fluctuations as an external electric field which, in an electron-proton plasma, causes a charge density fluctuation

eδNi = eδNe and thus a density fluctuation δN . Poisson’s equation implies that

∇ · δE =
e

ε0
δN ===⇒ ik · δEk =

e

ε0
δNk (5)5

The right expression is its Fourier transform. For completeness we note that the Hall contribution to the Poisson equation in

Fourier space reads

ik⊥ · δEH
⊥k =

B0

eµ0N0

(
k2⊥δB‖k− k‖k⊥ · δB⊥k

)
=

e

ε0
δNH

k (6)

Again it becomes obvious that absence of parallel (compressive) magnetic turbulence eliminates the first term in this expression

while purely perpendicular propagation eliminates the second term. Alfvénic turbulence, for instance, with δB‖ = 0 and k⊥ = 010

has no Hall-effect on the modulation of the density spectrum, a fact which is well known. On the other hand, for perpendicular

wavenumbers k = k⊥ only compressive Hall-magnetic fluctuations δB‖k⊥ contribute to the Hall-fluctuations in the density

δNH
k⊥

.

2.3 Relation between density and velocity power spectra

We are interested in the power spectrum of the turbulent density fluctuations in the proper frame of the turbulence.15

Multiplication of the only remaining first term in the electric induction field Eq. (3) with wavenumber k selects wavenumbers

k⊥ perpendicular to B0. Combination of Eq. (2) and the Poisson equation then yields an expression for the power spectrum of

the turbulent density fluctuations3 in wavenumber space

〈|δN |2〉k⊥ =
(ε0B0

e

)2
k2⊥〈|δV |2〉k⊥ (7)

Angular brackets again symbolise spatial averaging over the fluctuation scale. The functional dependence on wavenumber is20

indicated by the index k⊥. It is obvious that the power spectrum of density fluctuations in the ion-inertial Hall MHD domain is

completely determined by the power spectrum of the turbulent velocity.4 This can be written as

〈|δN |2〉k⊥
N2

0

=
(VA
c

)2(k⊥
ωi

)2
〈|δV |2〉k⊥

(8)
=
〈|δV |2〉k⊥

c2

(VA
c

)2(
k⊥λi

)2
25

where V 2
A =B2

0/µ0miN0 is the squared Alfvén speed, and ω2
i = e2N0/ε0mi is the squared proton plasma frequency. As

expected, in order to contribute to density fluctuations, perpendicular scales λ⊥ < λi smaller than the ion inertial length λi =
3The procedure of obtaining the power spectrum is standard. So we skip the formal steps which lead to this expression.
4One may object that, at smaller wavenumbers outside the ion-inertial range, this would also be the case, which is true. There reference to the continuity

equation, for advection speeds U0 6= 0, yields 〈|δN |2〉k =N2
0 〈|k ·δV |2〉k/(k ·U0)2, which is obtained without reference to Poisson’s equation. However,

its dependence on wave number is different and, in addition, it is undefined for vanishing advection. In the absence of advection the density spectrum is

determined from the equation of motion by simple pressure balance.
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Figure 2. The range of permitted values of k⊥λi as function of βe for different ratios Te/Ti. Only the range above the lines is relevant.

The region below the solid line for Te/Ti = 1 should be generally forbidden though the ion temperature may occasionally be large for some

unknown reason if for instance ion heating is locally strong. At larger temperature ratios the inaccessible region expands upward. In the solar

wind the temperature ratio is usually between the solid and dashed lines but mostly closer to the dashed, depending on the exact value of βe.

c/ωi are required, while in the long-wavelength range k⊥λi < 1 there is no effect on the spectrum. This is in agreement with

the assumption that any spectral modification is expected only in the ion inertial range.

The last equation is the main formal result. It is the wanted relation between the power spectra of density and velocity

fluctuations. It contains the response of the unmagnetised ions to the mechanical turbulence.

2.4 Affected scale range5

The density response demand that the ions are unmagnetised. This implies that k⊥ρi < 1, where ρi = vi/ωci = λivi/VA is the

ion gyroradius, with vi the thermal speed. Thus we have two conditions which must simultaneously be satisfied

k⊥λi > 1 and k⊥λi >
VA
vi
≡ β−

1
2

i (9)
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For VA < vi the second condition is trivial. This is, however, a rare case. So the more realistic restriction is the opposite

small ion-beta case when VA > vi and hence βi < 1. It must, however, be combined with another condition which requires

that the wavenumbers should be smaller than the inverse electron gyroradius ρe = ve/ωce. The relation between ρe and ρi is

ρ2e/ρ
2
i =meTe/miTi. Moreover we have ρi/λi = vi/VA and in addition βi = v2i /V

2
A = (Ti/Te)βe. Using all these relations

we obtain finally that5

1< k2⊥λ
2
iβi <

mi

me

Ti
Te

for βi < 1 (10)

This expression defines the marginal condition for the existence of a range in wavenumbers where the ions respond to the

spectrum of the turbulent electric field δE

Ti
Te

&
me

mi
∼ 0.001 (11)

Because of the smallness of the right-hand side this is a weak restriction. As expected, any effect on the density power spectrum10

will disappear at wavenumbers k⊥ρe where the electrons demagnetise. On the other hand, the lower wavenumber limit is a

sensitive function of the external conditions. This becomes clear when writing it in the form

Te/Tiβe < k2⊥λ
2
i (12)

The electron plasma beta in the solar wind is of order βe &O(1). However, the temperature ratio Te/Ti is variable and usually

large, varying between a few and a few tens. Thus usually βi < 1. Figure 2 shows a graph of this dependence.15

2.5 Application to K and IK inertial range models of turbulence

The power spectrum of the Poisson-modified ion-inertial range density turbulence can be inferred, once the power spectral

density of the velocity is given. This spectrum must either be known a priori or requires reference to some model of turbulence.

Ourselves, we do not develop any model of turbulence here. In application to the solar wind we just make, in the following,

use of the Kolmogorov (K) spectrum (or its anisotropic extension by Goldreich & Sridhar, 1995, abbreviated KGS) but will20

also refer to the Iroshnikov-Kraichnan (IK) spectrum which both have previously been found to be of relevance in solar wind

turbulence.

We shall make use of those spectra in two forms: the original ones which just assume stationarity and absence of any

bulk flows, and their modified advected extensions. The latter account for a distinction between a small number of large

energy-carrying eddies with mean eddy vortex speed U0 and bulk turbulence consisting of large numbers of small energy-25

poor eddies which are frozen to the large eddies. The large eddies stir the small-scale turbulence forcing it into advective

motion (Tennekes, 1975). This causes Doppler broadening of the wavenumber spectrum at fixed k and has been confirmed by

numerical simulations (Fung et al., 1992; Kaneda, 1993). Below, it will be found that this advection cannot be resolved in bulk

convective flow which buries the subtle effect of Doppler broadening. A probable counter example is shown in Fig. 5.

The stationary velocity spectrum of turbulent eddies at energy injection rate ε exhibits a broad inertial power law range in30

k (Kolmogorov, 1941a, b, 1962; Obukhov, 1941) which, between injection kin and dissipation at kd wavenumbers, obeys the

9



famous isotropic Kolmogorov power spectral density law in wavenumber space

〈∣∣δV ∣∣2〉
k
≡ EK(k) = CKε

2
3 k−

5
3 for kin < k < kd (13)

with CK ≈ 1.65 Kolmogorov’s constant of proportionality (as determined by Gotoh & Fukayama, 2001, using numerical

simulations). Clearly, when in a fast streaming solar wind straighforwardly mapping this K spectrum by the Taylor hypoth-

esis (Taylor, 1938) into the stationary spacecraft frame, the spectral index is unchanged, and one trivially recovers the ω−
5
3

s5

Kolmogorov slope in frequency space.

This changes drastically, when referring to an advected K spectrum of velocity turbulence (Fung et al., 1992; Kaneda, 1993)

which yields the above mentioned spectral Doppler broadening at fixed k

Eadkωk
=

1

2

EK(k)√
2πkU0

∑
±

exp
[
− 1

2

ω2
±

(kU0)2

]
, ω± = ωk ± `Kk

2
3 (14)

which is due to decorrelation of the small eddies in advective transport, with `K ∼O(1) some constant. The k
2
3 dependence10

in the argument of the exponential results from advection k · δV of neighbouring eddies at velocity of δV ∝ k− 1
3 (Tennekes,

1975; Fung et al., 1992). The frequency ωk stands for the internal dependence of the turbulent frequency on the turbulent

wavenumber k. It can be understood as an internal “turbulent dispersion relation” which in turbulence theory is neglected.5

Then the advected power spectrum at large k is power law

Eadkωk
∝ EK(k)

k
exp

(
− 1

2 cos
2 γk

)
∼ k− 8

3 , ω± ≈ k ·U0 = kU0 cos γk (15)15

In the stationary turbulence frame the power spectrum of turbulence in the velocity decays ∝ k− 8
3 with non-Kolmogorov

spectral index 8
3 ≈ 2.7.

It is of interest to note that solar wind turbulent power spectra at high frequency repeatedly obey spectral indices very

close to this number. Boldly referring to Taylor’s hypothesis where ωs ∝ k, one might conclude that a convective flow in this

spectral range maps the advected turbulent K-spectrum into the spacecraft frame where it appears as an ω−
8
3

s spectrum. If this20

is true, then the corresponding observed spectral transition (or break point) from the spectral K-index ∼ 5
3 to the steeper index

∼ 8
3 observed in the high-wave number power spectra indicates the division between the large-scale energy-carrying energy-

rich turbulent eddies and the bulk of energy-poor small-scale eddies in the mechanical turbulence. It thus provides a simple

explanation of the change in spectral index from K to advected K . 1.7→. 3 without invoking any sophisticated turbulence

theory or else as well as no effects of dissipation.25

5The notion of a “turbulent dispersion relation” is alien to turbulence theory which refers to stationary turbulence, conveniently collecting any temporal

changes under the loosely defined term intermittency. However, observation of stationary turbulence shows that eddies come and go on an internal timescale,

which stationary theory integrates out. In Fourier representation this corresponds to an integration of the spectral density S(ωk,k) with respect to frequency ωk

(cf., e.g., Biskamp, 2003) which leaves only the wavenumber dependence. The spectral density S occupies a volume in (ω,k)-space. Resolved for ω = ωk(k)

it yields a complex multiply connected surface, the “turbulent dispersion relation”, which has nothing in common with a linear dispersion relation resulting

from the solution of a linear eigenmode wave equation. It contains the dependence of Fourier frequency ωk on Fourier wavenumber k. Though this should be

common sense, we feel obliged to note this here because of the confusion caused when speaking about a “dispersion relation” in turbulence.

10



Inspecting the behaviour in the long wavelength range, one finds that the exponential dependence exp(−`2K/U2
0 k

2
3 ) sup-

presses the spectrum here. This flattens the inertial range spectrum towards small wavenumbers kin into the large eddy range

where it causes bending of the spectrum. The wavenumber at spectral maximum is

kmin . `3K/16U
3
0

√
2 (16)

Below kin Kolmogorov inertial range theory does not apply. Approaching from Kolmogorov inertial range towards smaller k,5

one observes flattening until kmin < kin . In most cases this point lies outside the observation range.

In the stationary turbulence frame the frequency spectrum is obtained when integrated with respect to k (Biskamp, 2003). It

then maps the Doppler broadened advected velocity power spectrum (Fung et al., 1992; Kaneda, 1993) to the Kolmogorov law

in the source region frequency space:

kd∫
kin

dk Eadkωk
∼ EadK (ω) ∝ ω−

5
3 (17)10

This mapping is independent on Taylor’s hypothesis. It applies strictly only to the turbulent reference frame. When attempting

to map it into the spacecraft frame via Taylor’s-Galilei transformation, referring to solar wind flow at finite V0 6= 0, one must

return to its wave number representation Eq. (14). This transformation, though straightforward, is obscured by the appearance

of k in the exponential through ω±. According to Taylor the turbulence frame frequency transforms like

ωk = ωs− kV0 cosα. α= ∠(k,V 0) (18)15

This is Taylor’s Galilei transformation. Neglecting ωk implies ωs = kV0 cos α. The exponential reduces to

exp
[
− 1

4

(ωk + kV0 cos α± `Kk
2
3

kU0

)2]
= exp

[
− 1

4(kλi)
2
3

(λ 1
3
i `K
U0

)2]
−→ 1− 1

4(kλi)
2
3

(λ 1
3
i `K
U0

)2
(19)

λ
1
3
i `/U0 = UK` /U0 is a velocity ratio. The arrow holds for the ion-inertial range kλi > 1 and UK` /U0 < 1. The exponential

expression leads to an advected K spectrum as observed by the spacecraft in frequency space

Eadωs
∝ ω−

8
3

s exp
[
− 1

4

(V0 cos α
ωsλi

) 2
3
(UK`
U0

)2]
(20)20

which for large ωs is of spectral index 8
3 . With decreasing spacecraft frequency ωs the exponential correction factor acts

decreasing on the spectrum. This corresponds to a spectral flattening towards smaller ωs. It might even cause a spectral dip,

depending on the parameters and velocities involved. The effect is strongest for aligned streaming and eddy wavenumber. For

α= 90◦ one recovers the index 8
3 .

It is most interesting that spectral broadening, when transformed into the spacecraft frame in streaming turbulence causes25

a difference that strong between the original Kolmogorov and the advected Kolmogorov spectrum. This spectral behaviour is

still independent on the Poisson modification which we are going to investigate in the next section.
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3 Ion-inertial-range density power spectrum

Here we apply the Poisson modified expressions to the theoretical inertial range K and IK turbulence models. We concentrate

on the inertial range K spectrum and rewrite the result subsequently to the IK spectrum.

3.1 Inertial range K and IK density power spectrum

For the simple inertial range K spectrum we have from Eq. (21) and Eq. (13) that5

〈|δN |2〉k⊥ = CK

(ε0B0

e

)2
ε

2
3 k

1
3

⊥ for k⊥in < k⊥ < k⊥d (21)

This is a very simple wavenumber dependence of the power spectrum of density turbulence, permitting (Treumann et al., 2018)

Taylor-Galilei transformation into the spacecraft frame. Setting k⊥ = ωs/V0 cos α we immediately obtain that

〈|δN |2〉k⊥ ∝ ω
1
3
s (22)

with factor of proportionality CK(ε0B0/e)
2(ε2/V0 cos α)

1
3 .10

Following exactly the same reasoning when dealing with the IK spectrum, which has power index 3
2 , we obtain that

〈|δN |2〉k⊥ ∝ ω
1
2
s (23)

Hence, the effect of the Poisson response of the plasma to the inertial range power spectra of K and IK turbulence in the velocity

is to generate a positive slope in the density power spectrum when Taylor-Galilei transformed into the spacecraft frame.

We now proceed to the investigation of the effect of advection.15

3.2 Advected Poisson modified spectrum at V0 = 0

Use of the advected power spectral density Eq. (14) of the velocity field for V0 = 0 in the transformed Poisson equation,

with k→ k⊥ perpendicular to the mean magnetic field B0, yields for the non-convected advected turbulent ion-inertial range

Poisson-modified density-power spectrum in the stationary large-eddy turbulence frame,

〈|δN |2〉adωkk⊥
=

ε20B
2
0

e2
k2⊥〈|δV |2〉ωkk⊥20

=
ε20B

2
0

e2
k2⊥Eadk⊥ωk

(24)

∝ k
− 2

3

⊥

∑
±

exp
[
− 1

2

ω2
±

(kU0)2

]
Integration with respect to k⊥ under the above assumption on ω± ≈ k⊥U0 yields for the Eulerian (Fung et al., 1992) density

power spectrum in frequency space ω` < ω < ωu in the ion-inertial domain of the turbulent inertial range :

〈|δN |2〉adω ∼ ω
1
3 , k

2
3
ir ε

1
3 = ω` < ω < ωu (25)25

This is the proper frequency dependence of the advected turbulent density spectrum in the turbulence frame. Here kir ≈ 2πωi/c

(or 2πvi/ωci ) is the wavenumber presumably corresponding to the lower end of the ion inertial range. The upper bound on the

12



frequency ωu remains undetermined. One assumption would be that ωu is the lower hybrid frequency which is intermediate

to the ion and electron cyclotron frequencies. At this frequency electrons become capable of discharging the electric induction

field thus breaking the spectrum to return to its Kolmogorov slope at increasing frequency.

In contrast to the Kolmogorov law the Poisson-mediated proper advected density power spectrum Eq. (28) increases with

frequency in the proper stationary frame of the turbulence. This increase is restricted to that part of the inertial K range which5

corresponds to the ion-inertial scale and frequency range.

The case of an IK spectrum leads to an advected velocity spectrum

〈|δV |2〉ωkk⊥ ∝ k
− 3

2

⊥ (26)

which yields

〈|δN |2〉adωkk⊥
∝ k−

1
2

⊥

∑
±

exp
[
− 1

2

ω2
±

(kU0)2

]
, ω± = ωk ± `IKk

3
4

⊥ (27)10

Integration with respect to k⊥ then gives the proper advected frequency spectrum in the stationary frame of IK turbulence

〈|δN |2〉adω ∼ ω
1
2 (28)

This proper IK density spectrum increases with frequency like the root of the proper frequency.

3.3 Taylor-Galilei transformed Poisson modified advected spectra

Turning to the fast streaming solar wind we find with k⊥ = ωs/V0 cosα for the Poisson modified advected and convected K15

density spectrum

〈|δN |2〉K,adωs
∝ ω−

2
3

s exp
[
− 1

4

(V0 cos α
ωsλi

) 2
3
(UK`
U0

)2]
(29)

where we again neglected the proper frequency dependence. This Taylor-Galilei transformed density spectrum decays with

increasing frequency albeit at a weak power ∼ 2
3 . At large frequency ωs the exponential is one, and the spectrum becomes

∝ ω−
2
3

s . Towards smaller ωs the spectrum flattens and assumes its maximum at20

ωK
sm =

3

8

(V0 cosα
λi

)(UK`
U0

)3
(30)

The same reasoning produces for the Poisson modified advected IK spectrum the Taylor-Galilei transformed spacecraft

frequency spectrum

〈|δN |2〉IK ,adωs
∝ ω−

1
2

s exp
[
− 1

4

(V0 cos α
ωsλi

) 3
4
(U IK`
U0

)2]
(31)25

Both advected K and IK spectra have negative slopes in spacecraft frequency ωs. Like in the case of a K spectrum, this spectrum

approaches its steepest slope 1
2 at large spacecraft frequencies ωs, while in the direction of small frequencies it flattens out to
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assume its maximum value at

ωIK
m =

(7
8

V0 cos α

λi

) 3
2
(U IK`
U0

)3
(32)

In both cases of advected K and IK spectra the Taylor-Galilei transformation from the proper frame of turbulence into the space-

craft frame is permitted because it applies to the velocity and density spectra (Treumann et al., 2018). It maps the wavenumber

spectrum into the spacecraft frame frequency spectrum. However, in both cases we recover frequency spectra which decrease5

with frequency though weakly approaching steepest slope at large frequencies. They flatten out towards low frequencies and

may assume maxima if only these maxima are still in the inertial range of the advected K or IK spectrum. Only in this case the

spacecraft frequency spectrum exhibits a bump at their nominal maximum frequencies ωsm. Whence the maximum frequency

falls outside the ion-inertial range the bump will be absent, while the spectrum will be flatter than at large frequencies. Such

flattened bumpless spectra have been observed. The next subsections provides examples of observed bumpy and bumpless10

spectra in the spacecraft frequency frame.

4 Application to selected observations in the solar wind

In the following two subsections we apply the above theory to real observations made in situ in the solar wind. We first consider

density power spectra exhibiting well expressed spectral bumps of positive slope. We then show two examples where no bump

is present but the power spectra exhibit a scale limited excess and consequently a scale limited spectral flattening.15

4.1 Observed bumpy solar wind power spectra of turbulent density

Figure 3 is an example of a density spectrum with respect to spacecraft frequency which exhibits a positive slope (or bump)

on the otherwise negative slope of the main spectrum. The data in this figure were taken from published spectra (Šafránková

et al., 2013) in the solar wind at an average bulk velocity fo V0 ≈ 534 km s−1, density N0 ≈ 3× 106 m−3, magnetic field

B0 ≈ 8 nT, yielding a super-alfvénic Alfvén Mach number MA ≈ 6, ion temperature Ti . 3 eV, and total plasma β ≈ 0.3, i.e.20

low-beta conditions. The straight solid and broken lines drawn across this slope correspond to the predicted∼ ω 1
3 K and∼ ω 1

2

IK slopes under convection dominated conditions. Both these lines fit the shape very well though it cannot be decided which

of the inertial range turbulence models provides a better fit, as the large scatter of the data mimicked by the line width inhibits

any distinction. It is however obvious from Table 1 that advection plays no role in this case.

In order to check pressure balance between the density and magnetic field fluctuations, we refer to turbulent magnetic power25

spectra obtained at the WIND spacecraft Šafránková et al. (2013). WIND was located in the L1 Lagrange point. Magnetic

field fluctuations were related in time to the BMSW observations by the solar wind flow. In spite of their scatter, the data were

sufficiently stationary for comparison to the density measurements.

Figure 4 shows the Wind magnetic power spectral densities. For transformation of the point cloud into a continuous line we

applied the same technique (Šafránková et al., 2016) as to the density spectrum. The spectrum exhibits the expected positive30

slope in the BMSW frequency interval. The straight solid and broken lines along the positive slope correspond (within the
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Table 1. K and IK ion inertial range spectral indices k−a, k−(a−2), ωb
s, EBs ∼ ωb/2

s without and with advection

〈|δV |2〉 a a− 2 b b/2

EK 5
3

− 1
3

1
3

1
6

EadK 8
3

2
3

− 2
3

− 1
6

EIK 3
2

− 1
2

1
2

1
4

EadIK 5
2

1
2

− 1
2

− 1
4

uncertainty of the observations) to the root-slopes of K and IK density inertial range spectra 〈|δB|2〉ωs
∼ ω

1
6
s respectively

∼ ω
1
4
s . The magnetic spectrum is the consequence of the K or IK density spectrum ∼ ω

1
3
s respectively ∼ ω

1
2
s . Fluctuations in

temperature do, within experimental uncertainty, not play any susceptible role. Comparing absolute powers is inhibited by the

ungauged differences in instrumentation.

4.2 The normal case: flattened density power spectra without bump5

The majority of observed density power spectra in the solar wind do not exhibit positive slopes. Such spectra are of monotonic

negative slope. In this sense they are normal. They frequently possess break points in an intermediate range where the slopes

flatten. Two typical examples are shown in Fig. 5 combined from unrelated BMSW and WIND data (Šafránková et al., 2013;

Podesta & Borovsky, 2010).

Their flattened spectral intervals each extend roughly over one decade in frequency. The BMSW spectrum is shifted by one10

order of magnitude in frequency to higher frequencies than the WIND spectrum. Its low-frequency part below the ion-cyclotron

frequency f < fci has slope ∼ ω− 7
4 close to a K-spectrum ∼ ω− 5

3 . The slope of the flat section is ∼ ω−1 which is about the

same as the slope of the entire low frequency WIND spectrum before its spectral break. None of the Poisson-modified K or

IK spectral slopes fit this flattened regions. At higher frequencies the BMSW spectrum steepens and presumably enters the

dissipative range.15

The slope of the WIND spectrum above its break point at frequency ∼ 10−2 Hz decreases to ∼ ω− 1
2 . This corresponds

perfectly to an advected Taylor-Galilei transformed IK spectrum, suggesting that WIND detected such a spectrum in the

ion-inertial range which maps to those spacecraft frequencies. The pronounced ω−1 spectrum at lower frequencies remains,

however, unexplained for both spacecraft.

When crossing the cyclotron frequency fci the WIND spectrum steepens. We also note that the normalised power spectral20

densities of WIND at 〈|δN |2〉/N2
0 > 0.3 and BMSW at 0.005< 〈|δN |2〉/N2

0 < 0.05 in the common slope ∼ ω−1 interval are

roughly two orders of magnitude apart. This can hardly be traced back to the radial difference of 0.01 AU between L1 and 1

AU.

The obvious difference between the two plasma states is not in the Mach numbers but rather in β and V0. BMSW observed

under moderately high-β-low V0, WIND under moderately low-β-high V0 conditions at similar densities and Mach numbers.25

Because of the Galileian relation k = ωs/V0 cosα, the high speed in the case of WIND seems responsible for the spectral shift
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of the ω−1s spectral range to lower than BMSW frequencies. This, however comes up merely for a factor 2 which does not

cover the frequency shift of more than one order of magnitude. Rather it is the angle between mean speed and wavenumber

spectrum which displaces the spectra in frequency. If this is the case, then the WIND spectrum was about parallel to the solar

wind velocity with WIND angle α≈ 0◦, while the BMSW spectrum was close to perpendicular with angle α≈ 90◦, and it

is the BMSW spectrum which has been Taylor-Galilei shifted into the high-frequency domain, while the WIND spectrum is5

about original. This may also be the reason why BMSW does not see the narrow flattened spectral part while compressing the

ω−1s part into just one order of magnitude in frequency. The near perpendicular angle α will be confirmed below also in the

bumpy BMSW spectral case.

5 Discussion

In this communication we dealt with the power spectra of density in low frequency plasma turbulence. We did not develop10

any new theory of turbulence. We showed that, in the ion-inertial scale range of non-magnetised ions, the electric response

of the ion population to a given theoretical turbulent K or IK spectrum of velocity may contribute to a scale-limited excess

in the density fluctuation spectrum with positive or flattened slope. We demonstrated that the obtained inertial range spectral

slopes within experimental uncertainty are not in disagreement with observations in the solar wind, but we could not decide

between the models of turbulence. This may be considered a minor contribution only, it shows however, that correct inclusion15

of the electrodynamic transformation property is important and suffices to reproduce an observational fact without any need to

invoke higher order interactions, nor any instability, nor nonlinear theory. We also inferred the limitations and scale ranges for

the response to cause an effect. However, a substantial number of unsolved problems remain. Below we discuss some of them.

5.1 Reconciling the spectral range

The main problem concerns the agreement with observations. Determination and confirmation of spectral slopes is a necessary20

condition. However, how to adjust the observed frequency range?

Inspecting Fig. 3 where we included the local ion cyclotron frequency fci = ωci/2π finds the scale-limited positive slope

(bump) of the density power spectrum at spacecraft frequencies fm ∼ ωm < ωci ∼ 0.22 Hz. According to Taylor we have

ωm = kmV0 cosαm, and also kmλi > 1 (33)

where αm is the angle between km and velocity V 0, and λi = c/ωi. The first expressions yields a Taylor-Galilei transformed25

wavenumber km ∼ 2.3×10−6/cos αm m−1 From the second we have with the observed ion plasma frequency km ∼ 2π×10−6

m−1. Hence we find that cos αm < 0.37 or αm > 69◦. The turbulent eddies are at highly oblique angles with respect to the

flow velocity.

With angles of this kind the positive slope spectral range can be explained. The lower frequencies then correspond to

eddies which propagate nearly perpendicular. Since our theory generally restrict to wave numbers perpendicular to the ambient30

magnetic field, the eddies which contribute to the bumps are perpendicular to B0 and highly oblique with respect to the flow.
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Similar arguments apply to the high-frequency excess in the WIND observations of Fig. 5. Referring to Table 1 this excess is

explained as survival of the advected spectrum when Taylor-Galilei transformed into the spacecraft frame.

5.2 Radially convected spectra: Effect of inhomogeneity

The assumption of Taylor-Galilei transformation in the way we used it (and is generally applied to turbulent solar wind power

spectra) is valid only in stationary homogeneous turbulent flows of spatially constant plasma and field parameters,6 which in5

the solar wind is not the case. It also assumes that wave numbers k are conserved by the flow.7 Thus the above conclusion

is correct only, if the turbulence is generated locally and is transported over a distance where the radial variation of the solar

wind is negligible. If it is assumed that the turbulence is generated in the innermost heliosphere at a fraction of 1 AU (cf.,

e.g., McKenzie et al., 1995), any simple application of Taylor’s-Galilei transformation and thus the above interpretation break

down.10

Under the fast flow conditions of Fig. 3 it is reasonable to assume that the solar wind expands isentropically, denoting the

turbulent source and spacecraft locations by indices q,s, respectively. The turbulent inertial range is assumed collisionless,

dissipationless, and in ideal gas conditions. For simplicity assume that the expansion is stationary and purely radial. Under

Taylor’s assumption each eddy maintains its identity, which implies that the number of eddies is constant, and the eddy flux

Fs(rs)/Fq(rq) = r2q/r
2
s , i.e. the turbulent power decreases as the square of the radius. For the plasma we have the isentropic15

condition (e.g., Kittel & Kroemer, 1980, p. 174)

Ts(rs)

Tq(rq)
=
[Ns(rs)
Nq(rq)

]γ−1
, γ = 5

3 (34)

which givesNs(rs)/Nq(rq) =
(
rq/rs

)3
, and thus Ts(rs)/Tq(rq) =

(
rq/rs

)2
. One requires that kq > λ−1iq = ωiq(rq)/c. By the

same reasoning as in the homogeneous case one finds that

fm
fis

=
kmV0
ωis

cos αm = kqλiq
V0
c

(rq
rs

) 3
2

cos αm &
V0
c

(rq
rs

) 3
2

cos αm (35)20

inserting for the left hand side and V0 we find with rs = 1 AU that

rq <
0.1(

cos αm
) 2

3

AU (36)

We may thus conclude that under the assumption of isentropic expansion of the solar wind and Taylor-Galilei transport of

turbulent eddies from the source region to the observation site at 1 AU the generation region of the turbulent eddies which

contribute to the bump in the K or IK density power spectrum must be located close to the sun. The marginally permitted angle25

αm between wave number and mean flow is obtained putting rq = 1 AU, yielding αm > 47◦, meaning that the flow must be

oblique for the effect to develop, a conclusion already found above for homogeneous flow. These numbers are obtained under

the unproven assumption that Taylor-Galilei transport conserves turbulent wave numbers in the inhomogeneous solar wind.
6For general restrictions on its applicability already in homogeneous MHD see Treumann et al. (2018).
7This is a strong assumption. In the absence of dissipation, individual frequencies are conserved. They correspond to energy. Wave numbers correspond to

momenta which do not obey a separate conservation law.
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5.3 Ion gyroradius effect

So far we referred to the inertial length as limiting the frequency range. We now ask for the more stringent condition kρic >

1 that the responsible length is the ion gyroradius ρic = vi/ωci. In this case reference to the adiabatic conditions becomes

necessary. We also need a model of the radial variation of the solar wind magnetic field. The field inside rs = 1AU is about

radial. Magnetic flux conservation yields the Parker modelBs(rs) =Bq(rq)(rq/rs)
2. A more modern empirical model instead5

proposes a weaker radial decay of power 5
3 (for a review cf., e.g., Khabarova, 2013). With these dependences we have for

kρs(rs) = kρq(rq)
Bq(rq)

Bs(rs)

√
Tis(rs)

Tiq(rq)
= kρq(rq)

(rs
rq

) 2
3

>
(rs
rq

) 2
3

(37)

where the necessary condition kρq > 1 has been used. Referring again to the observed minimum frequency fm yields

fm
fic,s

=
kmV0
ωic,s

cos αm = kρq
V0
vi

(rs
rq

) 2
3

cos αm &
V0
vi

(rs
rq

) 2
3

cos αm (38)

Inserting for the frequency ratio fm/fic,s ∼ 0.1 and the ratio of mean to thermal velocities V0/vi ≈ 18, and setting rs = 1 AU10

we obtain for the source radius lying inside 1 AU

1 AU> rqm > 300
(
cos αm

) 3
2 (39)

which gives the result αm & 89◦ for the propagation angle obtained above. According to both these estimates eddy propagation

is required to be quasi-perpendicular to the flow. This holds under the strong condition that the wave number is conserved during

outward propagation.15

5.4 Radial variation of wavenumber in expanding solar wind

The wave number k ∼ λ−1 is an inverse wavelength. Let us assume that λ∼ r stretches linearly when the volume expands,

thereby reducing k hyperbolically. The eddies, which are frozen to the volume, also stretch linearly. In this case the power in

the second last expression becomes 1
3 . We then find instead of the last expression that

rqm .
(cos αm

18

)3
< 1 AU (40)20

This gives αm & 87◦ which is not much different from the above case. Thus one requires that the angle between the mean speed

and turbulent wavenumber is close to perpendicular in order to reconcile the lower observed limit in spacecraft frequency with

the wavenumber in the source region.

5.5 High-frequency limit for fM ∼ fce,s

We now apply a similar reasoning to the upper frequency bound ωM of the power spectral bump. Following the discussion in25

the introduction this bound maps the small-scale truncation of the ion inertial range. It coincides with the scale approaching the

electron scales, where electron inertia takes over and electrons demagnetise. The condition in this case is that kρe < 1, which

defines the maximum frequency ωM .
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With these definitions we have the following relation for the maximum wave number:

kρMe(rs) = kρMe(rq)
Bq(rq)

Bs(rs)

√
Tes(rs)

Teq(rs)
<
(rs
rq

) 2
3

(41)

From the maximum observed frequency we find with fM . fce,s

fM
fce,s

=
kMV0
ωce,s

cos αM = kρq
V0
ve

(rs
rq

) 2
3

cos αM .
V0
ve

(rs
rq

) 2
3

. 1 (42)

which, when inserting kρq . 1, adopting the main plasma parameters, and with maximum frequency fM/fce,s ∼ 1 and rs ∼ 15

AU, yields

rqM >
(V0
ve

) 3
2

AU∼ 0.05 AU (43)

Taking the two results for this case together the observations maps to an angle of propagation αm > 49◦ and places the turbulent

source close to the sun but outside 11 R� . rq . 1 AU. It occurs only, if the turbulence contains a dominant population

of eddies obeying wave number vectors k which are oblique to the mean flow velocity V 0. This is in agreement with our10

above given estimate on the theoretical limits and explains the relative rarity of its observation. Unfortunately, based on the

observations, the desired location of the turbulent source region in space cannot be localised more precisely.

5.6 The observed case: fm ∼ 0.1fM � fce,s

Reconciling the observed range of the bump poses a tantalising problem. Our theoretical approach would suggest that the

bump develops between the two cyclotron frequencies of ions and electrons in the spacecraft frame. This would correspond15

to a range of the order of the mass ratio mi/me which would be three orders of magnitude. The actually observed range

fm . fs . fM is much narrower, just one order of magnitude. Given the uncertainties of measurement and instrumentation

this can be extended at most to the root of the mass ratio, which in a proton-electron plasma amounts to a factor of fM/fs ∼ 43

only. In addition, unfortunately, the observed local maximum frequency in Fig. 3 is far less than the local electron cyclotron

frequency fM � fce,s. The affected wavenumber and frequency ranges are very narrow and at the wrong place. Thus in the20

given version the above reasoning does not apply. Already in the source region the effect must be bound to a narrow domain

in wavenumber. The mass ratio might suggest coincidence with the lower-hybrid frequency of a low-β proton-electron plasma

which, when raised to the power 3
2 , yields

rqM & 0.6 AU (44)

putting the source region substantially farther out to & 45 R�.25

The latter estimate is, however, quite speculative. Thus the narrowness of the observed bump in frequency poses a serious

problem. Its solution is not obvious. The most honest conclusion is that little can be said about the observed upper frequency

termination of the bump in Fig. 3 unless an additional assumption is made.

One may, however, argue that in a high-βi plasma the gyroradius of the ions is large. The ions are non-magnetic, but

the effect can arise only when the wavelength becomes less than the inertial length λm < λi = c/ωi. similarly the effect30
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will disappear whence the wavelength crosses the electron inertial length λM < λe = c/ωe. The ratio of these two limits is

λM/λm = fM/fm =
√
mi/me ≈ 43. This agrees approximately with the observation. This interpretation then identifies the

range of the effect in spacecraft frequency and source wavenumber with the range between electron and ion inertial lengths.

Sine both evolve radially with the ratio of the root of densities the relative spectral width should not change from source to

spacecraft. By this it becomes impossible to fix the distance between source and observer.5

In order to get an idea of it, we may assume that in the interval between the minimum and maximum frequency the spectrum

crossed the ion cyclotron frequency. Hence the corresponding wavenumber is contained in the spectrum though invisibly. This

fact, however, enables to refer to the difference in the ion inertial length scale and the ion gyroradius. The total difference in

frequency amounts to roughly one order of magnitude which is rather small. In using it we will not make a big error. The ratio

of both lengths is ρi/λi =
√
βi with βi the ion-β. In isentropic expansion the evolution of βi assuming a Parker model is10 (ρis

ρiq

λiq
λis

)2
=
βis
βiq
∝
(rq
rs

) 5
3

(45)

Moreover, from the observations it seems that βi <∼ 1 with ρi ∼ λi. The frequency ratio is fm/fM ∼ βis ∼ 0.09, as suggested

by Fig. 3, then the location of the source must be inside a shortest distance of

rq ∼ 0.24βiq AU (46)

which corresponds to the region inside < 51βiq R� from the sun. The plasma-β at the source region is not known. It requires15

the assumption of a model. Hence, up to its determination we know the distance of the source. Since it must lie inside 1 AU, we

also conclude that βiq . 4.5. This number is not unreasonable though it might be too large, as one would expect that βiq . 1

(McKenzie et al., 1995).

5.7 Summary and outlook

We considered the cases V0 = U0 = 0, V0 = 0, U0 6= 0, and V0 6= 0 for K and IK velocity spectra. The resulting spectral slopes20

are given as b in Table 1 fourth column. The input spectral power densities are EIK ,EadIK . Each yields a different ion inertial

scale range power spectrum in k-space and, consequently, also a different power law spectrum in ωs-space.

Table 1 shows that the ordinary spectra acquire positive slopes in wave number k in the frame of stationary turbulence in the

turbulence frame. However, observations of this slope in frequency undermine this conclusion, suggesting that it is the ordinary

K (IK) velocity turbulence (or if anisotropy is taken into account, the Kolmogorov-Goldreich-Sridhar KGS) spectrum in the25

ion-inertial range which then deforms the density spectrum. All advected spectra have negative slope in frequency which in

this form disagrees with observation. The obtained advected slopes in the stationary turbulence frame are too far away from

the flattest negative slope of ω−1s for being related. This implies that spacecraft observations interpreted as observing the local

stationary turbulence do not see an advected spectrum in the ion-inertial K (IK) inertial range. Their nominal K and IK slopes

are − 2
3 and − 1

2 respectively, still too far away from the observe ω−1 spectral slope. They are, however, capable of explaining30

the high-frequency spectral bump in the WIND spectrum given in Fig. ?? which has the correct advective IK spectral index

− 1
2 convected across the WIND spacecraft before spectral decay.

20



However, positive slopes or bumps are observed rarely. The more frequent case is flattened negative slopes. Such slopes are

suggested when advected spectra are convected by the fast solar wind across the spacecraft. Their nominal K and IK slopes

are − 2
3 and − 1

2 respectively, still too far away from the observe ω−1 spectral slope. They are, however, capable of explaining

the high-frequency spectral bump in the WIND spectrum given in Fig. 5 which has the correct advective IK spectral index − 1
2

convected across the WIND spacecraft before spectral decay.5

Generally the form of a distorted power spectrum in density depends on the external solar wind conditions. The reconciliation

of these with the theoretical predictions and the observation of the spectral range of the distortion is a difficult task. We have

attempted it in the discussion section above but cannot present any undisputable results as these require a more sophisticated

investigation both in theory and based on better resolutions than those which have been available to us. In particular the bending

of the power spectral density to lower frequencies requires further inquiry into theory and observation in order to identify the10

maximum point of the advected spectrum in frequency and glue the spectrum to the undisturbed K or IK inertial ranges.

We also note that so far we have not taken into account the contribution of Hall spectra. These affect the shape of the density

spectrum via the Hall magnetic field, a second order effect indeed which, however, might contribute to spectral deformation.

These Hall fields are closely related to kinetic effects in the ion-inertial range which might cause the excitation of kinetic

Alfvén waves which are believed to also contribute to deformations of the I and IK inertial range spectra in the ion-inertial15

region. We mentioned this possibility in the introduction where we pointed to the relevant publications.

Hall magnetic fields will necessarily be present on those scales for the simple reason that electrons and ions in an advected

and/or convected magnetised plasma perform independent motions which generate Hall currents to flow across the magnetic

field. These become internal turbulence generated free energy sources which could drive kinetic Alfvén waves unstable. The

effect is second order when compared with the zero order Lorentz invariance to that we have referred. Nevertheless, since the20

perpendicular scales k⊥ ∼ λ−1i for kinetic Alfvén waves do perfectly agree with the ion-inertial range their presence seems

quite natural.

Similarly, small-scale shock waves might evolve at the inferred high Mach numbers when turbulent eddies grow and steepen

in the small scale range. These necessarily become sources of electron beams, reflect ions, and transfer their energy in a kinetic-

turbulent way to the particle population. Such beams then act as sources of particular wave populations which contribute to25

turbulence preferably at kinetic scales. Inclusion of all these effects is a difficult task. It still opens a wide field for investigation

of turbulence at the kinetic scales on the ion-inertial scale.
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Figure 3. Solar wind power spectra of turbulent density fluctuations (based on BMSW data from Šafránková et al., 2013, obtained on Oct

25, 2011). Single point measurements were obtained with six Faraday cups with time resolution of 31 ms (∼ 30 Hz) under the following

solar wind conditions: density N ∼ 3× 106 m−3, mean magnetic field B0 ∼ 8 nT, bulk speed V0 ∼ 540 km/s, ion temperature Ti ∼ 10

eV, Alfvén Mach number MA ∼ 6, total β ∼ 0.3, implying dilute low β – high MA – moderately fast flow conditions. The local thermal

ion gyroradius is ρi ∼ 2.2× 104 m. The vertical indicates the local ion cyclotron fci = ωci/2π ≈ 0.15 Hz frequency. Plasma frequency is

fi = ωi/2π ≈ 400 Hz. fm,fM are the approximate minimum and maximum frequencies of the bumpy range. The data were averaged over

∼ 1200 s measuring time and subsequently filtered (cf. Šafránková et al., 2016, for the description of the data reduction). The spectrum

shown is the average spectrum with line width roughly corresponding to the largest spread of the filtered data in the logarithmic ordinate

direction and applied to the whole spectrum. The power spectrum exhibits a so-called bump at intermediate frequencies of positive slope

∼ ω
1
3 . This is in agreement with it being caused by the response of the nonmagnetic ions to the electric induction field of the turbulent

mechanical fluctuations in the solar wind velocity in Kolmogorov (K) inertial range turbulence (straight line). The dashed line corresponds

to an Iroshnikov-Kraichnan (IK) spectrum. The large scatter in the data (weight of line) inhibits distinguishing between K and IK inertial

range velocity turbulence.
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Figure 4. Solar wind power spectra of the turbulent magnetic field for the same time interval as in Figure 3 measured by the WIND spacecraft

(data from Šafránková et al., 2013) which was located in the Lagrange point L1. Line width accounts for the scatter of data. The magnetic

turbulence spectrum exhibits a deformation similar to that in the density power spectrum and same frequency interval. The positive slope

∼ ω
1
6 in the deformation confirms its origin from pressure balance. It indicates its nature being secondary to turbulence in density. The

straight (dashed) line corresponds to an K (IK) velocity spectrum. Scatter of data was substantial, inhibiting distinction between the two

cases.
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Figure 5. Two (redrawn on same scale) cases of “normal” solar wind density power spectra measured by Spektr-R-BMSW (Šafránková et

al., 2013) on Nov 10, 2011 and WIND (Podesta & Borovsky, 2010) on Jan 4-8, 1995 at different solar wind conditions. BMSW observations

of 2011 were obtained under low speed (∼ 370 km/s) moderately large total β = βi +βe ∼ 2.5, high Alfvénic Mach number MA ∼ 10,

main field B0 ∼ 5 nT conditions. Density and temperature amounted to N0 ∼ 5× 106 m−3 and Ti ∼ 10 eV, with ion cyclotron fci ∼ 0.08

Hz and plasma fi ∼ 500 Hz frequencies. WIND observations in L1 were obtained under high speed (∼ 640 km/s), βi . 1, B0 ∼ 6 nT,

N0 ∼ 3.5× 106 m−3, Ti ∼ 20≈ 0.2Te eV, MA ∼ 9 conditions with similar cyclotron and plasma frequencies. In contrast to Fig. 3 these

spectra do not exhibit regions of positive slope. Their spectral slope is interrupted by a flattened region. They share a range of spectral index

∼−1, though in different frequency intervals, while the WIND spectrum exhibits a higher-frequency range of flat slope ∼− 1
2

which is

absent in the BMSW spectrum.
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