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Myth: A partial least squares calibration model can  
never be more precise than the reference method...
Guest-buster: Peter Paash Mortensen
Ms.Chem, Ph.D. in PAT and process sampling

The Mythbuster column is always watching out for myths, old or new... In this column we get help from a friend and colleague, Peter 
Paasch Mortensen, who is an experienced industrial chemometrician. Peter has worked for 15 years at Novozymes (Denmark) and is 
now with Arla Foods (Denmark).

T
his myth usually crops up in the 
wide field of practical chemomet-
rics, when we care to validate 
a given multivariate calibration 

model. Here we skip our usual grumpy 
comments re proper validation; we shall 
here picture a calibrator who has accepted 
the basic principles of validation, which will 
then be based on independent test sets 
(test set validation).

The Mythbuster column has previously 
displayed control charts tracking total 
measurement uncertainties for a second-
ary method, in this case near infrared (NIR) 
spectroscopy. In the applied chemomet-
rics world, it is often implicitly assumed that 
differences between predicted NIR results 
and reference values are mainly associ-
ated with uncertainties in the NIR predic-
tion. However, such differences are always 
differences between two values, each with 
many error sources, which collectively add 
up to the total observed deviations. This 
always leaves the user with the question: 
which contains the major uncertainty, the 
NIR prediction or the reference measure-
ments? Only by basing our analysis on 
solid statistical descriptions of both series 
and their origin (especially with respect to 
all measurement errors involved, i.e. sam-
pling, processing, calibration, prediction 
etc.) can we allow ourselves to make firm 
conclusions that, for example, may involve 
changing the state of an industrial produc-
tion process. Who would want to do such 
a thing on anything less than well-docu-
mented evidence?

Primary analytical methods are commonly 
accepted as solid evidence but how often 
do we challenge this general assumption? 
The validity of a primary analytical method 
must mean, among other things, that it is 
under full statistical control, which again 
means that it is associated with quantified 
systematic as well as random uncertainty 

estimates. It is often assumed, with very 
weak theoretical foundation, however, that 
systematic errors are negligible for a primary 
analytical method. But this flies in the face 
of all established experience in the analyti-
cal laboratory. There is always a systematic 
bias, the question of course is... is the bias 
small enough to be acceptable?

In this column we show that even severe 
uncertainty does not harm a partial least 
squares (PLS) model as long as it is random 
in nature. But if the primary method contains 
systematic error effects (analytical bias), or 
worse, if these are not stable (sampling 
bias), any attempt to calibrate and validate 
will suffer a breakdown and become unreli-
able. Assuming that an analytical bias has 
been brought under control, there remains 
the prediction precision which most cer-
tainly can be enough of a problem in itself. 
Although always a potential killer, we shall 
here leave out the specific sampling issues 
(much covered elsewhere), except by stat-
ing categorically that they are always to be 
ignored entirely at your own peril.1

To establish proof that a primary ana-
lytical method is free from bias, it must 
be specifically tested against well-defined 
standard materials whereby it can ultimately 
be related to appropriate international or 
national standards through an unbroken 
chain of comparisons (metrological vali-
dation). Even in this case, the uncertainty 
associated with estimation of the reference 
method bias remains an essential compo-
nent of the overall measurement uncer-
tainty. We here bring a mainly visual illustra-
tion.

This problem is quite simple to simulate. 
In Figure 1, Excel was used to generate 
two series of analytical results, both with an 
average concentration = 42, with a coef-
ficient of variation (CV%) = 1 between the 
labs, which can be considered quite good:

STD = 0.418 => CV% = 
0.418 / 42 × 100% ~ 1%.

These numbers are meant to illustrate 
repeated analytical results generated over a 

       

 

Figure 1. Blue lab and red lab analytical result series, based on duplicate samples extracted for 
control purposes. A bias of 0.5 has been added to the red lab results in the summertime (green 
period). SEE between labs (unbiased) is 0.32 but during the green sub-period it increases to 0.42. 
This is barely enough to detect the bias in most cases. 

Detecting a significant bias for a reference laboratory is not easy, but its impact on production, 
calibration and validation is easy to imagine. If we accept the possibility of a non-zero bias, this will 
lead to more careful control procedure interpretations when a mismatch between lab and NIR 
predictions is observed - i.e. it may in fact not only be NIR having the problem. 

Another issue is repeatability i.e. the ability to analyse/predict the same result repeatedly within an 
acceptable narrow range. It will often be the case that a NIR prediction method actually has better 
repeatability than the relevant primary laboratory reference methods, e.g. traditional wet chemistry 
methods for example. Can a NIR PLS model actually perform better in repeatability than the relevant 
primary method? 

Let’s build an instructive PLS model (X = NIR) with Y-data displaying zero bias but with various 
levels of noise added.  

Experiment and simulations 
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Figure 1. Blue lab and red lab analytical result series, based on duplicate samples extracted for 
control purposes. A bias of 0.5 has been added to the red lab results in the summertime (green 
period). Standard error of estimate (SEE) between labs (unbiased) is 0.32 but during the green sub-
period it increases to 0.42. This is barely enough to detect the bias in most cases.

doi: 10.1255/nirn.1438



Vol. 25 No. 3  May 2014 21

m y t h b u s t e r s  i n  c h e m o m e t r i c s

year stemming from two labs (red lab and 
blue lab). Duplicate samples are extracted 
every two weeks and both labs are then 
supposedly analysing the same sample 
(barring sampling issues). In the present 
simulations, a small bias of 0.5 to the results 
of the red lab has been added during the 
“green period”. There is a very high pos-
sibility that this temporary bias would go 
unnoticed—it is here supposed to emulate 
a temporary aberrance for the blue lab dur-
ing summer time.

Detecting a significant bias for a reference 
laboratory is not easy, but its impact on pro-
duction, calibration and validation is easy to 
imagine. If we accept the possibility of a 
non-zero bias, this will lead to more care-
ful control procedure interpretations when a 
mismatch between lab and NIR predictions 
is observed—i.e. it may in fact not only be 
NIR having the problem.

Another issue is repeatability, i.e. the abil-
ity to analyse/predict the same result repeat-
edly within an acceptable narrow range. It 
will often be the case that a NIR prediction 
method actually has better repeatability 
than the relevant primary laboratory refer-
ence methods, e.g. traditional wet chemis-
try methods. Can a NIR PLS model actually 
perform better in repeatability than the rel-
evant primary method?

Let us build an instructive PLS model (X 
= NIR) with Y-data displaying zero bias but 
with various levels of noise added.

Experiment and simulations
The question at hand is how the intrinsic 
reference laboratory uncertainty will affect 
predictions and validation using PLS mod-
eling. It was decided to test the Myth: “A 
calibration can never be more precise than 
the reference analysis” using realistic simu-
lation by adding various, non-trivial levels 
of noise to the unbiased Y-data at levels of 

2%, 5% and 10% CV, respectively. (A later 
Mythbuster column will illustrate adding 
identical noise levels as above but to dis-
tinctly biased Y-data.)

One hundred and thirty-six (136) data pairs 
(FT-IR spectra) of various pharmaceutical 

products was split into a calibration set 
of 114 samples; 22 samples were picked 
from a production run by stratified random 
selection to form the test set for the pre-
sent simulations. The basic PLS model was 
based on full spectra [X] with an appropri-
ate complexity (three PLS-components, no 
outliers present); the same basic model was 
used for all noise-added simulations below.

Figure 3 shows the calibration evaluations 
for the four models illustrated above in con-
venient predicted vs reference formats. For 
the specific comparison purpose needed 
here, one may use root mean square stand-
ard error of cross validation (RMSECV ) [or 
one could use root mean standard error of 
prediction (RMSEP) based on the test—
both options are illustrated here; Figures 3 
and 4].

Adding noise to the Y data clearly dimin-
ishes the prediction performance of the 

Figure 2. Adding increasing levels of symmetric noise to the same basic PLS model.

Figure 3. PLS predictions showing predicted vs reference values for the four models in Figure 2.

Figure 4. Prediction of the independent test set (22 samples) using the same four models depicted 
in Figure 2. Test set validation shows that RMSEP only increases from 0.24 to 0.38—expressed in 
the same units as the RMSECV.
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model. RMSECV ranges from 0.30 (basic 
model, no noise added yet) to 4.36 for the 
highest noise addition (10%). Significant 
noise additions are corrupting the possibili-
ties for detailed prediction precision.

The same four models were subsequently 
also tested on the independent test set (22 
samples), with results shown in Figure 4.

The remarkable effect is that all model 
performances are now almost identical. The 
reason is obvious: the calibration consists of 
114 data pairs (X-spectrum and correspond-
ing Y-reference value) which tends to aver-
age out the added random analytical errors.

Conclusion
As long as the PLS model is built on data 
with an acceptably small analytical bias, 
prediction precision is actually smaller than 

that of a noise-prone Y-reference method. 
It may often provide robust and acceptable 
results even when the reference method is 
fraught with huge random fluctuations.

The take-home message from the guest 
buster is that PLS calibration is not sensi-
tive to high laboratory uncertainties (ran-
dom measurement noise). PLS models 
with reasonably strong X–Y correlation, to 
which is added symmetric noise (i.e. unbi-
ased noise), reveal that this type of noise 
stabilises model building and results in 
less prediction uncertainty than that which 
characterises the Y-reference uncertainties 
themselves.

Myth busted!

P.S. A later column shall address the 
identical issue when played out against the 

background of both an analytical bias (con-
stant) and one reflecting an inconstant bias 
(sampling bias). Readers can find a sneak 
preview of problems surrounding measure-
ment error effects with and without proper 
attention to specific sampling issues in Ref-
erence 2.
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