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Abstract. We describe the probabilistic physics of rarefied particle motions and deposition on rough hillslope surfaces. The

particle energy balance involves gravitational heating with conversion of potential to kinetic energy, frictional cooling associ-

ated with particle-surface collisions, and an apparent heating associated with preferential deposition of low energy particles.

Deposition probabilistically occurs with frictional cooling in relation to the distribution of particle energy states whose spatial

evolution is described by a Fokker-Planck equation. The Kirkby number Ki — defined as the ratio of gravitational heating5

to frictional cooling — sets the basic deposition behavior and the form of the probability distribution fr(r) of particle travel

distances r, a generalized Pareto distribution. The shape and scale parameters of the distribution are well-defined mechanically.

For isothermal conditions where frictional cooling matches gravitational heating plus the apparent heating due to deposition,

the distribution fr(r) is exponential. With non-isothermal conditions and small Ki this distribution is bounded and represents

rapid thermal collapse. With increasing Ki the distribution fr(r) becomes heavy-tailed and represents net particle heating.10

It may possess a finite mean and finite variance, or the mean and variance may be undefined with sufficiently large Ki . The

formulation provides key elements of the entrainment forms of the particle flux and the Exner equation, and it clarifies the

mechanisms of particle-size sorting on large talus and scree slopes. Namely, with conversion of translational to rotational ki-

netic energy, large spinning particles are less likely to be stopped by collisional friction than are small or angular particles for

the same surface roughness.15

1 Introduction

Sediment transport on steepland hillslopes involves a great range of scales of particle motions. These vary from relatively small

motions that collectively produce the slow en masse motion of disturbance driven creep (Culling, 1963; Roering et al., 1999,

2002; Gabet, 2000; Anderson, 2002; Gabet et al., 2003; Furbish, 2003; Roering, 2004; Furbish et al., 2009b, 2018a) in concert

with athermal granular creep (Houssais and Jerolmack, 2017; BenDror and Goren, 2018; Ferdowsi et al., 2018; Deshpande20

et al., 2020) to the long-distance and relatively fast en masse motions of landsliding and the rarefied motions associated with

rockfall and ravel (Kirkby and Statham, 1975; Statham, 1976; Dorren, 2003; Gabet, 2003; Roering and Gerber, 2005; Luckman,

2013; Tesson et al., 2020). Particularly in relation to long-distance motions, there is a growing interest in non-continuum
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formulations of sediment transport on hillslopes that are aimed at accommodating nonlocal transport, where the particle flux at

a hillslope position x depends on upslope conditions that influence the entrainment and motions of particles reaching x. These

formulations include explicit particle-based descriptions (Tucker and Bradley, 2010) and probabilistic descriptions (Foufoula-

Georgiou et al., 2009; Furbish and Haff, 2010; Furbish and Roering, 2013; Doane, 2018; Doane et al., 2018, 2019) of sediment

motions. Importantly, these descriptions do not hinge on satisfying a continuum-like behavior as assumed in most previous5

treatments of transport on hillslopes. Nonetheless, to date these particle-based and probabilistic descriptions of transport are

mostly kinematic in form, lacking a formal mechanical underpinning.

Herein we focus on rarefied motions of particles which, once entrained, travel downslope over the land surface. This notably

includes the dry ravel of particles down hillslopes following disturbances (Roering and Gerber, 2005; Doane, 2018; Doane et

al., 2019; Roth et al., 2020) or upon their release from obstacles (e.g., vegetation) following failure of the obstacles (Lamb et al.,10

2011, 2013; DiBiase and Lamb, 2013; DiBiase et al., 2017; Doane et al., 2018, 2019), and the motions of rock fall material over

the surfaces of talus and scree slopes (Gerber and Scheidegger, 1974; Kirkby and Statham, 1975; Statham, 1976; Dorren 2003;

Luckman, 2013) (Figure 1). By “rarefied motions” we are referring to the situation in which moving particles may frequently

interact with the surface, but rarely interact with each other. Thus, rarefied particle motions are decidedly distinct from granular

flows. Indeed, processes such as rock fall and the subsequent motions of the rock material over talus or scree slopes represent15

the archetypal case of rarefied particle motions. Nonetheless, the ideas outlined below pertaining to the motions of individual

particles may be entirely relevant to conditions that are not strictly rarefied, but where during the collective motions of many

particles (e.g., during ravel) the effects of particle-surface interactions dominate over effects of particle-particle interactions in

determining the behavior of the particles — akin to granular shear flows at high Knudsen number (Risso and Cordero, 2002;

Kumaran, 2005, 2006). We note that laboratory experiments (Kirkby and Statham, 1975; Gabet and Mendoza, 2012; Furbish et20

al., 2020a) and field-based experiments (DiBiase et al., 2017; Roth et al., 2020) designed to mimic particle motions and travel

distances on hillslopes effectively focus on rarefied conditions.

The purpose of this paper is to provide a probabilistic description of the physics of rarefied particle motions and disentrain-

ment. This involves threading together elements of statistical mechanics, concepts from granular gas theory, particle collision

mechanics, and probability distribution theory. To motivate the formalism we start in Section 2 with a probabilistic definition25

of the particle disentrainment rate and show its relation to the entrainment forms of the flux and the Exner equation, following

previous presentations (Furbish and Haff, 2010; Furbish and Roering, 2013). This highlights how the disentrainment rate de-

termines the probability distribution of travel distances, and thus connects descriptions of the flux and mass conservation with

the physics of particle motions. In Section 3 we formulate disentrainment in terms of particle energetics, where the particles

are treated as a rarefied granular gas. Ensemble averaged motions are described in terms of a balance between gravitational30

heating and frictional cooling, wherein the latter leads to deposition. We neglect entrainment. (Our choice of terminology is

based on that of granular physics as outlined in Appendix A.) The analysis in Section 4 illustrates the effects of collisional

friction in determining the basic form of the distribution of travel distances, a generalized Pareto distribution. Depending on

the balance between heating and cooling, this distribution transitions from a bounded form representing rapid thermal collapse
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Figure 1. Image of talus slope at the base of cliffs of the Bandelier Tuff showing downslope sorting of particle sizes, with the largest particles

preferentially accumulating near the base of the slope. The largest boulders in the foreground are about 1 m in diameter. As described in

the text, we suspect that with conversion of translational to rotational kinetic energy, large spinning particles are less likely to be stopped by

collisional friction than are small or angular particles for the same surface roughness, thus contributing to the sorting in this image. Image

location is at the confluence of the Rito de los Frijoles river canyon with the Rio Grande River canyon on the eastern boundary of the

Bandelier National Monument, New Mexico, USA.

to a heavy-tailed form representing net particle heating. In Section 5 we compare the formulation with previous mechanical

descriptions of disentrainment, showing both similarities and dissimilarities with these descriptions.

We emphasize that this initial phase of our work on rarefied particle motions is aimed at clarifying how particle disen-

trainment works. With this in place we will be positioned to consider effects of rarefied transport over time scales spanning

many transport events, including ensemble-averaged particle fluxes and changes in land-surface elevation as described by5

formulations of nonlocal transport. As a step in this effort we show in the second companion paper (Furbish et al., 2020a)

that the theory in this first paper is entirely consistent with data from laboratory and field-based experiments involving mea-

surements of particle travel distances on rough surfaces. These include data reported by Kirkby and Statham (1975), Gabet

and Mendoza (2012), DiBiase et al. (2017) and Roth et al. (2020), and new travel distance data from laboratory experiments
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supplemented with high-speed imaging and audio recordings that highlight effects of particle-surface collisions. Outstanding

questions concern how particle size and shape in concert with surface roughness influence the extraction of particle energy

and the likelihood of deposition. In the third companion paper (Furbish et al., 2020b) we show that the generalized Pareto

distribution in this problem is a maximum entropy distribution (Jaynes, 1957a, 1957b) constrained by a fixed energetic “cost”

— the total cumulative energy extracted by collisional friction per unit kinetic energy available during particle motions. That5

is, among all possible accessible microstates — the many different ways to arrange a great number of particles into distance

states where each arrangement satisfies the same fixed total energetic cost — the generalized Pareto distribution represents the

most probable arrangement. In the fourth companion paper (Furbish et al., 2020c) we step back and examine the philosophical

underpinning of the statistical mechanics framework for describing sediment particle motions and transport.

2 Disentrainment rate10

2.1 Continuous form

Following the presentations of Furbish and Haff (2010) and Furbish and Roering (2013), let fr(r;x) denote the probability

density function of particle travel distances r whose motions begin at position x. By definition the cumulative distribution

function is

Fr(r;x) =

r∫

0

fr(r′;x)dr′ , (1)15

where the prime denotes a variable of integration. In turn, the exceedance probability, also referred to as the survival function,

is

Rr(r;x) = 1−Fr(r;x) =

∞∫

r

fr(r′;x)dr′ . (2)

With these definitions in place we now define the spatial disentrainment rate as

Pr(r;x) =
fr(r;x)

1−Fr(r;x)
=
fr(r;x)
Rr(r;x)

, (3)20

which is a conditional probability per unit distance. Namely, upon multiplying both sides of Eq. (3) by dr, then Pr(r;x)dr =

fr(r;x)dr/Rr(r;x) is interpreted as the probability that a particle will become disentrained within the small interval r to

r+dr, given that it “survived” travel to the distance r. The disentrainment rate Pr(r;x) also may be interpreted as an inhomo-

geneous Poisson rate (Feller, 1949). Now, using the fact that fr(r;x) =−dRr(r;x)/dr, one may deduce from Eq. (3) that the

probability density fr(r;x) is given by25

fr(r;x) = Pr(r;x)e−
∫ r
0 Pr(r′;x)dr′ . (4)

Thus, according to Eq. (4), the disentrainment rate Pr(r;x) completely determines the probability density fr(r;x) of travel

distances r.
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Assuming particle motions occur only in the positive x direction, the entrainment form of the volumetric particle flux is

q(x) =

x∫

−∞

Es(x′)Rr(x−x′;x′)dx′ , (5)

where Es(x) denotes the volumetric entrainment rate at position x. In turn, letting ζ(x,t) denote the local land-surface eleva-

tion, the entrainment form of the Exner equation is (Tsujimoto, 1978; Nakagawa and Tsujiomoto, 1980)

cb
∂ζ(x,t)
∂t

=−Es(x) +

x∫

−∞

Es(x′)fr(x−x′;x′)dx′ , (6)5

where cb = 1−φs is the particle volumetric concentration of the surface with porosity φs. These probabilistic formulations

of the flux and the Exner equation have three lovely properties. They are mass conserving, they are nonlocal in form, and

they are scale independent. They illustrate that the probability density fr(r;x) of particle travel distances r and its related

survival function Rr(r;x) form the centerpiece of describing mass conservation and the particle flux. In turn, the significance

of the disentrainment rate Pr(r;x) becomes clear. This rate connects Eq. (5) and Eq. (6) to the physics of particle motions on10

a hillslope. That is, this rate, together with the entrainment rate Es(x), represent the elements in the formulation that can be

elucidated by physics.

To date, previous formulations of the disentrainment rate Pr(r;x) have envisioned a friction dominated behavior in which the

land-surface slope S(x) = |∂ζ(x)/∂x| has a primary role (Furbish and Haff, 2010; Furbish and Roering, 2013; Doane, 2018;

Doane et al., 2018a; Section 5.3). The disentrainment rate is specified as a function of the land-surface slope at the position15

of entrainment, with the idea that the slope changes over a distance much larger than the average particle travel distance.

That is, Pr(r;x) is assumed to be a determined by the slope S(x) at position x such that the distribution of travel distances

of particles entrained at x is exponential with mean µr[S(x)]. As the land-surface slope S varies with increasing downslope

distance x, the mean µr[S(x)] changes. The disentrainment rate is qualitatively consistent with limiting cases, namely, it yields

a fixed small average travel distance at zero slope, and it approaches zero in the limit of a steep critical slope beyond which20

disentrainment does not occur. However, the mechanical elements of the disentrainment rate Pr(r; ) are otherwise not explicitly

specified. We also note that Kirkby and Statham (1975) first pointed out the relation between the distribution of travel distances

and the disentrainment rate function. These authors defined a posteriori the disentrainment rate from an assumed exponential

distribution of travel distances whose mean value is expressed in terms of a Coulomb-like description of particle friction

(Section 5.1).25

2.2 Discrete form

It is valuable to recast the ideas of disentrainment above in discrete form. The motivation is this. Instead of trying to formulate

a continuous disentrainment rate function that is generally applicable to the entirety of a hillslope, we instead break it into

discrete spatial intervals, where certain physics may be more or less important in some intervals than in others. This gets us

closer to the physical ingredients of disentrainment that are occurring at different locations on a hillslope, where the mechanical30
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behavior at a location transitions to another behavior in the downslope direction. We may then combine the intervals together

as a whole.

Let k = 1,2,3, ... denote a set of discrete intervals of length dr. Let p denote the probability that a particle is disentrained

within the first interval (k = 1). If N denotes a great number of particles, then the number of particles n(1) disentrained within

the first interval is n(1) =Np. Because q = 1− p is the probability that a particle is not disentrained within the first interval,5

then the number of particles moving beyond the first interval is Nq =N(1− p). That is, this is the number of particles that

“survived” without being disentrained within the first interval. In turn, of the number of particles that survived, the number

that is disentrained within the second interval is n(2) =N(1− p)p. More generally, n(k) =N(1− p)k−1p. Dividing this by

N then gives the probability mass function

fk(k) = (1− p)k−1p= qk−1p, (7)10

which defines the well-known geometric distribution with mean µk = 1/p. Note that the probability p is taken here as being

fixed. That is, in this formulation, the probability that a particle survives the kth interval is (1− p)k−1, so the disentrainment

probability is constant, namely, Pk(k) = p.

The geometric distribution, Eq. (7), is the discrete counterpart of the exponential distribution. Here we relate the two. The

cumulative distribution function of Eq. (7) is Fk(k) = 1− (1− p)k. We may thus write Fr(r = kdr) = Fk(k) = 1− qk. The15

quantity qk is a memoryless geometric series, and because q ≤ 1 we may write q = e−dr/µr , where µr is a characteristic

distance. In turn, then, Fr(r) = 1− (e−dr/µr )k = 1−e−r/µr . Finally, fr(r) = dFr(r)/dr = (1/µr)e−r/µr , where it becomes

clear that µr is the mean of the exponential distribution, analogous to µk for the discrete counterpart. Also note that the disen-

trainment rate Pr(r) = 1/µr is fixed. Below we show that the exponential and geometrical distributions represent isothermal

conditions, where gravitational heating of particles is balanced by frictional cooling.20

In contrast, suppose that the probability of disentrainment p varies from one interval k to another. Here we generalize the

ideas above. Let pk denote the probability that a particle, having not been disentrained before the kth interval, then becomes

disentrained within this interval. Similar to the formulation above, the number of particles n(1) within the first interval is

n(1) =Np1 and the number moving beyond the first interval is N(1−p1). In turn the number of particles disentrained within

the second interval is n(2) =N(1− p1)p2, the number disentrained within the third interval is N(1− p1)(1− p2)p3, and so25

on. In general, n(k) =N(1− p1)(1− p2)(1− p3)...(1− pk−1)pk. Dividing this expression by N then gives

fk(k) = pk

k−1∏

i=1

(1− pi) . (8)

Note that if pk = p is fixed, then Eq. (8) reduces to Eq. (7).

This generalization has a lovely property. Namely, by definition it conserves probability, and it therefore is mass conserving.

That is, the sum of fk(k) over all possible k is equal to unity, regardless of how pk might vary with k. As alluded to above,30

the physics of each pk may be treated differently if desired. Moreover, like its continuous counterpart presented above, this

discrete formulation of mass conservation is nonlocal and scale independent.

6

https://doi.org/10.5194/esurf-2020-98
Preprint. Discussion started: 8 December 2020
c© Author(s) 2020. CC BY 4.0 License.



We now set these results aside. Our next objective is to illustrate the mechanical elements of disentrainment, which we then

use to elaborate the continuous and discrete cases described above.

3 Mechanical interpretation of disentrainment

3.1 Conservation of mass

Consider a rough, inclined surface with uniform slope angle θ (Figure 2). At this juncture we simplify the notation and consider

Figure 2. Definition diagram of surface inclined at angle θ and control volume with edge length dx through which particles move.

5

the motions of particles entrained at a single position x= 0. Now the particle travel distance r→ x and the probability density

function fr(r;x)→ fx(x). Consider a control volume with edge length dx parallel to the mean particle motion. Over a period

of time a great number of particles enters the left face of the control volume. Some of these particles move entirely through the

volume, exiting its right face, and some come to rest within the control volume. Many, but not necessarily all, of the particles

interact with the surface one or more times in moving through the volume or in being disentrained within it.10

We now imagine collecting this great number of particles and treat them as a cohort, independent of time (Appendix B).

That is, letN(x) denote the number of particles that enter the control volume, and letN(x+dx) denote the number that leaves

the volume. We may imagine for the purpose of visualizing the problem that the N(x) particles enter the control volume at the

same time, but this actually is not essential. Similarly, we may imagine that the N(x+ dx) particles exit the control volume at

approximately the same time, but again, this reference to time only is a means to envision particle motions (Appendix B). The15

number of particles disentrained within the control volume then is dN =N(x+ dx)−N(x).

If N(0) denotes the great number of particles whose motions started at position x= 0, then the exceedance probability

Rx(x) (analogous toRr(r;x) above) isRx(x) =N(x)/N(0). Then dN =−N(0)fx(x)dx and the spatial disentrainment rate

Px(x) (analogous to Pr(r) above) is

Px(x) =− 1
N(x)

dN(x)
dx

. (9)20

Our objective is to determine the derivative dN(x)/dx in relation to particle energy, as this derivative represents disentrain-

ment. Here we summarize the essence of this problem before turning to a description of conservation of energy.

7

https://doi.org/10.5194/esurf-2020-98
Preprint. Discussion started: 8 December 2020
c© Author(s) 2020. CC BY 4.0 License.

Rachel Glade
This figure is helpful- consider moving it to section 2

Rachel Glade
treating



Let Ep = (m/2)u2 denote the translational kinetic energy of a particle with mass m and downslope velocity u. Here we

are assuming that the total translational energy is dominated by downslope motion. Let fEp
(Ep,x) denote the probability

density function of particle energies Ep as these vary with position x. For a great number N of particles the number density

is nEp(Ep,x) =NfEp(Ep,x). Let p(Ep,x) denote the probability that a particle at energy state Ep will become disentrained

within the small interval x to x+ dx. Because NfEp
(Ep,x)dEp is the number of particles within the small interval Ep to5

Ep + dEp, then Np(Ep,x)fEp
(Ep,x)dEp is the number of particles in this energy interval that becomes disentrained. The

total number of particles that becomes disentrained within the interval x to x+ dx is then

dN(x) =−N(x)

∞∫

0

p(Ep,x)fEp
(Ep,x)dEp . (10)

Letting angle brackets denote an ensemble average, then according to the Law of the Unconscious Statistician, Eq. (10)

is simply dN(x) =−N(x)〈p(Ep,x)〉. Below we introduce the expected number of particle-surface collisions per unit dis-10

tance nx = 1/λ, where λ is the expected travel distance between successive collisions. We then show that dN(x)/dx=

−N(x)nx〈p(Ep,x)〉. Thus, the essence of the problem is to determine the averaged probability 〈p(Ep,x)〉 as this depends

on particle energy Ep. This in turn requires specifying the particle energy as this varies with position x.

3.2 Particle energy

We start our formulation with a general statement concerning conservation of the kinetic energy of a system of particles.15

Because of its familiarity in relation to studies of granular gas systems, we initially consider changes with respect to time,

then return to changes with respect to space as in the preceding section. Namely, let Ep denote the kinetic energy of a particle,

and let 〈Ep〉 denote the expected energy state, where angle brackets represent an ensemble average over a great number N of

moving particles. The total energy of the system is E =N〈Ep〉. Neglecting transport of energy, the rate of change in the total

energy of the system with respect to time is then20

dE
dt

=N
d〈Ep〉

dt
+ 〈Ep〉

dN
dt

. (11)

The first term on the right side of Eq. (11) represents the rate of change in the average energy state of N moving particles,

and thus describes either a net heating (d〈Ep〉/dt > 0) or cooling (d〈Ep〉/dt < 0) of the system, depending on the relative

contribution of the sources of each. The second term on the right side represents the rate of change in the number of moving

particles with average energy state 〈Ep〉, and thus describes the rate of change in the total energy due to either the addition or25

loss of moving particles. For a closed system, this represents either a net sublimation (dN/dt > 0) or net deposition (dN/dt <

0) of particles, depending on the relative contribution of each.

The first term on the right side of Eq. (11) has been studied extensively for granular gas systems, specifically in relation to

the “homogeneous cooling state” of a closed system as described by Haff’s cooling law (Haff, 1983; Brilliantov and Pöschel,

2004; Dominguez and Zenit, 2007; Volfson et al., 2007; Brilliantov et al., 2018; Yu et al., 2020). In what follows, we start with30

similar concepts of particle energy; but the formulation is designed to be independent of time and focused on changes in energy

and particle disentrainment over space.

8

https://doi.org/10.5194/esurf-2020-98
Preprint. Discussion started: 8 December 2020
c© Author(s) 2020. CC BY 4.0 License.

Rachel Glade
become (either way is grammatically ok, but this sounds more normal)

Rachel Glade
become

Rachel Glade
hilarious

Rachel Glade
??



Reconsider a control volume with edge length dx parallel to the mean motion of particles over a rough, inclined surface

(Figure 2). Analogous to Eq. (11) we write

dE
dx

=N
d〈Ep〉

dx
+ 〈Ep〉

dN
dx

, (12)

where now the angle brackets formally denote a Gibbs ensemble average over a cohort of particles (Appendix B). As described

below, the first term on the right side of Eq. (12) represents the spatial rate of change in energy due to the sum of gravitational5

heating and frictional cooling. The second term on the right side represents the rate of change in energy due to deposition, that

is, disentrainment. In this problem, we assume that sublimation (entrainment) does not occur over x > 0. Eq. (12) provides

a basic starting point. However, it is not particularly useful in this form. If in fact the probability of deposition varies with

energy state, then in general the derivative dN/dx contributes to the derivative d〈Ep〉/dx, as removal of energy by deposition

affects the average energy of the remaining particles. We note that Brilliantov et al. (2018) demonstrate an analogous effect,10

as described below, associated with aggregation of particles in a granular gas. We therefore must be careful in formulating a

statement of conservation of particle energy, as deposition preferentially involves particles at low energy states.

Here is a sidebar concerning our focus on conservation of particle energy versus momentum. Particle motions down a

rough hillslope surface involve numerous details that control momentum exchanges during particle-surface interactions. As a

scalar quantity, energy forces us to blur our eyes appropriately, focusing on the essence of these complex interactions rather15

than attempting to describe details of momentum exchanges that ultimately cannot be constrained given the stochastic nature

of the phenomenon. As an example, below we introduce the random variable βx to represent the proportion of downslope

kinetic energy extracted during a particle-surface collision. This quantity blurs over many details (e.g., differences between

collisions during rolling, tumbling and bouncing motions, rotational versus translational motion, and the roles of normal and

tangential coefficients of restitution), yet βx is entirely meaningful when treated as a random variable. (We provide a description20

(Appendix E) of how the energy-centric quantity βx is related to momentum exchanges during collisions, and in the companion

paper we illustrate the elements of βx using high-speed imaging.) In contrast, when describing the collisional behavior of an

ideal granular gas, one can at lowest order appeal to a single coefficient of restitution because of the relative simplicity of the

particles and their collisions (e.g., Haff, 1983; Jenkins and Savage, 1983). This simplicity is not possible here. The focus on

energy thus offers tractable and defensible simplicity amidst the messiness of natural hillslopes.25

3.3 Conservation of energy

3.3.1 Total energy

Focusing just on slope parallel motions, let Ep = (m/2)u2 denote the translational kinetic energy of a particle with mass m

and downslope velocity u. Then let fEp
(Ep,x) denote the probability density function of particle energies Ep as these vary

with downslope position x (Appendix B). For a great numberN of particles the number density is nEp
(Ep,x) =NfEp

(Ep,x).30
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The average particle energy is

〈Ep〉=

∞∫

0

EpfEp(Ep,x)dEp

=
1
N

∞∫

0

EpnEp
(Ep,x)dEp . (13)

The total energy E(x) =N〈Ep〉, so5

E(x) =

∞∫

0

EpnEp
(Ep,x)dEp . (14)

We now take the derivative of Eq. (14) with respect to x using Leibniz’s rule to give

dE(x)
dx

=

∞∫

0

Ep
∂nEp

(Ep,x)
∂x

dEp . (15)

The derivative within the integral of Eq. (15) satisfies a Fokker-Planck equation (see next section and Appendix C), the solution

of which represents the evolution of the distribution nEp
(Ep,x) of particle energy states Ep with distance x. In particular this10

derivative has three parts. The first part, denoted below by Kh(Ep,x), is associated with a change in the density nEp
(Ep,x)

due to gravitational heating. The second part, Kc(Ep,x), is associated with a change in this density due to frictional cooling.

The third part, Kd(Ep,x), is associated with a loss of energy due to deposition (which does not involve the analogue of release

of latent heat; but see below). We thus write

∂nEp
(Ep,x)
∂x

=Kh(Ep,x) +Kc(Ep,x) +Kd(Ep,x) , (16)15

and then rewrite Eq. (15) as

dE(x)
dx

=

∞∫

0

EpKh(Ep,x)dEp

+

∞∫

0

EpKc(Ep,x)dEp

20

+

∞∫

0

EpKd(Ep,x)dEp . (17)

The next task consists of showing the correspondence of Kh(Ep,x), Kc(Ep,x) and Kd(Ep,x) to terms in the Fokker-Planck

equation, then describing the physical elements of these terms. This is followed by evaluating each of the integral quantities in

Eq. (17). There are a lot of moving parts in this formulation, so bear with us.

10
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3.3.2 Fokker-Planck-like equation

The density nEp
(Ep,x) within Eq. (15) and Eq. (16) satisfies a Fokker-Planck equation (Appendix C), which describes the

evolution of this density with increasing distance x. Namely,

∂nEp(Ep,x)
∂x

=− ∂

∂Ep
[k1h(Ep,x)nEp

(Ep,x)]

5

− ∂

∂Ep
[k1c(Ep,x)nEp(Ep,x)]

+
1
2
∂2

∂E2
p

[k2c(Ep,x)nEp(Ep,x)]

−Kd(Ep,x) . (18)10

The first term on the right side of Eq. (18) represents advective gravitational heating, where k1h(Ep,x) is a drift speed, the

average spatial rate of change in particle energy over the energy domain due to heating. The second term on the right side

represents advective frictional cooling, where k1c(Ep,x) is a drift speed, the average spatial rate of change in particle energy

due to cooling. The third term represents diffusive frictional cooling, where k2c(Ep,x) is a diffusion coefficient. The last

term represents a loss of energy due to deposition, where for now we have retained the notation from above. Explicitly, for15

Kh(Ep,x) and Kc(Ep,x) we now have

Kh(Ep,x) =− ∂

∂Ep
[k1h(Ep,x)nEp

(Ep,x)] (19)

and

Kc(Ep,x) =− ∂

∂Ep
[k1c(Ep,x)nEp

(Ep,x)]

20

+
1
2
∂2

∂E2
p

[k2c(Ep,x)nEp(Ep,x)] . (20)

In the next section we step through gravitational heating, frictional cooling and deposition, in each case unfolding the mechan-

ical elements of k1h(Ep,x), k1c(Ep,x), k2c(Ep,x) and Kd(Ep,x).

Here is a didactic sidebar if the formulation above seems counterintuitive. Notice that Eq. (18) effectively represents an

advection-diffusion equation with two advective terms, a diffusive term and a sink term. Normally we think of an advection-25

diffusion equation as involving space and time, that is, where the rate at which a quantity changes with respect to time at a

given position is equal to the sum of an advective term and a diffusive term involving derivatives of the quantity with respect

to space. Indeed, imagine replacing Ep with x, and x with t, in Eq. (18). The result looks like a familiar advection-diffusion

equation with a sink term (albeit involving two advective terms rather than one). The basic idea of Eq. (18) is the same. It just

11
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describes the rate of change in nEp
with respect to position x (rather than time t) in relation to advection and diffusion of nEp

occurring over the energy coordinate Ep (rather than x). A consideration of the rate of change with respect to position x as in

Eq. (18) is perhaps unusual, but the idea of advection and diffusion of a quantity occurring over a domain other than a spatial

coordinate (e.g., a velocity coordinate) is common in statistical physics, of which examples pertaining to sediment motions

include those presented in Furbish et al. (2012, 2018a, 2018b).5

3.3.3 Gravitational heating

We start by noting that the rate at which the potential energy of a particle is converted to kinetic energy per unit distance

x is mg sinθ. To be clear, between collisions a particle that is not in contact with the inclined surface beneath it accelerates

vertically at a rate of −g, independently of the orientation of the surface. The factor sinθ therefore is a geometrical constraint

on the magnitude of the potential energy that is accessible for net heating when viewed with respect to x. This means that10

(Appendix C)

k1h(Ep,x)→ k1h =mg sinθ , (21)

so that Eq. (19) becomes

Kh(Ep,x) =−mg sinθ
∂nEp

(Ep,x)
∂Ep

. (22)

We now write the first integral in Eq. (17) as15

−mg sinθ

∞∫

0

Ep
∂nEp(Ep,x)

∂Ep
dEp . (23)

Because ∂(EpnEp)/∂Ep = Ep∂nEp/∂Ep +nEp , Eq. (23) may be written as

mg sinθ

∞∫

0

nEp
(Ep,x)dEp

−mg sinθ

∞∫

0

∂

∂Ep
[EpnEp

(Ep,x)]dEp . (24)20

Assuming nEp(∞,x)→ 0, the second integral in Eq. (24) vanishes and the first integral in Eq. (17) becomes

∞∫

0

EpKh(Ep,x)dEp =Nmg sinθ . (25)

Note that the form of the density nEp(Ep,x) is immaterial in this formulation.

If for illustration we assume that no cooling or deposition occurs, then dE(x)/dx=Nmg sinθ. The solution of this

is E(x) = E(0) +Nmg sinθx, where E(0) denotes the starting energy at x= 0. That is, the total energy E(x) increases25
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linearly with downslope distance x. Moreover, for reference below, no particle can be heated to an energy greater than

Ep(0) +mg sinθx, representing a complete conversion of gravitational to kinetic energy without any loss due to particle-

surface collisions. This ensures that the density nEp(Ep,x) is bounded with finite mean and variance, a point that becomes

useful below.

3.3.4 Frictional cooling5

We start by assuming that a change in the downslope energy of a particle associated with a collision is ∆Ep =−βxEp, so that

βx =−∆Ep/Ep is the proportion of energy extracted by the collision (Appendix E). By definition βx is a random variable.

(Note that the negative sign above is by convention. As a random variable we are assuming that 0≤ βx ≤ 1. The sign associated

with βx will be clear from the context in the developments below.) The change ∆Ep includes frictional loss, any conversion of

translational to rotational energy, and any apparent change when downslope incident motion is reflected to transverse motion10

during a glancing particle-surface collision. Note that ∆Ep generally is a negative quantity. But strictly speaking it could

be positive, albeit with low probability, if transverse incident motion is reflected to downslope motion during a collision.

Because Ep and βx are random variables, ∆Ep is a random variable. As a point of reference, in granular gas theory where

the total translational energy is considered rather than just the energy associated with one coordinate direction, the proportion

βx = 1−ε2 where ε is the normal coefficient of restitution (Haff, 1983). Moreover, ε is treated as a fixed deterministic quantity15

rather than a random variable. Here, in contrast, collision mechanics theory suggests that the constitution of βx is far more

complicated in relation to normal, tangential and rotational impulses during particle-surface collisions (Appendix E).

Let q = Ep(x+ dx)−Ep(x) denote a change in the energy of a particle over the small distance dx. Then as described in

Appendix C, the drift speed k1c(Ep,x) = dq/dx≈ nxβxEp and the diffusion coefficient k2c = dq2/dx≈ nxβ2
xE

2
p , where the

overline denotes an average over particles at the energy state Ep (rather than an ensemble average), and nx = 1/λ denotes20

the expected number of particle-surface collisions per unit distance where λ is the expected travel distance between collisions.

Scaling (Appendix D) shows that

nx =
1
λ
≈ mg cosθ

4Ep tanφ
, (26)

where φ is the expected reflection angle of a particle with energy Ep following a surface collision. We now assume that

k1c(Ep,x)∼ nxβxEp ≈
mgβx cosθ

4tanφ
, (27)25

and that

k2c(Ep,x)∼ nxβ2
xE

2
p ≈

mgβ2
xEp cosθ

4tanφ
. (28)

Now Eq. (20) becomes

Kc(Ep,x) =
mg cosθ
4tanφ

∂

∂Ep
[βxnEp(Ep,x)]

13
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+
mg cosθ
8tanφ

∂2

∂E2
p

[β2
xEpnEp

(Ep,x)] . (29)

We now use these results to write the second integral in Eq. (17) as

mg cosθ
4tanφ

∞∫

0

Ep
∂

∂Ep
[βxnEp

(Ep,x)]dEp

5

+
mg cosθ
8tanφ

∞∫

0

Ep
∂2

∂E2
p

[β2
xEpnEp

(Ep,x)]dEp . (30)

Upon applying the product rule to the derivative ∂(EpβxnEp)/∂Ep, the first integral in Eq. (30) may be written as

∞∫

0

βxnEp
(Ep,x)dEp

−
∞∫

0

∂

∂Ep
[EpβxnEp(Ep,x)]dEp . (31)10

Assuming that nEp(∞,x)→ 0, the second integral in Eq. (31) vanishes and the first integral becomes N〈βx〉, where the angle

brackets now represent an ensemble average.

In turn, upon applying the product rule to the derivative ∂[Ep∂(β2
xEpnEp

)/∂Ep]/∂Ep, the second integral in Eq. (30) may

be written as

mg cosθ
8tanφ

∞∫

0

∂

∂Ep

(
Ep

∂

∂Ep
[β2
xEpnEp

(Ep,x)]
)

dEp15

−mg cosθ
8tanφ

∞∫

0

∂

∂Ep
[β2
xEpnEp

(Ep,x)]dEp . (32)

Assuming that nEp(∞,x)→ 0 and ∂nEp/∂Ep|Ep→∞→ 0, the integrals in Eq. (32) reduce to (mg cosθ/8tanφ)β2
xEpnEp

(0,x)

with β2
xEp = 0 when evaluated at Ep = 0. Thus, whereas the diffusive term in Eq. (18) redistributes energy by modifying the

density nEp
(Ep,x) (see below), it does not contribute to the total energy balance. The second integral in Eq. (17) is thus20

∞∫

0

EpKc(Ep,x)dEp =−Nmg〈βx〉cosθ
4tanφ

. (33)

We return to these results below.
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3.3.5 Energy loss with deposition

For illustration, suppose initially (unrealistically) that deposition is independent of the particle energy stateEp. This means that

the number of particles disentrained within any small energy interval Ep to Ep + dEp is a fixed proportion k3 of the particles

within this interval. Thus, Kd(Ep,x) =−kdnEp
(Ep,x) and the third integral in Eq. (17) becomes

−kd
∞∫

0

EpnEp,x(Ep,x)dEp =−kdE(x) . (34)5

If we momentarily assume that no heating or cooling occurs, then dE(x)/dx=−kdE(x). The solution of this is E(x) =

E(0)e−kdx, where E(0) denotes the starting energy at x= 0. That is, the total energy E(x) decays exponentially with downs-

lope position x. In this example, note that the form of the density nEp
(Ep,x) is immaterial. Moreover, as a point of reference

we may momentarily equate the left side of Eq. (18) with the last term in this equation and write

∞∫

0

∂nEp
(Ep,x)
∂x

dEp =−kd
∞∫

0

nEp
(Ep,x)dEp . (35)10

This yields (1/N)dN/dx=−kd. With dE(x)/dx=−kdE(x) =−kdN〈Ep〉, then dE(x)/dx= 〈Ep〉dN/dx. Thus, com-

paring this result with Eq. (12), the situation in which deposition is independent of the particle energy state is consistent with

isothermal conditions wherein the average energy state is unchanging, that is, d〈Ep〉/dx= 0.

More generally, deposition is unlikely to be independent of the particle energy state, as particles with small energy are

on average more likely to become disentrained than are particles with large energy. Thus, Kd(Ep,x) likely possesses a more15

complicated form than in the example above. Whereas early work on granular gases focused on their behavior in the absence of

deposition, the phenomenon of thermal collapse, condensation and freezing in a gravitational field now is receiving significant

attention (Volfson et al., 2006; Kachuck and Voth, 2013). We can lean on insight from this work, but because energy dissipation

in a granular gas is dominated by particle-particle collisions rather than particle-boundary collisions, the rarefied problem

considered here is quite different. As with approaches used in the study of condensation and freezing of granular gases, our20

analysis at this stage is aimed at lowest order behavior.

For any position x, we do not know the ensemble distribution fEp(Ep,x) of particle energy states Ep with expected value

〈Ep〉. Because no particle can be heated to an energy greater than Ep(0) +mg sinθx (representing a complete conversion

of gravitational to kinetic energy without any loss due to particle-surface collisions), we know only that 0≤ Ep ≤ Ep(0) +

mg sinθx. Most energies likely are significantly smaller than the upper limit due to collisions.25

Collecting results from above, the density nEp
(Ep,x) satisfies a Fokker-Planck-like equation, namely,

∂nEp
(Ep,x)
∂x

=−mg sinθ
∂nEp(Ep,x)

∂Ep

+
mgβx cosθ

4tanφ
∂nEp

(Ep,x)
∂Ep

15
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+
mgβ2

x cosθ
8tanφ

∂2

∂E2
p

[EpnEp
(Ep,x)]

−Kd(Ep,x) , (36)

where we are assuming for simplicity that βx and β2
x are fixed. As a reminder, the first term on right side of Eq. (36) represents5

gravitational heating, and the second and third terms on the right side represent frictional cooling. The term−Kd(Ep,x), which

describes the loss of energy associated with deposition, is defined below.

Let nEp0 andEp0 denote suitable characteristic values of the density nEp
and the energyEp, and letX denote a characteristic

length scale. We now define the following dimensionless quantities denoted by circumflexes:

nEp
= nEp0 n̂Ep

, Ep = Ep0Êp and x=Xx̂. (37)10

Upon substituting these quantities into Eq. (36), we may identify three characteristic length scales, namely,

X =Xh =
Ep0

mg sinθ
, (38)

X =XcA =
4Ep0 tanφ
mgβx cosθ

=
λ

βx
and (39)

15

X =XcD =
8Ep0 tanφ
mgβ2

x cosθ
=

2λ
β2
x

. (40)

The first of these, Xh, represents the distance required to heat a particle to the energy state Ep0 in the absence of frictional

cooling. The second, XcA, represents the distance over which thermal collapse by advective cooling occurs. The third, XcD,

represents a distance over which diffusive cooling occurs.

We now define two dimensionless numbers, the Kirkby number1,20

Ki =
XcA

Xh
=

4tanφS
βx

(41)

and a cooling Péclet-like number,

Pec =
XcD

XcA
=

2βx
β2
x

. (42)

1This number is named in honor of Michael J. Kirkby for his pioneering work on hillslope processes, including the topic of particle motions on scree

surfaces.
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The Kirkby number Ki is the ratio of gravitational heating to advective cooling. The Péclet-like number Pec is the ratio of

advective cooling to diffusive cooling. Choosing XcA as the characteristic length scale and neglecting the deposition term in

Eq. (36), we now rewrite it as

∂n̂Êp
(Êp, x̂)

∂x̂
=−Ki

∂n̂Êp
(Êp, x̂)

∂Êp

5

+
∂n̂Êp

(Êp, x̂)

∂Êp
+

1
Pec

∂2

∂Ê2
p

[Êpn̂Êp
(Êp, x̂)] . (43)

Note that with βx� 1, then Pec� 1 according to Eq. (42), such that the diffusive term in Eq. (43) becomes insignificant

relative to the advective cooling term.

With reference to Figure 3, imagine a great number of particles whose initial energy states at x= 0 are described by the

Figure 3. Schematic diagram of downslope changes in the distribution fEp(Ep,x) of particle energy states Ep (for simplicity a uniform

distribution) due to: (a) gravitational advective heating in the absence of cooling; (b) advective frictional cooling in the absence of heating;

and (c) net cooling. The triangular region represents an idealized “window” of increasing likelihood of deposition with decreasing particle

energyEp. Note that an effect of deposition is to increase the average energy 〈Ep〉 by culling lower energy particles, thereby selecting higher

energy particles for continued travel with increasing distance.

density nEp
(Ep,0). With just gravitational heating, this distribution is advected to higher energy values at a fixed ratemg sinθ.10

With just frictional cooling, but in the absence of diffusion, the distribution is advected to lower energy values at a fixed rate

mgβx cosθ/4tanφ. If gravitational heating is balanced by advective cooling (Ki = 1), the form of the distribution remains

fixed with increasing distance x. With diffusive cooling, advective cooling of the density nEp(Ep,x) to lower energy values

involves smoothing of this density. When these effects are combined, whether heating is greater than advective cooling (Ki > 1)
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or vice versa (Ki < 1), no value ofEp is larger thanEp(0)+mg sinθx, and most values are significantly less than this maximum

due to the increasing likelihood of particle-surface interactions (cooling) within increasing x. When the magnitude of the term

in Eq. (43) involving Ki is greater than the sum of the magnitudes of the two cooling terms, then net heating occurs. When

the magnitudes of the cooling terms are larger than the heating term, then net cooling occurs. For particles reaching relatively

small energy states, there is an increasing likelihood of deposition (see below). As a reminder, this description does not pertain5

to the energy states of a great number of particles during an interval of time. Rather, this description pertains to an ensemble

of particles reaching any position x over a long period of time when treated as a cohort. That is, nEp
(Ep,x) is the density

of particle energies at any x representing the great number of particles that occupied this position while in motion at many

previous instants in time.

We now offer a simple hypothesis describing the loss of energy associated with deposition. Recall that XcA is a measure of10

the distance over which particles with energy Ep0 thermally collapse by frictional cooling. We may imagine, for example, a

sudden removal of the source of heating such that XcA is a measure of the distance of relaxation to a total loss of energy. For

particles with energy Ep, this length scale can be expressed more generally as

lc(Ep)∼
4Ep tanφ
mgβx cosθ

, (44)

which becomes unbounded only in the limit of θ→ π/2. Because thermal collapse involves deposition, we then assume at15

lowest order that

αlc(Ep)
∂nEp

(Ep,x)
∂x

∣∣∣∣
d

=−nEp
(Ep,x) , (45)

where the subscript d denotes that the derivative refers to a change in the density nEp(Ep,x) just associated with deposition.

We emphasize that Eq. (45) pertains to the imagined situation in which gravitational heating is not involved. This is the same

as assuming a spatial Poisson process of deposition, that is, a fixed disentrainment rate keyed to the specific energy state Ep.20

In the presence of heating, however, the length scale of deposition increases relative to lc. That is, heating suppresses the

disentrainment rate. The factor α thus modulates the length scale lc so the product αlc is a net e-folding length in the presence

of heating. As described below, the factor α is assumed to be a function of the Kirkby number.

Substituting Eq. (45) into Eq. (17) and evaluating the integral then yields

∞∫

0

Ep
∂nEp

(Ep,x)
∂x

∣∣∣∣
d

dEp25

=−mg cosθ
α4tanφ

∞∫

0

βxnEp(Ep,x)dEp

=−Nmg〈βx〉cosθ
α4tanφ

, (46)
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where we now redefine the Kirkby number as

Ki =
4tanφS
〈βx〉

, (47)

assuming that βx is independent of Ep. Comparing this result with Eq. (33), the energy loss rate due to deposition is the same

as the advective cooling rate, but modulated by the factor α.

3.4 Conservation of mass revisited5

The preceding provides the basis for separately calculating the disentrainment rate, consistent with the deposition rate. Because

nEp
(Ep,x)dEp represents the number of particles within the small energy interval Ep to Ep + dEp, using Eq. (44) and Eq.

(45) the total disentrainment rate is therefore

dN(x)
dx

=

∞∫

0

∂nEp
(Ep,x)
∂x

dEp

10

=−mg〈βx〉cosθ
α4tanφ

∞∫

0

1
Ep

nEp(Ep,x)dEp

=−Nmg〈βx〉cosθ
α4tanφ

〈
1
Ep

〉
. (48)

Thus, the deposition rate is proportional to the cooling rate, as it should be. Here it is important to note that the expected value

〈1/Ep〉 6= 1/〈Ep〉. In fact, 〈1/Ep〉 is the reciprocal of the harmonic mean (Appendix F). This means that 〈Ep〉〈1/Ep〉 ≥ 1.15

Only in the limit where nEp
(Ep,x) has zero variance does 〈1/Ep〉 → 1/〈Ep〉. To simplify the notation, hereafter we denote

the arithmetic mean as 〈Ep〉= Ea and the harmonic mean as 1/〈1/Ep〉= Eh. Thus Ea/Eh ≥ 1.

As a point of reference we may now define an ensemble averaged deposition length as

Lc ∼
α4tanφEh
mg〈βx〉cosθ

=
αEh

mgµcosθ
, (49)

with µ= 〈βx〉/4tanφ. Note that in contrast to the energy specific length scale lc in Eq. (44) and Eq. (45), Lc in Eq. (49) is20

keyed to the harmonic average energy of the ensemble. Setting θ = 0 so that cosθ = 1, the length scale Lc is entirely analogous

to the length scale λ0 used by Furbish and Haff (2010), Furbish and Roering (2013) and Doane et al. (2018) as the characteristic

particle travel distance on a flat surface, thence modulated with increasing slope S (see also Section 5.3).

The factor α has a key role in the formulation. As described above, this factor modulates the length scale Lc in the presence

of gravitational heating. Note that Eq. (48) is equivalent to25

Lc
dN
dx

=−N . (50)

For a given value of α the length scale Lc is set by the cooling rate, and this length scale increases with increasing slope angle

θ. But gravitational heating also increases with θ, the effect of which is to suppress the rate of deposition and increase Lc.
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That is, the deposition length scale is not the same as the cooling length scale. As described below, whereas lc is a measure

of the rate of extraction of translational energy, this includes its conversion to rotational energy whose effect is to decrease the

likelihood of stopping. On dimensional grounds an inspired guess suggests that this effect is a function f(Ki) of the Kirkby

number Ki . For example, suppose that

Lc =
αEh

mgµcosθ
=

α0Eh
mgµcosθ−mgµ1 sinθ

. (51)5

where µ1 is a coefficient of order unity. This leads to

α=
α0

1−µ1Ki
, (52)

where α→ α0 as µ1Ki → 0. Now,

Lc =
α0Eh

mgµcosθ(1−µ1Ki)
. (53)

This example suggests that Lc→∞ as µ1Ki → 1. That is, µ1Ki → 1 sets an upper limit above which deposition is insignifi-10

cant. More generally we may write

Lc =
α0f(Ki)Eh
mgµcosθ

, (54)

to indicate the possibility of other dependencies of α on Ki . Note that we provide evidence for this behavior in the companion

paper, including the form of Eq. (52) based on experiments. For notational simplicity in subsequent sections, we use α with

the understanding that this implies α= α0f(Ki).15

Here is a key sidebar for reference in our descriptions below of related formulations. We emphasize that according to Eq.

(45) and Eq. (48) the deposition rate is proportional to the advective cooling rate rather than the net cooling rate (the difference

between the rates of heating and cooling), where the rate of heating then modulates the deposition rate, therein increasing the

deposition length scale. Moreover, the deposition rate explicitly depends on the energy state of the particles. Consider a thought

experiment. Let us imagine a system consisting of a box containing a finite number of particles. Suppose that we mechanically20

add energy to the system such that some proportion of the particles becomes a rarefied granular gas, and suppose that the

gas achieves a non-equilibrium steady state with a specific average energy state (Appendix G). This means that the rate of

(mechanical) heating is equal to the rate of cooling due to dissipative particle-box collisions, and sublimation (entrainment)

matches deposition (disentrainment). That is, depending on the energy state of the particles, deposition occurs even though the

difference between the rate of heating and cooling is zero. Now imagine that when a particle is deposited, it cannot become re-25

entrained. The rate of heating and cooling of the remaining gas particles is still the same, yet the deposition process continues

for those particles which, by chance, cool to sufficiently low energies for deposition to occur — just as deposition of these

particles would have occurred before re-entrainment was “turned off.” Furthermore, the average energy of the gas (active)

particles can remain fixed while their total energy decreases due to irreversible deposition. Thus, we are assuming that the

deposition rate is proportional to the cooling rate rather than the net cooling rate, depending on the energy state of the particles.30

The effect of heating is to decrease the likelihood of deposition by decreasing the proportion of particles that cool to sufficiently
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low energies for deposition to occur — which translates to suppressing the disentrainment rate and increasing the length scale

of deposition.

3.5 Energy and mass balances

With µ= 〈βx〉/4tanφ we now collect results from above. The total energy balance is given by

dE(x)
dx

=Nmg sinθ5

−Nmgµcosθ− 1
α
Nmgµcosθ . (55)

To summarize, the first term on the right side of Eq. (55) is due to gravitational heating, the second term is due to frictional

cooling, and the last term represents a loss of energy due to deposition. Note that none of these terms explicitly involves the

energy E(x). In turn, conservation of mass is given by10

dN(x)
dx

=− 1
α
Nmgµcosθ

1
Eh

. (56)

This is coupled with Eq. (55) via the relation between the total energy E(x), the average energy Ea and the harmonic average

energy Eh (see below), and the explicit appearance of N in both of these equations.

At this point we emphasize that the quantity µ= 〈βx〉/4tanφ is not to be interpreted as Coulomb-like dynamic friction

coefficient. Indeed, the product mgµcosθ in Eq. (55) and Eq. (56) looks like an ordinary Coulomb friction force (e.g., Kirkby15

and Statham, 1975; Gabet and Mendoza, 2012). Recall, however, that cosθ enters from the geometry of particle motions,

and does not represent the angle needed to specify the normal component of the weight mg. Similarly, tanφ is an expected

reflection angle, not a friction angle. We elaborate these points below.

To close the circle in reference to our stating point, Eq. (12), we now combine Eq. (12), Eq. (55) and Eq. (56) to give

dEa(x)
dx

=mg sinθ−mgµcosθ20

+
mgµcosθ

α

(
Ea
Eh
− 1
)
. (57)

This balance involving the average energy Ea rather than the total energy E reveals an important behavior associated with

deposition, centered on the parenthetical part of the last term. Namely, it is straightforward to show (Appendix F) thatEa/Eh−
1≥ 0. The last term in Eq. (57) therefore represents an apparent heating associated with deposition. With reference to Figure25

3, a net advective cooling uniformly lowers all particle energy states, thus lowering the average energy Ea as well as the total

energy E. As this cooling lowers all energy states, some particles enter the range where deposition occurs, and the deposition

rate therefore is proportional to the net advective cooling rate. In the absence of a net advective cooling, particles with small

21
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energy nonetheless are preferentially disentrained, so the average energy state increases. When cooling and deposition are

combined, the average energy decreases more slowly than it otherwise would in the absence of deposition. This effect increases

with increasing variance in the distribution of energies (Appendix F), and it vanishes as the variance goes to zero. The balance

described by Eq. (57) thus provides a formal description of what we intuitively know: deposition culls lower energy particles,

thereby selecting higher energy particles for continued travel with increasing distance. We note that Brilliantov et al. (2018)5

demonstrate an analogous unexpected behavior of granular gases, namely, the heating of a granular gas associated with particle

aggregation with continued loss of total energy. This occurs when the rate of loss of particles by aggregation exceeds the rate

of loss of total energy, such that by definition the average particle energy increases.

The balance described by Eq. (57) also reveals an important constraint on particle energies. Namely, if we imagine the

special situation of isothermal conditions (dEa/dx= 0), then frictional cooling given by the second term on the right side10

of Eq. (57) must balance two sources of heating, namely, the first and third terms on the right side. This requires that either

the Kirkby number Ki < 1 or, if Ki = 1, then the distribution fEp
(Ep,x) of energies Ep must have zero variance such that

Eh = Ea. Because this latter condition is highly unlikely, an isothermal condition generally requires that Ki < 1. Conversely,

net heating must occur with Ki > 1.

According to Eq. (55) or Eq. (57), for a given slope angle θ the spatial rate of net cooling (or net heating) of the ensemble is15

a fixed quantity in which this slope angle has a dual role. Namely, an increasing slope decreases the rate of frictional cooling

by decreasing the expected occurrence of particle-surface collisions, and it simultaneously increases the rate of gravitational

heating. With θ = 0, heating vanishes and frictional cooling occurs at a maximum rate of µmg. In turn, as θ→ π/2, which

represents a vertical cliff, frictional cooling vanishes and heating matches that of free-fall motion. This transition from small

to large slopes nicely illustrates what virtually every undergraduate student learns intuitively from the sport of boulder rolling20

(or “trundling” (Forrester, 1931)), and why this sport is so spectacular and satisfying in steep terrain. Moreover, recall that the

Kirkby number Ki = S/µ is the ratio of gravitational heating to advective cooling. If these are balanced, Ki = 1 and

S = µ=
〈βx〉

4tanφ
. (58)

Qualitatively, this is the slope at which an undergraduate student may expect that boulder rolling starts to become particularly

interesting.25

The formulation also nicely illustrates that if the heating and cooling rates are matched, this does not imply an absence

of deposition, as the last terms in Eq. (55) and Eq. (57) may be finite with Ki = 1. Moreover, because this is a probabilistic

phenomenon, some particles are likely to become disentrained even on steep, rough slopes where heating on average exceeds

cooling. Experienced undergraduates indeed inform us that some boulders just do not make it all the way to the bottom of the

hillslope despite their best efforts to select conditions satisfying Ki > 1.30
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4 General behavior

4.1 Effects of energy balance

There is value in restating Eq. (55), Eq. (56) and Eq. (57) in dimensionless form. Let Ea0 denote the initial average particle

energy at x= 0 and let N0 denote the initial number of particles at x= 0. In turn we define a characteristic cooling distance

X = Ea0/mgµcosθ so that Ea0 =mgµcosθX . We now define the following dimensionless quantities denoted by circum-5

flexes:

x=Xx̂, N =N0N̂ , E =N0Ea0Ê ,

Ea = Ea0Êa and Eh = Ea0Êh . (59)

With these definitions we write Eq. (55), Eq. (56) and Eq. (57) as10

dÊ(x̂)
dx̂

=
[
Ki −

(
1 +

1
α

)]
N̂ , (60)

dN̂(x̂)
dx̂

=− N̂

αÊh
and (61)

dÊa(x̂)
dx̂

= Ki − 1 +
1
α

(
Êa

Êh
− 1

)
. (62)15

Because the dimensionless disentrainment rate P̂x̂(x̂) =−(1/N̂)dN̂/dx̂, notice that Eq. (61) provides the basis for deter-

mining the distribution of travel distances using Eq. (4). This requires specifying how Êh varies with x̂ for given values of α

and Ki . At this point, however, we must confront the fact that we have four unknowns, N̂ , Ê, Êa and Êh, and three equations,

one of which is nonlinear in the ratio Êa/Êh. Here we add a fourth equation by assuming that this ratio remains fixed, namely,

20

Êa

Êh
= γ . (63)

We do not know the distribution fÊp
(Êp) required to determine γ (Appendix F). Nonetheless, Eq. (63) essentially assumes

that the form of fÊp
(Êp) remains similar with distance x̂. This allows us to illustrate key elements of the formulation.

With the assumption of Eq. (63) we note that Eq. (61) becomes

dN̂(x̂)
dx̂

=− γN̂

αÊa
, (64)25
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and Eq. (62) becomes

dÊa(x̂)
dx̂

= Ki − 1 +
1
α

(γ− 1) . (65)

Focusing initially on Eq. (65), isothermal conditions exist if dÊa/dx̂= 0. We then rearrange Eq. (62) or Eq. (65) to define a

transition value of the Kirkby number, namely,

Ki∗ = 1− 1
α

(
Êa

Êh
− 1

)
= 1− 1

α
(γ− 1) . (66)5

If Ki <Ki∗ then cooling occurs (dÊa/dx̂ < 0); and if Ki >Ki∗ then heating occurs (dÊa/dx̂ > 0). Recall that Êa/Êh =

γ ≥ 1 (Appendix F) so that γ− 1≥ 0. If the variance of energy states Ep is zero then Êa/Êh = γ = 1 giving Ki∗ = 1. Thus,

in this case cooling occurs with Ki < 1 and heating occurs with Ki > 1. The ratio Êa/Êh = γ generally increases with the

variance of Ep, thus decreasing Ki∗. That is, as this variance increases, the transition between cooling and heating occurs at

a smaller value of the Kirkby number. This represents a stronger culling (deposition) of lower energy particles. The largest10

possible transition value is Ki∗ = 1.

We now start with an idealized example that illustrates key elements of the formulation, including the coupling between Eq.

(60), Eq. (61) and Eq. (62). Assume that the Kirkby number Ki is fixed, and assume isothermal conditions. Thus dÊa/dx̂= 0

with Êa = Êa0 so that Eq. (62) leads to

Êh =
Êa0

1 +α(1−Ki)
. (67)15

With Êa/Êh = Êa0/Êh = γ, then γ = 1 +α(1−Ki). The disentrainment rate P̂x̂(x̂) =−(1/N̂)dN̂/dx̂. Thus, according to

Eq. (61) and Eq. (67),

P̂x̂(x̂) =
1 +α(1−Ki)

αÊa0
=

γ

αÊa0
. (68)

In turn, using Eq. (4) this yields an exponential distribution of travel distances with mean

µx̂ =
αÊa0

1 +α(1−Ki)
=
αÊa0
γ

, (69)20

so that

N̂(x̂) =
1
µx̂
e−x̂/µx̂ . (70)

Note that an increasing value of γ in Eq. (69) represents an increasing proportion of lower energy particles available for

deposition relative to this availability with γ→ 1, the effect of which is to decrease the mean travel distance.

The total energy Ê also declines exponentially with x̂. Namely, substituting Eq. (70) into Eq. (60) leads to25

Ê(x̂) = 1− 1
α

[1 +α(1−Ki)](1− e−x̂/µx̂)

24
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= 1− γ

α
(1− e−x̂/µx̂) . (71)

This example of isothermal conditions illustrates that with Êa = Êa0, then according to Eq. (69) the average travel distance

µx̂ is directly proportional to the initial average energy. However, isothermal conditions are unlikely, because according to

Eq. (66), such a condition requires a specific value of Ki for the ratio Êa/Êh = γ. We now consider the more general case5

involving either net cooling or net heating.

As above we assume that the ratio Êa/Êh = γ is fixed, although the averages Êa and Êh otherwise are unconstrained. Net

cooling or net heating is not prescribed; either condition is allowed. Using Eq. (60) and Eq. (61) the disentrainment rate is

(Appendix H)

P̂x̂(x̂) =
1

ax̂+ b
, (72)10

where

a=
α

γ

(
Ki − 1 +

γ

α
− 1
α

)
=
α

γ
(Ki −Ki∗) and

b=
αÊa0
γ

. (73)

Note that as a→ 0 the disentrainment rate goes to a fixed value equal to 1/b= γ/αÊa0, and the distribution fx̂(x̂) of travel15

distances x̂ goes to an exponential distribution with mean µx̂ = b= αÊa0/γ. A value of a > 0 (Ki >Ki∗) implies decreasing

disentrainment with increasing x. A value of a < 0 (Ki <Ki∗) implies increasing disentrainment.

More generally, the distribution of travel distances is a generalized Pareto distribution with position parameter equal to zero

(Appendix H), namely,

fx̂(x̂) =
b1/a

(ax̂+ b)1+1/a
, (74)20

where now a ∈ < is interpreted as a shape parameter and b > 0 is a scale parameter (Pickands, 1975; Hosking and Wallis,

1987). The cumulative distribution is

F̂x̂(x̂) =





1− b1/a

(ax̂+b)1/a a 6= 0

1− e−x̂/b a= 0 ,
(75)

and the exceedance probability is

R̂x̂(x̂) =





b1/a

(ax̂+b)1/a a 6= 0

e−x̂/b a= 0 .
(76)25
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For a < 1 the mean is

µx̂ =
b

1− a =
αÊa0

1 +α−αKi
, (77)

which is independent of the ratio γ = Êa/Êh. This is the same as Eq. (69) for isothermal conditions, although the denominator

in Eq. (77) generally is not equal to γ. In turn, Eq. (77) requires that

Ki < 1 +
1
α
, (78)5

which provides the upper limit of Ki for which the mean µx̂ is defined. Because α > 0, this limit may be greater than one. For

a < 1/2 the variance is

σ2
x̂ =

b2

(1− a)2(1− 2a)

=
α2Ê2

a0

(1 +α−αKi)2(2/γ+ 2α/γ− 1− 2αKi/γ)
. (79)10

Unlike the mean, the variance depends on γ = Êa/Êh. In turn, for a≥ 1 such that

Ki ≥ 1 +
1
α
, (80)

the mean of fx̂(x̂) is undefined. Moreover, for a≥ 1/2 the variance is undefined. These results reflect the heavy-tailed behavior

of the generalized Pareto distribution.

As a point of reference in the second companion paper (Furbish et al., 2020a), the generalized Pareto distribution defined15

by Eq. (74) also may be considered a generalized Lomax distribution. This distribution can be rewritten as an ordinary Lomax

distribution (Appendix H). Namely, if we define the shape parameter aL = 1/a and the scale parameter bL = b/a, then Eq.

(74) becomes

fx̂(x̂) =
aLb

aL

L

(x̂+ bL)1+aL
aL, bL > 0 , (81)

which is a Lomax distribution with mean20

µx̂ =
bL

aL− 1
aL > 1 . (82)

For aL > 0 (a > 0) the forms and behaviors of Eq. (74) and Eq. (81) are identical. Notice, however, that if a < 0 then aL =

1/a < 0 and bL = b/a < 0 for positive b. This means that we cannot use the form of the Lomax distribution given by Eq. (81)

to examine conditions involving a < 0. Yet these conditions are mechanically meaningful, so we proceed using the generalized

Pareto distribution given by Eq. (74). To be clear, the ordinary Pareto distribution that is normally referred to in the literature is25

a special case of the generalized Pareto distribution. In turn the Lomax distribution is a special case of the Pareto distribution

(and therefore of the generalized Pareto) with position parameter equal to zero.
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Figure 4. Plot of probability density fr(r;x) versus travel distance r for scale parameter B = 1 and different values of the shape parameter

A for (a) A< 0 and (b) A≥ 0 with associated exceedance probability plots (insets). Figure reproduced from companion paper (Furbish et

al., 2020a). Compare with Figure 1 in Hosking and Wallis (1987).

With reference to Figure 4, for a < 0 the distribution fx̂(x̂) is bounded at a value of x̂= b/|a| with a mean given by Eq. (77).

This represents a condition of rapid thermal collapse. Specifically, when a <−1 this distribution monotonically increases and

becomes asymptotically unbounded at x̂= b/|a|. In the limit of a→−1 it becomes a uniform distribution. When a=−1/2

this distribution is triangular. For −1/2< a < 0 this distribution decays more rapidly than an exponential distribution and is

bounded at the position x̂= b/|a|. For a= 0, fx̂(x̂) becomes an exponential distribution, representing an isothermal condition5

as described above. For a > 0 the distribution fx̂(x̂) is heavy-tailed. This represents a condition of net heating. Specifically,

for 0< a < 1/2 this distribution decays more slowly than an exponential distribution, but it possesses a finite mean and a

finite variance. For 1/2≤ a < 1 the distribution possesses a finite mean but its variance is undefined. For a≥ 1 the mean and

variance of fx̂(x̂) are both undefined, even though this distribution properly integrates to unity. For a > 0 the tail of fx̂(x̂)

decays as a power function, namely, fx̂(x̂)∼ x̂−(1+1/a). The exceedance probability decays as Rx̂(x̂)∼ x̂−1/a. These results10

are summarized in Table 1. We provide evidence of all three behaviors — rapid thermal collapse, isothermal conditions, and

net heating — in our second companion paper (Furbish et al., 2020a).

The formulation above assumes uniform surface conditions, specifically, uniform slope angle and roughness texture. We

show below (Section 6) how it may be adapted to varying downslope conditions. We also note that the distribution fx̂(x̂) given

by Eq. (74) can be incorporated into a mixed distribution. Indeed, a mixed distribution is the natural choice for describing15

the travel distances of a mixture of particle sizes, each involving a different frictional cooling behavior for a given surface

roughness (Roth et al., 2020).
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Table 1. Behavior of the generalized Pareto distribution associated with the shape parameter a and Kirkby number Ki as illustrated in Figure

4.

Behavior Range of a Range of Ki Mean µx̂ Variance σ2
x̂

Bounded1, increasing with x̂ a <−1 Ki < 1− (2γ− 1)/α b/(1− a) b2/(1− a)2(1− 2a)

Uniform a=−1 Ki = 1− (2γ− 1)/α b/2 b2/12

Bounded1,2, decreasing with x̂ −1< a < 0 Ki <Ki∗ = 1− (γ− 1)/α b/(1− a) b2/(1− a)2(1− 2a)

Exponential a= 0 Ki = Ki∗ = 1− (γ− 1)/α b b2

Finite mean and variance 0< a < 1/2 Ki∗ <Ki <Ki∗ + γ/2α b/(1− a) b2/(1− a)2(1− 2a)

Finite mean, undefined variance 1/2≤ a < 1 Ki∗ + γ/2α≤Ki < 1 + 1/α b/(1− a) —

Undefined mean and variance a≥ 1 Ki ≥ 1 + 1/α — —

1Truncation occurs at dimensionless distance x̂= b/|a|.
2Triangular with a=−1/2

4.2 Elements of the average travel distance

The average travel distance given by Eq. (77) for Ki < 1 + 1/α contains all of the elements that influence particle motions

except the quantity γ. Thus, whereas the average by itself does not reveal the source of variations in the form of distribution of

travel distances, Eq. (74), the average nonetheless provides a focal point. Here we rewrite this average in its dimensional form,

then step through the significance of its elements. Namely, with Ea0 = (1/2)m〈u2
0〉 and Ki = S/µ= (1/µ)mg sinθ/mg cosθ,5

µx =
Ea0

mgµcosθ
α

1 +α−αKi

=
Ea0

(1 + 1/α)mgµcosθ−mg sinθ
. (83)

For an ensemble of particles whose motions start at x= 0, the average travel distance µx increases directly with the average

starting energyEa0 ∝ 〈u2
0〉. This is entirely akin to the formulation by Kirkby and Statham (1975) (see below), and it highlights10

the significance of the initial particle energy conditions at x= 0 in setting their travel distances. The archetypal example

involves rock fall from cliffs followed by their motions over talus and scree slope surfaces (Figure 1), where fall heights and

initial rebounds set the initial average downslope energy. This also is a key element in experiments where initial energies are

set by the choice of drop height (Kirkby ana Statham, 1975) or launch speed (Gabet and Mendoza, 2012; DiBiase et al., 2017).

This aspect of the formulation also points to the significance of energetics associated with the entrainment rate Es(x) in Eq.15

(5) and Eq. (6) at hillslope positions that are not necessarily as well-defined as, say, the base of a cliff (see Section 6).

The average travel distance µx is inversely proportional to the rate of frictional cooling represented by µgµcosθ. Here we

reemphasize that despite its form, this expression does not represent a Coulomb-like friction. Rather, this expression enters

the formulation via the characteristic length λ in setting the expected number of collisions per unit distance, nx. As described

below, the surface-normal component of the particle weight does not set collisional friction; this is set by dynamic forces during20
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collisions. Moreover, the appearance of the Kirkby number Ki in the denominator of Eq. (83) indicates that as Ki increases,

the denominator becomes smaller (subject to the conditions that Ki < 1 + 1/α), so the average travel distance increases. We

also note that, except for purely bouncing motions, it is incorrect to interpret the length λ strictly as a saltation-like distance.

This is a scaling approximation (Appendix D) to show that nx must involve the average energy (∝ 〈u2〉) and the geometrical

factor cosθ at lowest order.5

Notice that Eq. (83) indicates that with Ea0 = (1/2)m〈u2
0〉 the average travel distance µx is independent of the particle mass

m. Viewed in isolation, this suggests that large particles should on average travel no farther than small particles. However,

this is inconsistent with what is observed in laboratory and field-based experiments (Kirkby and Statham, 1975; DiBiase et al.,

2017; Roth et al., 2020) and with downslope size sorting on natural talus and scree slopes (Statham, 1976). We examine this

topic in the second companion paper (Furbish et al., 2020a); here we offer a synopsis, which centers on the interpretation and10

significance of the quantities µ and α.

Recall that the formulation is based on the assumption that a change in translational kinetic energy ∆Ep associated with a

particle-surface collision can be expressed as ∆Ep =−βxEp so that βx =−∆Ep/Ep is the proportion of the energy extracted

during the collision. Both ∆Ep and βx are random variables. As described in Appendix E, in general we may write the energy

balance of a particle as15

∆Ep =−∆Er − fc− fy . (84)

Here, a positive change in rotational energy ∆Er is seen as an extraction of translational energy. This loss of translational

energy with the onset of rotation may be relatively large if a collision involves stick following initial sliding due to a large

normal impulse, and such a loss also may occur due to the imposed torque of friction during a collision that does not necessarily

involve stick. The term fc in Eq. (84) represents losses associated with particle and surface deformation as well as work20

performed against friction during collision impulses (thence converted to heat, sound, etc.). But this term also includes losses

associated with deformation of the surface at a scale larger than that of an idealized particle-surface impulse contact, namely,

due to momentum exchanges associated with the sputtering of loose surface particles during collision. (The videos published

as supplementary material to DiBiase et al. (2017) nicely illustrate this sputtering as well as the onset of rotational motion.) The

term fy in Eq. (84) represents the energy loss associated with glancing collisions that produce transverse translational motions25

and rotation oriented differently than any incident rotation. In some cases the change in energy ∆Ep can be expressed directly

in terms of the energy state Ep (Appendix E). However, the complexity of particle-surface collisions on natural hillslopes

precludes explicitly demonstrating such a relation for all possible scenarios. Nonetheless, it is entirely defensible to assume

that energy losses can be related to the energy stateEp if the elements involved are formally viewed as random variables. Then,

the simple relation ∆Ep =−βxEp is to be viewed as an hypothesis to be tested against data.30

This hypothesis formally enters the formulation via the right side of Eq. (58). Namely, from this relation we may write

µ∼ 〈βx〉, highlighting that µ is associated with the cooling rate. In turn, particle collision mechanics (Appendix E) suggest,

for example, that µ∼ 〈βx〉 ∼M(θ), where M(θ) involves the coefficients associated with tangential and normal impulses

contributing to energy losses during collisions, and depends on the slope angle θ in that the expected surface normal impact
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velocity varies with this angle. (In an idealized particle-surface collision these coefficients include the normal coefficient of

restitution and a coefficient describing the ratio of tangential to normal impulses during the collision (e.g., Brach, 1991; Brach

and Dunn, 1992, 1995)). Moreover, M(θ) is independent of particle size.

In turn, focusing on the definition of the deposition length scale Lc, Eq. (51), α may be viewed as representing a direct

effect of heating described by mg sinθ, namely, to decrease the likelihood of deposition by decreasing the proportion of5

particles that cool to sufficiently low energies for deposition to occur — which translates to suppressing the disentrainment rate

and increasing the length scale of deposition Lc relative to the cooling length scale lc = Eh/mgµcosθ. Specifically, heating

decreases the spatial rate of the Poisson deposition process below that which would occur in the absence of heating. In this

view, µ goes with the cooling rate (not the deposition rate). But we also may write Eq. (51) as in Eq. (53). Viewed in this

manner, we may define an apparent friction factor as µ0 = µ(1−µ1Ki) associated with deposition. Here again, µ is associated10

with the cooling rate but is then modulated by heating. We suggest in the second companion paper (Furbish et al. 2020a) that

for the same particle size, α increases with increasing Ki , very likely due to a combination of increased heating and increased

partitioning of translational energy to rotational motion (Dorren, 2003; Luckman, 2013) — both decreasing the likelihood of

stopping and not represented in just the factor µ. We also suggest that for the same slope and surface roughness, α increases

with increasing particle size, decreasing the likelihood of frictional loss with increasing rotation.15

Turning to the factor γ (which does not appear in Eq. (83)), recall that an increasing value (γ > 1) reflects an increasing

availability of low energy particles for deposition. Here is what we know. On the one hand, γ cannot be close to unity with

randomization of motions by collisional friction, or if the initial downslope energies Ep0 are not a fixed value. That is, if the

distribution of energies fEp
(Ep,0) has finite variance, then γ > 1. On the other hand, γ cannot be very large, or deposition

would dominate over small distances without long motions that are observed — unless the Kirkby number Ki is unrealistically20

large. It is possible to qualitatively explore possible values of γ based on assuming different forms of the distribution of energies

(and we have done this), but in the absence of knowing the specific form of the distribution, this exercise is not particularly

meaningful. In the companion paper we show that fits of experimental travel distances to the theoretical distribution fx(x) are

relatively insensitive to the specific value of γ selected.

5 Related formulations25

Here we briefly examine three related formulations of particle disentrainment, focusing on the mechanical basis of this work

for comparison with the formulation above. (We examine associated experiments in the companion paper.) We start with the

formulations of Kirkby and Statham (1975) and Gabet and Mendoza (2012). These begin with descriptions of particle motions

over time rather than space, centered on consideration of a combination of momentum and energy. We then consider elements

of the probabilistic formulation presented by Furbish and Haff (2010), Furbish and Roering (2013) and Doane et al. (2018).30
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5.1 Kirkby-Statham formulation

In their study of particle motions on scree surfaces, Kirkby and Statham (1975) start with a statement of conservation of energy

for a particle falling from height h at x= 0 onto a rough surface inclined at an angle θ. Namely, if w0 =
√

2gh is the vertical

impact velocity, then it is assumed that the initial downslope velocity on average is u0 = w0 sinθ. (This actually should be

u0 = εw0 sinθ with the normal coefficient of restitution ε.) The initial downslope particle energy therefore is (1/2)mu2
0 =5

ε2mghsin2 θ = Ep0. In turn, because work is W = Fxl, where Fx is the downslope force and l is a displacement, then for a

fixed force Fx the displacement is l =W/Fx. Assuming that W must be equal to the initial kinetic energy Ep0 (that is, this

initial energy is dissipated over the distance l), then l = Ep0/Fx. Assuming a Coulomb-like friction behavior, Fx =mg sinθ−
µdmg cosθ, where µd is a dynamic friction coefficient. Upon asserting that the length l represents the expected travel distance

µx,10

µx =− Ep0
mg sinθ−µdmg cosθ

=− ε2hsin2 θ

sinθ−µd cosθ
, (85)

where it is assumed that |µd cosθ| ≥ sinθ. As described below, this is equivalent to assuming that particle energy decreases

linearly with distance.

This formulation correctly describes the motion of an individual particle that experiences a fixed Coulomb-like friction

force, but it cannot represent the rarefied behavior of an ensemble of particles. Nonetheless, it shares elements of the preceding15

formulation. Namely, in comparing Eq. (85) with Eq. (83), let us momentarily set aside the fact that Ep0 cannot represent Ea0

except in the limit of zero variance of initial energy states (γ = 1), and that the friction factor µ in Eq. (83) and the dynamic

friction coefficient µd in Eq. (85) have different interpretations. These two descriptions of the average travel distance µx then

converge in the limit of α→∞. Inasmuch as Eq. (52) correctly describes the behavior of α, this limit coincides with Ki → 1.

More generally, Eq. (85) implies that the deposition rate is independent of the extant energy state of particles. If Eq. (85)20

denotes the average of a distribution of travel distances with fixed disentrainment rate, then this fixed rate Px = 1/µx. In

dimensionless form this is

Px̂ =
1−Ki
Êp0

. (86)

That is, Eq.(86) cannot allow for the possibility of variations in the cooling rate or heating rate that give spatial variations in the

disentrainment rate, as in Eq. (72). The resulting distribution fx(x) of travel distances therefore is exponential for all Ki < 1.25

Interestingly, the formulation of Kirkby and Statham (1975) is equivalent to (Appendix I)

dEp
dx

=mg sinθ−mgµd cosθ . (87)

This is like Eq. (57), but lacks the heating effect of deposition. Like Eq. (85), Eq. (87) implies that deposition is independent

of the extant energy state; and when Ki = 1 the energy Ep remains fixed as x→∞ (again noting that Ep0 cannot represent

Ea0 except in the limit of zero variance of initial energy states).30
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Dorren (2003) provides a review of efforts to elaborate the Kirky-Statham description of particle motions in relation to

hazard assessment. These mostly appeal to a Coulomb-like frictional behavior and are focused on predicting rockfall runout

distances.

5.2 Gabet-Mendoza formulation

In support of their experimental work involving particle motions on a rough, inclined surface, Gabet and Mendoza (2012)5

appeal to ideas from Quartier et al. (2000) and Samson et al. (1998) and assume that particle acceleration is described as a

linear combination of the gravitational force, a Coulomb-like friction and collisional friction, namely,

du(t)
dt

= g sinθ−µdg cosθ−κuψ . (88)

As written, the dimensions of the coefficient κ depend on the value of the exponent ψ, which is thought to vary between one

and two based on experiments. The principal significance of this formulation is that it points to the idea of collisional friction,10

thus representing an important step beyond the Coulomb-like model of Kirkby and Statham (1975). However, because there

is confusion in the literature regarding the form and interpretation of Eq. (88), we summarize the basis of this formulation

in Appendix J. The essence is this: The Coulomb term and the collisional term as written are not additive for an individual

particle. The collisional term is a stochastic quantity and applies to an averaged behavior, not to the instantaneous behavior

of an individual particle. If this term is involved, the velocity u must be considered a time-averaged or ensemble-averaged15

velocity, or Eq. (88) must be recast as a Langevin-like equation. Parts of this formulation are appropriate for describing the

behavior of particles that roll bumpety-bump over a surface roughened with a monolayer of particles, but this formulation is

problematic in its description of the mechanics involved in rarefied motions over the roughness of natural hillslopes.

In both formulations above the idea of a Coulomb-like friction with a dynamic friction coefficient is mechanically unsound

(Appendix J). For particles that tumble, bounce and skitter down a rough surface, the static normal weight of a particle,20

mg cosθ, does not set the particle-surface friction. Rather, dynamic forces during collision impulses matter (Brach, 1991;

Stronge, 2000). This includes the dynamic Coulomb-like friction force associated with conversion of translational to rotational

kinetic energy during collisions (Appendix E). Formulating a dynamic friction coefficient would require ensemble averaging

of the ratio of tangential to normal momentum exchanges, both of which are random variables. A Coulomb-like friction is

appropriate for solid body and dense granular motions, but not for the rarefied conditions described here.25

5.3 Furbish-Haff-Roering-Doane formulation

The probabilistic formulation presented by Furbish and Haff (2010), Furbish and Roering (2013) and Doane et al. (2018)

assumes that travel distances are described by an exponential distribution whose mean µx is a function of the local slope S.

Namely, the mean increases with S and becomes unbounded as S approaches a critical value Sc. This formulation is equivalent

to setting the mean µx ∼ Lc. Here we consider the behavior of Lc over small S then as S→ Sc.30
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Starting with Eq. (49) we write

Lc ∼
αEh

mgµcosθ
=
αEh
mgµ

√
1 +S2 . (89)

If α is described by Eq. (52), and neglecting the factor µ1 for simplicity, then this is

Lc ∼=
α0Eh
mgµ

√
1 +S2

1−Ki
=
α0Eh
mgµ

√
1 +S2

1−S/µ . (90)

A binomial expansion of Eq. (89) gives5

Lc ∼
αEh
mgµ

(
1 +

S2

2
+ ...

)
, (91)

and Eq. (90) gives

Lc ∼
α0Eh
mgµ

(
1 +

S2

2
+ ...

)(
1 +

S

µ
+ ...

)

=
α0Eh
mgµ

(
1 +

S

µ
+
S2

2
+ ...

)
. (92)10

From Furbish and Haff (2010),

Lc ∼ λ0

(
Sc +S

Sc−S

)
= λ0

(
1 +

2S
Sc

+
S2

S2
c

+ ...

)
. (93)

If we interpret the length scale λ0 ∼ αEh/mgµ, then for small to modest slopes S, Eq. (91) and Eq. (93) differ in their linear

versus quadratic forms at lowest order. If λ∼ α0Eh/mgµ, then the behavior of Eq. (92) and Eq. (93) are the same if Sc = 2µ.

More generally, Eq. (92) and Eq. (93) display the same behavior with increasing S. Namely, if the critical slope is interpreted15

as Sc ∼ µ, the length scale Lc in both cases increases approximately linearly over much of the domain of S then asymptotically

becomes unbounded as S→ Sc.

Note that the formulation involving Eq. (93) is limited to an exponential form of the distribution of travel distances (Furbish

and Haff, 2010; Furbish and Roering, 2013; Doane et al., 2018). It does not mimic the different forms of fx(x) illustrated in

Figure 4, and it lacks a mechanical underpinning as presented in previous sections.20

6 Varying disentrainment rate

The formulations above envision particle motions starting at position x= 0 such that the distribution of travel distances is

expressed as fx(x). This is particularly convenient when considering laboratory and field experiments in which particles are

released on a sloping surface from the same starting position, as examined in the companion paper. Here we return to our

starting point concerning calculations of the particle flux and use of the entrainment form of the Exner equation as summarized25

in Section 2. Recall that in this frame of reference the particle travel distance is denoted by r and the starting position may
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involve any position x. Then, with reference to Eq. (4), Eq. (5) and Eq. (6), the disentrainment rate is Pr(r;x), the distribution of

travel distances r is fr(r;x) and the exceedance probability (survival function) is Rr(r;x) = 1−Fr(r;x). In turn, for particles

starting at x, the mean travel distance is µr(x).

To use the results of Section 2.1 in specifying the exceedance probability Rr(r;x) and the probability density fr(r;x) in the

entrainment forms of the flux and the Exner equation, Eq. (5) and Eq. (6), requires a key assumption. Namely, one must assume5

that the factors controlling the disentrainment rate on a hillslope change sufficiently slowly over x such that these factors defined

at any position x correctly determine the conditions for the downslope motions of particles starting at x (Furbish and Roering,

2013; Doane et al., 2018). This is equivalent to assuming that during its downslope motion a particle “sees” conditions similar

to those at its starting position. However, in actuality particles may see new conditions during their motions that change their

behavior relative to what was “predicted” by the conditions at their starting positions. Let λS denote a characteristic distance10

over which conditions persist. For example, focusing on the Kirky number Ki ,

λS ∼
Ki

∂Ki/∂x
. (94)

Thus, a rapid change in Ki over position x implies that λS is small, and if Ki changes slowly then λS is large. Uniform

conditions imply that λS →∞. We may then assume that if µx� λS , conditions change sufficiently slowly that use of the

continuous forms of Rr(r;x) and fr(r;x) with Eq. (5) and Eq. (6) provides a reasonable approximation of collective particle15

behavior.

This strategy might be acceptable for an exponential-like distribution with finite moments, but it is problematic if particle

travel distances r involve a heavy-tailed distribution or if conditions transition along x between net cooling and net heating,

or vice versa. Herein resides the merit of the discrete form of the disentrainment rate and the distribution of travel distribution

as summarized in Section 2.2. Recall that this formulation is aimed at describing the ingredients of disentrainment that are20

occurring at different locations on a hillslope, where the mechanical behavior at a location transitions to another behavior in

the downslope direction. In this formulation we let pk denote the probability that a particle, having not been disentrained before

the kth interval, then becomes disentrained within this interval.

Let dr denote a finite (rather than infinitesimal) interval. Then the kth interval begins at r and ends at r+ dr. Letting

Nk =N(r) denote the number of particles reaching the kth interval, then based on Eq. (56) the probability that a particle will25

be disentrained within this interval is

pk =− 1
Nk

dN =
γ

α
mgµcosθ

1
Ea

dr (95)

This will be recognized as the setup for a simple finite-difference scheme, to be coupled with a similar finite-difference expres-

sion for the average energy state Ea. Namely, in dimensionless form, for particles starting at position x̂,

N̂(r̂+ dr̂; x̂)≈ N̂(r̂; x̂)− γ

α

N̂(r̂; x̂)
Êa(r̂; x̂)

dr̂ and (96)30

Êa(r̂+ dr̂; x̂)≈ Êa(r̂; x̂) +
(

Ki − 1 +
γ

α
− 1
α

)
(r̂; x̂)dr̂
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= Êa(r̂; x̂) + [Ki(r̂; x̂)−Ki∗(r̂; x̂)]dr̂ , (97)

where both the Kirky number Ki and the elements of the transition value of the Kirkby number Ki∗ = 1− γ/α+ 1/α may

vary from one interval to the next as conditions vary in the downslope direction. The proportion of N̂(0; x̂) particles starting

from position x̂ is then recovered from5

fk(k; x̂)≈− 1
N̂(0; x̂)

[N̂(r̂+ dr̂; x̂)− N̂(r̂; x̂)]

=− 1
N̂(0; x̂)

[N̂(k+ 1; x̂)− N̂(k; x̂)] . (98)

We note that, although different in form and implementation, this description is similar to the particle-based scheme of Tucker

and Bradley (2010) in which particle behavior adjusts to newly encountered conditions during downslope motion.10

Consider for illustration a situation in which the Kirkby numbers Ki and Ki∗ systematically vary with position x̂, relative

to uniform conditions (Figure 5). This may be due, for example, to variations in steepness or in the friction µ with increasing

Figure 5. Cartoon of hillslope surfaces with downslope variations in steepness leading to concomitant variations in heating, cooling and

deposition; this is in contrast to a planar slope with uniform µ that produces either net heating or net cooling, or isothermal conditions.

travel distance. Also recall that Ki <Ki∗ implies cooling whereas Ki >Ki∗ implies heating.

In these examples we let α vary with the Kirkby number Ki according to Eq. (52) in anticipation of results presented in the

companion paper. A decreasing rate of cooling associated with, for example, steepening in the downslope direction generally15

increases the heaviness of the tail of the distribution relative to the tail associated with a fixed rate of cooling (Figure 6). We

present evidence in the companion paper that this occurs in the field-based experiments reported by DiBiase et al. (2017).

Specifically, particles were launched down a rough hillslope surface, and then their travel distances were measured over a 14
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Figure 6. Plot of exceedance probabilityRx̂(x̂) versus dimensionless travel distance x̂ showing conditions with fixed net cooling (solid line)

and conditions that start with the same cooling rate but then involve a decreasing rate with increasing distance x̂ (circles). In this example the

Kirkby number starts at Ki = 0.70 at x̂= 0 and increases to Ki = 0.96 at x̂= 10.

m interval. Particles reaching the steeper slope below the measurement interval continued to the base of the hillslope without

stopping. In turn, an increasing rate of cooling (e.g., with decreasing slope in the downslope direction) generally lightens the

tail, and may lead to truncation of the distribution if the rate increases rapidly enough. Moreover, a condition involving initial

heating followed by cooling (e.g., with a concave hillslope surface) can lead to a distribution with a finite mode (Figure 7).

These examples represent situations where particle travel distances cannot necessarily be approximated by a distribution whose

Figure 7. Probability mass function fk(k; x̂) of discrete travel distances k associated with initial net heating over small k followed by net

cooling with increasing k, leading to a finite mode. In this example the Kirkby number starts at Ki = 0.90 at kdr̂ = x̂= 0 and decreases to

Ki = 0.57 at kdr̂ = x̂= 10.
5
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parametric values are set by the hillslope conditions at the position where particle motions start. We defer further examination

of this behavior, including use of the convolutions in Eq. (5) and Eq. (6), for a later time.

7 Discussion and conclusions

Our formulation of rarefied particle motions is based on a description of the energy balance of a cohort of particles treated

as a rarefied granular gas, and a description of particle deposition that depends on the energy state of the particles. The5

formulation leads to a generalized Pareto distribution of particle travel distances, Eq. (74). This distribution represents three

well-defined behaviors in which the Kirkby number Ki — the ratio of graviational heating to frictional cooling — has a

principal role. Conditions with relatively small Ki lead to rapid thermal collapse such that the distribution of travel distances

is bounded. For intermediate values of Ki the rate of gravitational heating may be matched by the rate of frictional cooling,

giving approximately isothermal conditions and an exponential distribution of travel distances. Conditions with large Ki and10

net heating lead to a heavy-tailed distribution of travel distances. We provide compelling evidence of all three behaviors in our

companion paper (Furbish et al., 2020a). Here we emphasize that we do not choose the generalized Pareto distribution in the

empirical manner of selecting a distribution based on goodness-of-fit criteria applied to data sets. Rather, this distribution is

dictated by the physics of the problem, just as, for example, the Boltzmann distribution (an exponential distribution) emerges

in classical statistical mechanics from consideration of the accessible energy microstates of a gas system. We elaborate this15

point in the third companion paper (Furbish et al., 2020b).

Two of the most important elements of the formulation are the deposition length scales lc(Ep) and Lc(Eh), the former being

keyed to the specific particle energy state Ep and the latter being keyed to the harmonic average energy Eh of the particle

cohort. Indeed, these lengths provide the essential connection between particle deposition and the energy balance of the particle

cohort. We assume that lc is set by the advective cooling length scale in the Fokker-Planck equation, that is, Eq. (44). This is20

a natural choice in that deposition must go with cooling. The energy specific deposition rate in the absence of heating is then

specified as if deposition proceeds as a spatial Poisson process. We emphasize that this represents a maximum (information)

entropy choice in the sense that it is faithful to what we think we know, namely, the connection between deposition and cooling,

as well as to what we do not know (Jaynes, 1957a, 1957b), namely, any detailed physics that would produce a different rate

(for example, involving a nonlinear dependence on energy state) but which cannot be specified or constrained with available25

information. This description then leads to the interesting result, Eq. (46), that the loss of total energy due to deposition appears

to be independent of the energy state. In particular, the loss of large energy states occurs at a relatively slow rate whereas the

loss of small energy states occurs at a relatively fast rate. In effect the rate of loss of energy per energy interval is fixed across

energy states. The result is that the energy Ep cancels with substitution of Eq. (45) into the integral in Eq. (46) such that the

total loss becomes independent of the energy state. That is, the loss of total energy goes simply with the loss of particles (and30

the energy they possess).

In turn, the total deposition rate is energy dependent. This rate, defined by the length scale Lc, is obtained by integrating

the number density of particles over all possible energy states as in Eq. (48). Because lc is keyed to the energy state Ep,
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but the integral in Eq. (48) does not involve this energy in the numerator, the result involves the reciprocal of the harmonic

average energy Eh. In general, the harmonic average diverges from the arithmetic average Ea with increasing variance of the

distribution of energy states. With Ea/Ea = γ, the resulting ratio γ/Ea in Eq. (56) (with dimensionless form given by Eq.

(61) or Eq. (64)) reflects an increasing proportion of lower energy particles available for deposition, relative to this availability

with γ→ 1. This effect is directly apparent in the expression of the mean travel distance, Eq. (69), associated with isothermal5

conditions.

Note that the formulation does not involve specifying a threshold energy for deposition. Such an idea is mechanically

irrelevant. Whereas low energy particles are on average more likely to become disentrained than are high energy particles, a set

of particles with precisely the same low energy will for probabilistic reasons not be disentrained simultaneously. Each particle

experiences a unique set of conditions that disentrain it; and because of this uniqueness of conditions a particle with energy10

below an arbitrarily assigned threshold can with finite probability be gravitationally reheated to a higher energy state. For given

particle and surface roughness conditions, the formulation treats this aspect of disentrainment as a probabilistic process. In

effect, this aspect is incorporated into the deposition lengths lc and Lc as these are related to the distribution of particle energy

states and the probabilistically expected extraction of energy during collisions.

Frictional cooling is formulated in terms of extraction of translational kinetic energy associated with particle-surface col-15

lisions. This involves the random variable βx =−∆Ep/Ep whose energy specific average βx is the expected proportion of

energy extracted from particles with energy Ep. In detail the change in energy ∆Ep may be partitioned between a frictional

loss, any conversion of translational to rotational energy, and any apparent loss associated with downslope incident motion

reflected to transverse motion during a glancing collision. Our treatment of βx as a random variable does not distinguish the

details involved in collisions. Yet these details may be important in terms of effects of different particle sizes and shapes,20

specifically the likelihood that the partitioning of energy losses differs between sizes or shapes. Herein the quantity α has a

dualistic role. As incorporated in Eq. (51), this quantity represents the effect of heating, namely, to decrease the likelihood

of deposition by decreasing the proportion of particles that cool to sufficiently low energies for deposition to occur — which

translates to suppressing the disentrainment rate and increasing the length scale of deposition Lc. As incorporated in Eq. (53),

this quantity modulates the frictional cooling described by µ∝ 〈βx〉 to give an apparent decrease in friction associated with25

deposition.

Whereas particles that are small relative to the surface roughness texture are on average more likely to experience near

collinear collisions with surface bumps and be “captured” within divots and pockets, particles that are large relative to the

roughness texture are less likely to experience direct collisions with, or strong deflections by, smaller surface bumps. In ad-

dition, large particles are more likely to experience conversion of their translational energy into rotational energy with less30

loss during collisions. In particular, large spherical particles are more likely to roll or spin with increased heating, and large

spinning particles are less likely than are smaller particles to be frictionally cooled. These points are reflected in the laboratory

experiments of Samson et al. (1998, 1999) (Appendix J), the laboratory experiments of Kirkby and Statham (1975) and the

field experiments of DiBiase et al. (2017) and Roth et al. (2020) (see the second companion paper (Furbish et al., 2020a)). This

also implies that for a given slope angle and surface roughness, some particle sizes may experience net cooling while some35
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sizes experience net heating (Roth et al., 2020), likely contributing to the size sorting observed on many talus and scree slopes

(Kirkby and Statham, 1975; Statham, 1976; Luckman, 2013). We suspect the noticeable sorting in Figure 1 is due to these

effects.

The formulation readily accommodates the idea of a mixed distribution composed of different distributions associated with

different particle sizes or mechanical behaviors. This amounts to forming a sum of distributions, each weighted in proportion to5

the size classes involved in transport. As with individual sizes, the formulation assumes rarefied conditions — that particles of

different sizes do not interact during their downslope motions, or that such interactions negligibly influence the particle energy

balance relative to particle-surface interactions. We provide an example in the second companion paper (Furbish et al., 2020a).

With rockfall and subsequent particle motions over talus and scree surfaces, the initial energy stateEa0 can be approximated

in terms of the fall height (Kirkby and Statham, 1975). But this is a special situation in which the initial energy can be reasonably10

constrained. More generally, and with reference to the entrainment forms of the flux and the Exner equation, Eq. (5) and Eq.

(6), we are concerned with entrainment of particles from many if not all positions on a hillslope in relation to disturbances. This

points to the idea that entrainment, if followed by long distance motions, requires sufficient initial heating to keep particles

moving downslope. This in turn echoes the conclusion of Doane et al. (2018a), that correctly specifying the entrainment rate is

a key part of implementing formulations of nonlocal transport and mass conservation. Because of the significance of sediment15

capacitors (e.g., vegetation) in trapping and storing sediment on hillslopes (Lamb et al., 2013; Doane, 2018a), there is merit in

clarifying the initial energetics of particles upon their release (i.e., entrainment) from storage. There also is a need to examine

re-entrainment and transport associated with particle collisions, analogous to work on particle splash during aeolian transport

and the energetics of collective entrainment (Ancey et al., 2008) by collisions during bed load transport (Lee and Jerolmack,

2018).20

That the energy and mass balances are expressed in the form of coupled differential equations opens the possibility of de-

scribing effects of varying disentrainment rates in response to changing downslope conditions in a manner intrinsic to particle-

based treatments of transport (Tucker and Bradley, 2010), but not readily incorporated in previous probabilistic descriptions.

Namely, if surface conditions change in the downslope direction, for example, giving net cooling followed by heating or vice

versa (Figure 5), then particles whose travel distances are large enough “see” this change and their behavior concomitantly25

changes. In this case the coupled equations of energy and mass in principle can be solved to accommodate these changing

conditions. Interestingly, as differential (or finite difference) equations these have a local form, yet they intrinsically represent

nonlocal behavior in that information concerning the energy stateEa and the massN is cumulatively handed from one position

to the next downslope. In turn, the forms of Rr(r;x′) and fr(r;x′) associated with any position x′ in the expressions of the

flux and its divergence, Eq. (5) and Eq. (6), must be based on information downslope from this position.30

In this regard, here we offer further perspective on what is meant by local versus nonlocal transport on hillslopes. A transition

of travel distances involving a distribution with a light tail to one with a heavy tail, as embodied in the generalized Pareto

distribution, does not distinguish local from nonlocal transport. As fully explained in Furbish and Roering (2013) and in Furbish

et al. (2016), the convolutions in Eq. (5) and Eq. (6) represent nonlocal transport regardless of the form of the probability

density function fr(r;x) and its associated exceedance probability function Rr(r;x). These scale independent expressions are35
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just specialized forms of the Master equation used in probabilistic descriptions of particle motions over a remarkable range

of scales (Einstein, 1905; von Smoluchowski, 1906; Chandrasekhar, 1943 Risken, 1984). Nonlocal transport is a physical

thing, and refers to the idea that attributes of particle motions used in defining the rheology, the flux or its divergence at a

position x depend on conditions “far” from this position (e.g., Bocquet et al., 2009; Brantov and Bychenkov, 2013; Henann

and Kamrin, 2013). In contrast, local transport is a mathematical thing, not a physical thing, and refers to the idea that under5

certain circumstances the convolution form of the Master equation can be approximated such that the flux or its divergence

has the form of a local mathematical expression — for example, a Fokker-Planck equation — whose terms involve conditions

associated with the local position x. As alluded to above, a local expression can be formulated when the distribution fr(r;x)

has finite moments and is peaked near the origin (r = 0). A heavy-tailed behavior means that this is not justified. Rather, the

full convolution or a fractional derivative approximation of it must be used (Schumer et al., 2009). Because of the generality10

and scale independence embodied in the Master equation and the convolutions in Eq. (5) and Eq. (6), the use of “nonlocal” as

a qualifier of “transport” in reference to hillslopes actually is redundant (Doane, 2018). Its use is merely a reminder that the

flux or its divergence at a position x depends on things happening upslope.

The entrainment rate Es(x), the exceedance probability function R(r;x) and the distribution of travel distances fr(r;x)

within the integrals in Eq. (5) and Eq. (6) are treated as continuous functions. However, this does not imply a continuum15

behavior. Like the Fokker-Planck equation, which describes the evolution of the probability density function of a random

variable that may or may not satisfy the continuum hypothesis (see Appendix A in Furbish et al., 2018b), the continuous

forms of Eq. (5) and Eq. (6) represent a probabilistic description of expected behavior, not necessarily the behavior of any one

realization (system). In practical terms, imagine a rockfall event from a cliff face involving an individual particle or a relatively

small number of particles whose subsequent downslope motions then start at position x= 0 at the base of the cliff. Inasmuch20

as the generalized Pareto distribution fx(x) provides the correct description of the expected behavior of the particles from

the rockfall event, then these particles may be viewed as a (small) sample drawn from this distribution. The outcome of each

realization (sample) is almost certainly different from all other realizations. Over a period of time the pooled outcomes (travel

distances) of many events converge to the smooth representations given by fx(x) and Rx(x) — as if Gabet and Mendoza

(2012), DiBiase et al. (2017) and Roth et al. (2020) had performed a gazillion additional rock-launching experiments (see25

second companion paper, Furbish et al. (2020a)) then pooled the outcomes of these experiments. Implications of this idea are

examined further in Furbish and Haff (2010), Furbish and Roering (2013) and Furbish et al. (2016, 2017, 2018b).

The formulation may have interesting implications for examining Martian landforms. For example, the appearance of the

acceleration g in Eq. (51), Eq. (56) and Eq. (83) immediately suggests the possibility that particle travel distances are on

average significantly longer on Mars than on Earth for otherwise similar particle sizes and surface-roughness conditions; and30

we are confident in suggesting that future Martians likely will have far more fun than Earthlings in the sport of boulder rolling,

notably on the crater rim of Olympus Mons. Nonetheless, we leave it to folks more familiar with Mars than we are to examine

this. A key element of doing this is to either assume that the friction factor µ is similar to what occurs on Earth (which may

be entirely reasonable) or further unfold the elements of this factor. We comment on this idea again in the second companion

paper (Furbish et al., 2020a). We meanwhile note that a similar question arises in relation to the role of g in setting the friction35
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of granular slopes on Mars. Atwood-Stone and McEwen (2013) address this question by examining dune slip-face angles on

Mars, and suggest that the similarity of these angles with those observed on Earth weakens any argument for different granular

behavior associated with g — consistent with independent assessments (Moore et al., 1987; Tesson et al., 2020) and the idea

that this angle is set by the static granular force-chain network (Cates et al., 1998; Furbish et al., 2008).

Appendix A: Choice of terminology5

The study of granular materials is concerned with the behavior of the phases of these materials and associated phase transitions

(Jaeger et al., 1996; Baldassarri et al., 2005; Daniels and Behringer, 2006; Forterre and Pouliquen, 2008; Jerolmack and Daniels,

2019). These phases and transitions share attributes with ordinary materials — solids, liquids and gases — although granular

materials often exhibit behavior that is much different than ordinary materials. Nonetheless, it has become customary in the

study of granular materials to adopt terminology similar to that used to describe ordinary materials.10

The ideas of heating and cooling of a granular material are straightforward, to mean a change in the granular temperature

of the material, specifically the average translational kinetic energy of the particles (but see van Zon and MacKintosh (2004)

and Baldassarri et al. (2005)). However, granular materials do not possess an internal energy in the sense that we attribute to

the particles of an ordinary liquid or gas. This means that heating of a granular material requires a mechanical input of energy,

whereas cooling is associated with dissipative (non-conservative) collisions of particles with each other and with boundaries.15

In the problem at hand, gravitational heating occurs as particles move downslope, and their gravitational potential energy is

converted to kinetic energy. Frictional cooling is associated with dissipative particle-surface interactions (e.g., collisions).

The ideas of melting and freezing of a granular material (Daniels and Behringer, 2006) pertain to the transition between

a solid-like phase and a hydrodynamic (fluid-like) phase. However, in the problem at hand, we are concerned with rarefied

particle conditions in which disentrainment from the rarefied state to the solid-like state or vice versa does not involve an20

intermediate hydrodynamic phase (e.g., Haff, 1983; Jenkins and Savage, 1983; Jaeger et al., 1996). Entrainment is akin to

sublimation, and disentrainment is akin to deposition (or desublimation). Phase transitions involving an intermediate hydro-

dynamic phase (evaporation/condensation and melting/freezing) are represented in Earth-surface processes, for example, by

melting (entrainment) and freezing (disentrainment) at the base of a granular flow, dry or wet. We recommend the papers

by Forterre and Pouliquen (2008), Frey and Church (2011), Houssais et al. (2015) and Jerolmack and Daniels (2019) for25

perspectives on this emerging topic, notably in relation to transport by shear flows.

Appendix B: Particle cohort

In order to clarify the idea of a cohort of particles associated with a control volume with edge length dx (Figure 2), here we

offer a straightforward thought experiment. As a point of reference, the study of granular gases typically involves consideration

of the behavior of an individual system composed of many particles that are mechanically heated, where energy dissipation30

is associated with particle-particle collisions. In contrast, our problem involves an unusual situation in that we must start by
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considering a system composed of one particle, where energy dissipation occurs with particle-surface collisions, and then in

turn consider the behavior of an ensemble of such systems.

Imagine a box containing one particle. We mechanically shake the box and the particle is heated. At any instant the particle

has kinetic energy Ep. Each time the particle collides with the floor of the box it is re-heated, and each time it collides with a

wall of the box energy is extracted. Eventually the particle by chance has sufficiently low energy that when it next encounters5

a wall it becomes irreversibly deposited (disentrained) onto the wall. Then the box has no moving particle.

Like Gibbs (1902), we now imagine a great numberN of nominally identical but independent single-particle systems, where

each particle in each system (box) behaves according to the same laws of physics, each undergoing heating and collisional

cooling, and occasionally being deposited (Figure B1). We now choose one instant in time and examine the state of each

Figure B1. Schematic diagram of surface inclined at angle θ and control volume with edge length dx through which particles move, with

Gibbs-like ensemble of single-particle systems leading to definition of the cohort of N(x) particles starting at the left face of the control

volume.

particle. Some particles previously have been deposited, so at this instant N refers to those systems whose particles are in10

motion. At this instant each particle has kinetic energy Ep, and we may define the ensemble probability density fEp
(Ep) of

energy states Ep. As a consequence we also may at this instant define the ensemble averaged kinetic energy 〈Ep〉 and the total

energy E =N〈Ep〉. (Alternatively, we could imagine all N particles in a single box at one instant, but with the caveat that we

must imagine them as not interacting with each other, only with the floor and walls of the box.) We now choose a successive

instant in time, namely, t+ dt. During dt the number N has decreased with deposition of some particles, the distribution15

fEp
(Ep) has changed, and the average energy 〈Ep〉 and the total energy E have changed.
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More generally we can choose N different instants in time t, one instant for each box, and examine the state of each

particle. Then, upon collecting the particles as a cohort independently of the selected times, like above we observe an ensemble

distribution of energy states with specific average energy 〈Ep〉 and total energy E. At this point we relax the idea of a box,

and simply view particle-wall collisions more generally as particle-surface collisions during motions parallel to x; and instead

of heating the particles via particle-floor collisions we imagine this to occur continuously by gravitational heating. We then5

let the N selected instants in time coincide with those instants that each of the particles is located at a specified position x.

That is, these are the N(x) particles located at the left face of the interval x to x+ dx (Figure B1). We may then examine

how the number N(x) and the ensemble distribution fEp
(Ep,x) and its moments change over the interval x to x+ dx as this

particle cohort moves downslope. Note that each member of the cohort not deposited within this interval may arrive at position

x+ dx at a different instant in time. This is unimportant, however, as we are interested only in how the energy states of the10

particles vary with position x. Similarly, upon choosing any subsequent downslope position x, we must recognize that the

N(x) particles reaching this position do so at entirely different instants in time. Here is a final note: In this problem a particle

ensemble average is identical to a Gibbs ensemble average.

Appendix C: The Fokker-Planck-like equation

Let q = Ep(x+dx)−Ep(x) denote a change in the energy of a particle over the small distance dx, and let fq(q;Ep,x) denote15

the probability density function of the changes q associated with the energy state Ep and position x. If nEp
(Ep,x) denotes the

number density of particle energies Ep, then according to the Master equation,

nEp
(Ep,x+ dx) =

∞∫

0

fq(q;Ep− q,x)nEp
(Ep− q,x)dq . (C1)20

Assuming the density fq(q;Ep,x) is peaked near q = 0 with finite first and second moments, we may expand the integrand

in Eq. (C1) as a Taylor series to second order, subtract nEp
(Ep,x) from both sides, then divide by dx and take the limit as

dx→ 0 to obtain a Fokker-Planck-like equation, namely,

∂nEp
(Ep,x)
∂x

=− ∂

∂Ep
[k1(Ep,x)nEp

(Ep,x)]

25

+
1
2
∂2

∂E2
p

[k2c(Ep,x)nEp
(Ep,x)] . (C2)

Here, k1(Ep,x) is a drift speed and k2c(Ep,x) is a diffusion coefficient defined by

k1(Ep,x) = lim
dx→0

1
dx

∞∫

−∞

qfq(q;Ep,x)dq (C3)
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and

k2c(Ep,x) = lim
dx→0

1
dx

∞∫

−∞

q2fq(q;Ep,x)dEp . (C4)

The drift speed k1(Ep,x) has two parts, one associated with gravitational heating and one associated with frictional cooling.

Starting with gravitational heating, let h(x) denote the height of a particle within the gravitational field at position x. If Ep(x)

denotes the particle kinetic energy equal in magnitude to the potential energy mgh(x) at height h(x), then Ep(x+ dx) =5

mgh(x+ dx) is the magnitude of the particle kinetic energy at the height h(x+ dx), assuming a complete conversion of

gravitational to kinetic energy without loss. Thus,

q =mg[h(x+ dx)−h(x)] . (C5)

This indicates that q in Eq. (C3) is independent of the energy state Ep and therefore may be removed from the integral. We

thus write Eq. (C3) as10

k1h =mg lim
dx→0

h(x+ dx)−h(x)
dx

∞∫

−∞

fq(q;Ep,x)dq

=mg
dh
dx

=mg sinθ . (C6)

This is the steady rate of gravitational heating.

The part of k1(Ep,x) associated with frictional cooling is obtained as follows. With particle-surface collisions we may15

assume that q is proportional to the expected value of ∆Ep. In turn we let nx = 1/λ denote the expected number of collisions

per unit distance, where λ is the expected travel distance between collisions. This leads to

k1c(Ep,x) =
dq
dx
≈ nx∆Ep = nxβxEp , (C7)

where the overline denotes an average over particles at the energy state Ep (rather than a global average).

Because gravitational heating is a fixed quantity according to Eq. (C6), heating does not involve diffusion. In turn, the20

diffusion coefficient k2c(Ep,x) associated with frictional cooling is given by

k2c(Ep,x) =
dq2

dx
≈ nx(∆Ep)2 = nxβ2

xE
2
p . (C8)

Note that whereas k1h is a fixed quantity, k1c and k2c must be viewed as statistically expected quantities.

Appendix D: Expected travel distance between collisions

Momentarily let v = 〈u2〉1/2, and then let v0 denote the surface-parallel velocity of a particle rebounding with reflection angle25

φ measured from the surface (Figure D1). We then know that

U0 = v0
cos(φ− θ)

cosφ
and W0 = v0

sin(φ− θ)
cosφ

, (D1)
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Figure D1. Definition diagram for determining travel distance λ.

where U0 denotes the horizontal velocity and W0 denotes the vertical velocity. For a vertical change in elevation Z over a

horizontal distance X associated with the surface-parallel distance λ, we know that Z =−SX =−SU0t0, where t0 is the

travel time. For a rebounding particle starting at position z0 = 0 we may deduce from Newton’s second law that

Z =−SU0t0 =−1
2
gt20 +W0t0 , (D2)

which gives5

t0 =
2W0

g
+

2SU0

g
. (D3)

With λ=X/cosθ = U0t0/cosθ, we then combine Eq. (D1), Eq. (D2) and Eq. (D3) to obtain

λ=
2v2

0 sin(φ− θ)cos(φ− θ)
g cos2φcosθ

+
2Sv2

0 cos2(φ− θ)
g cos2φcosθ

. (D4)

Upon expanding sin(φ− θ) and cos(φ− θ) using difference formulae, algebra and trigonometric identities eventually lead to

λ=
2v2

0 cosθ
g

tanφ(1 + tanφtanθ10

+tan2 θ+ tanφtan3 θ) (D5)

For θ = 0, this reduces to λ= 2v2
0 tanφ/g. If for small slopes tanφ∼ tanθ and for large slopes tanφ� tanθ, then at leading

order,

λ≈ 2v2
0 cosθ
g

tanφ(1 + tan2 θ) =
2v2

0 tanφ
g cosθ

(D6)15

For the purpose of scaling, we now assume that v2
0 ∼ 〈u2〉 and write

λ≈ 2〈u2〉tanφ
g cosθ

(D7)

which gives Eq. (26) in the text. The soft matter trajectory analysis of Tajima and Fujisawa (2020) includes viscous air resis-

tance, which we neglect.
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Appendix E: Energy extraction during collisions

Here we provide a qualitative description of the basis for assuming that a change in the downslope energy of a particle asso-

ciated with a collision can be expressed as ∆Ep =−βxEp wherein both βx and ∆Ep must be treated as random variables.

We start by noting that the topic of particle collision mechanics is well developed for idealized particle-particle collisions and

particle-surface collisions involving spherical particles, as well as peculiarities of non-collinear collisions associated with irreg-5

ular particles. Relevant elements are covered in Brach (1984, 1989, 1991), Stronge (1990, 2000), Brach and Dunn (1992, 1995)

and Ismail and Stronge (2008). Although we cannot directly apply details of this work given the complexity of particle motions

on natural rough hillslopes, this work nonetheless offers a clear guide in the interpretation of the relation ∆Ep =−βxEp,

notably in relation to experimental results presented in the second companion paper (Furbish et al., 2020a).

With reference to Figure E1, consider an idealized collision of a spherical particle with a rigid planar surface with slope

Figure E1. Definition diagram for idealized collision of a spherical particle with a rigid planar surface.
10

angle θ. Let u, w and ω respectively denote the surface parallel velocity, the surface normal velocity and the angular velocity

of the particle with mass m and radius r =D/2, and let the subscripts 1 and 2 denote incident and reflection values. With

appropriate modification of the coordinate and sign convention used by Brach (1991), the momentum components associated

with impulses can be expressed as (Brach, 1991; Brach and Dunn, 1995; Brach, 1998)

w2 =−εw1 , (E1)15

u2 = u1 +µc(1 + ε)w1 + gτ(sinθ−µc cosθ) and (E2)

ω2 = ω1 +
5
2
µc
r

[(1 + ε)w1− gτ cosθ] , (E3)

where w1 < 0, ε is the normal coefficient of restitution attributed to Newton, µc is the ratio of tangential to normal impulses20

during the collision, and τ is the impulse duration. Note that µc generally is not a coefficient of friction, although it may be

equal to a coefficient of friction in special cases, for example, with sliding throughout the entire duration of the collision (Brach,

1991; Brach and Dunn, 1992). Also note that µc = 0 if u1 = 0.
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The second term on the right side of Eq. (E2) represents the effect of tangential friction on the velocity u, increasing with

the magnitude of the normal impulse associated with the velocity w1. This term may be considered the dynamic contribution

to friction during τ . The term gτ sinθ represents the downslope contribution to the impulse associated with the weight of the

particle, and the term gτµc cosθ represents an enhancement of friction associated with this weight. The impulse duration τ

may be on the order of milliseconds for a hard particle impacting a hard surface. It may be longer for a hard particle impacting5

a relatively soft surface (Brach, 1991). If the magnitude of w1 is sufficiently large and τ is sufficiently short, the gravitational

terms in Eq. (E2) and Eq. (E3) may be neglected. The second term on the right side of Eq. (E3) represents the effect of

tangential friction in contributing to rotational motion, that is, the conversion of translational energy to rotational energy.

Collisions involving small incident angles begin with sliding during the impulse duration τ . If with a sufficient normal

dynamic force this initial sliding gives way to stick prior to separation, then for a sphere with moment of inertia I = (2/5)mr2,10

the velocity u2 = rω2 at separation. This leads to

u2 =
u1 + gτ sinθ

1 + 2/5
, (E4)

which represents the outcome of a conversion of translational to rotational motion with stick. Whereas the resultant velocity

u2 can be determined in this situation, the effect of sliding on u2 cannot be analytically constrained. Nonetheless, Eq. (E3)

indicates that collisions induce a conversion of translational to rotational motion in that tangential friction during an impulse15

exerts a torque on the particle, thereby extracting translational kinetic energy that is in addition to work performed during

particle deformation and by friction. We also note that low-angle collisions likely dominate in the problem at hand.

In order to recast the problem in terms of kinetic energy, we start by squaring Eq. (E1), Eq. (E2) and Eq. (E3) to give

w2
2 = ε2w2

1 , (E5)
20

u2
2 = u2

1 + 2µc(1 + ε)u1w1 +u2
c(1 + ε)2w2

1

+2gτ(sinθ−µc cosθ)u1

+2µc(1 + ε)gτ(sinθ−µc cosθ)w125

+g2τ2(sinθ−µc cosθ) and (E6)

ω2
2 = ω2

1 + 5
µc
r

(1 + ε)ω1w1 +
25
4
µ2
c

r2
(1 + ε)2w2

1

30

−5
µc
r
gτ cosθω1−

25
2
µ2
c

r2
gτ cosθw1

+
25
4
µ2
c

r2
g2τ2 cos2 θ . (E7)
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In addition we square Eq. (E4) to give

u2
2 =

25
49
u2

1 +
50
49
gτ sinθu1 +

25
49
g2τ2 sin2 θ . (E8)

We may immediately neglect terms involving τ2, and for sufficiently large w1 and small τ we may neglect terms involving τ .

The next task involves scaling the normal velocity w1 in terms of the tangential velocity u1 in relation to particle motions

down an inclined surface. Hereafter we focus on lowest order effects. With reference to the analysis presented in Appendix5

D, let W0 denote the vertical reflection velocity of a particle following a collision. Assuming downslope motion, then for any

finite horizontal reflection velocity U0 and reflection angle φ, the magnitude of the vertical velocity at the next collision is

given by

1
2
mW 2

1 =
1
2
mW 2

0 −mgZ , (E9)

where Z ≤ 0 is the vertical distance between the collisions. That is,10

W1 =−
√
W 2

0 − 2gZ . (E10)

From Appendix D,W0 = v0 sin(φ−θ)/cosφ, Z =− 1
2gt

2
0+W0t0 and t0 = 2W0/g+2SW0/g, where v0 is the surface parallel

velocity associated with W0, t0 is the travel time and S = tanθ. Using these relations with Eq. (E10) we obtain

W1 =− v0
cosφ

[
sin2(φ− θ) + 4S2 cos2(φ− θ)

15

+4S cos(φ− θ)sin(φ− θ)
]1/2

. (E11)

Expanding the trigonometric functions in Eq. (E11) as Taylor series and retaining the lowest order term in φ we obtain

w1 =W1 cosθ ≈−cosθ sinθ
cosφ

v0 . (E12)

In effect the magnitude of w1 is set by the gain in the magnitude of the vertical velocity associated with conversion of gravi-

tational potential energy to translational energy with finite slope. This strengthens the normal impulse of the particle, but only20

up to a slope (nominally 45 degrees) beyond which the surface normal component of the vertical velocity begins to decrease.

As in Appendix D we now scale u1 ∼ v0. Using Eq. (E12), at lowest order Eq. (E6) becomes

u2
2 ≈ u2

1−
2µc(1 + ε)cosθ sinθ

cosφ
u2

1 . (E13)

Subtracting u2
1 from both sides of Eq. (E13) and multiplying by m/2,

1
2
m(u2

2−u2
1)≈−2µc(1 + ε)cosθ sinθ

cosφ
1
2
mu2

1 . (E14)25

Omitting subscripts, this is

∆Ep ≈−
2µc(1 + ε)cosθ sinθ

cosφ
Ep . (E15)
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Comparing this result with the assumption ∆Ep =−βxEp, we may conclude that

βx ∼
2µc(1 + ε)cosθ sinθ

cosφ
. (E16)

Note that Eq. (E15) and Eq. (E16) pertain to a highly idealized collision. In fact, the quantities µc, ε and φ are each random

variables. Moreover, on an irregular hillslope surface the angle θ also is a random variable when viewed at the particle-surface

collision scale. Nonetheless, for the purpose of scaling we may view this angle as a locally averaged value, and we now take5

the ensemble average of Eq. (E16) to give

〈βx〉 ∼
〈

2µc(1 + ε)
cosφ

〉
cosθ sinθ . (E17)

In turn, with µ= 〈βx〉/4tanφ we may write

µ∼M(θ) , (E18)

with10

M(θ) =
〈

2µc(1 + ε)
4sinφ

〉
cosθ sinθ . (E19)

At lowest order, cosθ sinθ ∼ θ. We therefore may expect µ to systematically vary with the slope angle θ. Also note that µ is

independent of particle size. We examine both of these points in the second companion paper (Furbish et al., 2020a).

Subtracting u2
1 from both sides of Eq. (8), multiplying by m/2 and retaining the lowest order term,

1
2
m(u2

2−u2
1)≈−

(
1− 25

49

)
1
2
mu2

1 . (E20)15

This is

∆Ep ≈−0.5Ep . (E21)

This result indicates that the onset of rotation with stick produces a large change in the slope-parallel kinetic energy. In this

case, βx ≈ 0.5. Again notice that this result is independent of particle size. Nonetheless, the numerical factors in Eq. (4), Eq. (8)

and Eq. (E20) are set by the moment of inertia of the particle, which means that these factors vary with irregular particles. Also20

note that Eq. (E21) does not imply that half of the translational energy Ep is converted entirely to rotational energy. Rather,

half is converted to rotational energy and lost to work performed by friction prior to stick and by particle/surface deformation,

thence dissipated as heat, vibrations and sound.

More generally, with low incident angle motions, slip is more likely. Focusing on the first three terms on the right side of

Eq. (E7) and using Eq. (E12) with v0 ∼ u1,25

ω2
2 = ω2

1 − 5
µc
r

(1 + ε)
cosθ sinθ

cosφ
ω1w1

+
25
4
µ2
c

r2
(1 + ε)

cos2 θ sin2 θ

cos2φ
u2

1 . (E22)
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Subtracting ω2
1 from both sides of Eq. (E22) and multiplying by I/2 = (1/5)mr2,

1
2
I(ω2

2 −ω2
1) =−mµcr(1 + ε)

cosθ sinθ
cosφ

ω1u1

+
5
2
µ2
c(1 + ε)

cos2 θ sin2 θ

cos2φ
1
2
mu2

1 , (E23)

which is5

∆Er =
5
2
µ2
c(1 + ε)

cos2 θ sin2 θ

cos2φ
Ep

+
√

10µc(1 + ε)
cosθ sinθ

cosφ

√
Er
√
Ep . (E24)

This result suggests that in the absence of initial rotation (Er = 0), a change in rotational energy is directly related to the

translational energy Ep, where the proportion βx now represents the leading factors in the first term on the right side of Eq.10

(E24). With extant rotational motion, a weaker conversion of translational to rotational energy occurs according to the second

term on the right side. Both cases are slope dependent due to the connection between w1 and u1 ∼ v0 implied by Eq. (E12).

Focusing on downslope motions, in general we may write the energy balance of a particle as

∆Ep =−∆Er − fc− fy . (E25)

Here, a positive change in rotational energy ∆Er is seen as an extraction of translational energy. Then, for example, this loss is15

given explicitly by Eq. (E20) in the specific case of stick with the onset of rotation. An approximation of this loss is given by Eq.

(24) for a frictional collision that does not necessarily involve stick. The term fc in Eq. (E25) represents losses associated with

particle and surface deformation as well as work performed against friction during collision impulses (converted to heat, sound,

etc.). This is represented, for example, by Eq. (15). But this term also includes losses associated with deformation of the surface

at a scale larger than that of an idealized particle-surface impulse contact, namely, due to momentum exchanges associated20

with the sputtering of loose surface particles during collision. (The videos published as supplementary material to DiBiase et

al. (2017) nicely illustrate this sputtering as well as the onset of rotational motion.) The term fy in Eq. (E25) represents energy

losses not described in the preceding idealized formulation, namely, changes in downslope translational energy associated

with glancing collisions that produce transverse translational motions and rotational motions oriented differently than that

considered above (Figure E1). In some cases, as described above, the change in energy ∆Ep can be expressed directly in25

terms of the energy state Ep. However, the complexity of particle-surface collisions on natural hillslopes precludes explicitly

demonstrating such a relation for all possible scenarios. Nonetheless, the examples above suggest that it is entirely defensible

to assume that energy losses can be related to the energy state Ep if the elements involved are formally viewed as random

variables. Specifically, with the effect of slope angle θ on the impact velocity w1 and its relation to u1 ∼ v0 via Eq. (E12), we

can be confident that the loss ∆Ep is functionally related to the energy state Ep. The simple relation ∆Ep =−βxEp thus is to30

be viewed as an hypothesis to be tested against data, as elaborated in the second companion paper (Furbish et al., 2020a).
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Appendix F: Product of averages

Let Epi
denote a discrete value of the particle energy. Our objective is to show that the product 〈Epi〉〈1/Epi〉 ≥ 1. We start by

writing this inequality as
(

1
N

N∑

i=1

Epi

)(
1
N

N∑

i=1

1
Epi

)
≥ 1 . (F1)

This means that5

1
N

N∑

i=1

Epi ≥
N

∑N
i=1

1
Epi

. (F2)

Whereas the left side of Eq. (F2) is the arithmetic average Ea, the right side is the harmonic average Eh. Thus,

Ea
Eh
≥ 1 . (F3)

Because the arithmetic average of a set of positive numbers is always greater than or equal to the harmonic average of this set,

this inequality is indeed satisfied. These averages are equal only if all values of the set are equal, that is, the variance of the set10

is zero.

We do not know the form of the underlying distribution fEp
(Ep,x). For physical reasons, however, it cannot be a distri-

bution that supports Ep→ 0, as this coincides with particles at rest. For example, fEp
(Ep,x) cannot be an exponential or

Weibull distribution with support Ep ∈ [0,∞). In contrast, the lognormal and gamma distributions with support Ep ∈ (0,∞)

are admissible, and the Pareto distribution with support Ep ∈ [Epm,∞) is admissible.15

As a point of reference, for a density fEp
(Ep) with finite expected value 〈Ep〉, the density fy(y) of the reciprocal y = 1/Ep

may not have defined moments. This occurs, for example, if fEp
(Ep) is exponential with support Ep ∈ [0,∞). Interestingly,

if with x= ln(Ep) the density fx(x) is lognormal with mean µ, then with y = 1/x the density fy(y) also is lognormal with

mean −µ.

For a density fy(y) of y = 1/Ep with undefined mean, the average 〈y〉 calculated from a sample nonetheless is finite, as the20

probability of sampling precisely a value Ep = 0 is identically zero. Moreover, as the variance of Ep becomes small for finite

mean 〈Ep〉, the product 〈Ep〉〈y〉= 〈Ep〉〈1/Ep〉 → 1, as in the discrete case above.

Appendix G: Deposition rate

Our description of the deposition rate for a granular gas in a box has both similarities and dissimilarities with the processes of

deposition (de-sublimation) and condensation. Here we briefly outline key points.25

In a closed system involving two phases (solid/gas or solid/liquid) at thermodynamic equilibrium, the rates of deposition

and sublimation (or condensation and evaporation) are equal. That is, the rate at which molecules move from the solid phase to

the gas phase (or from the liquid phase to the gas phase) is balanced by the rate at which molecules move from the gas phase

to the solid phase (or from the gas phase to the liquid phase). These rates, in each direction, depend only on the thermal state
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of the system. Because the system has specified internal energy involving conservative particle-particle collisions, we do not

need to appeal to the idea of heating and cooling (although this could be occurring). For a granular gas involving dissipative

collisions, however, a non-equilibrium steady state is achieved only if it is continuously mechanically heated, and the rate of

heating is matched by the rate of cooling due to the collisions. (Note that we refer to a non-equilibrium steady state condition

rather than thermal equilibrium, as unlike an ordinary gas, a granular gas can exhibit strong spatial correlations in the particle5

number density (see Brilliantov and Pöschel (2004, 2005) and Brilliantov et al. (2018) and references therein; and van Zon

and MacKintosh, (2004)). However, this distinction is unimportant in relation to the behavior of particle motions on a hillslope

envisioned as a rarefied granular gas.) Like an ordinary solid-gas system, the rate of sublimation (entrainment) is matched by

the rate of deposition (disentrainment), and the total particle energy and the average particle energy are fixed. Moreover, like

an ordinary solid-gas system, the deposition rate depends on the physics of disentrainment in relation to its thermal state, not10

on the difference between the heating and cooling rates (which is zero at steady state). Heating modulates the deposition rate

as described in the text.

Appendix H: Generalized Pareto distribution

Solving Eq. (65) gives

Êa(x̂) =
[
Ki − 1 +

1
α

(γ− 1)
]
x̂+ Êa0 . (H1)15

Using Eq. (64) the disentrainment rate is then

P̂x̂(x̂) =
1

(α/γ)(Ki + γ/α− 1/α− 1)x̂+αÊa0/γ
, (H2)

which we write as

P̂x̂(x̂) =
1

ax̂+ b
. (H3)

Making use of Eq. (4) we then obtain the distribution of travel distances, namely,20

fx̂(x̂) =
b1/a

(ax̂+ b)1+1/a
. (H4)

This is a generalized Pareto distribution with location parameter equal to zero.

To show how the generalized Pareto distribution is related to the ordinary Lomax distribution, we start by rewriting Eq. (H4)

as

fx̂(x̂) =
b1/a

a1+1/a(x̂+ b/a)1+1/a
. (H5)25

This is

fx̂(x̂) =
(1/a)(b/a)1/a

(x̂+ b/a)1+1/a
. (H6)
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We now define the shape parameter aL = 1/a and the scale parameter bL = b/a. This gives a Lomax ditribution, namely,

fx̂(x̂) =
aLb

aL

L

(x̂+ bL)1+aL
. (H7)

Thus, for a > 0 the behavior of the generalized distribution, Eq. (H4), is the same as that of a Lomax distribution. The mean is

µx̂ =
bL

aL− 1
aL > 1 . (H8)

We work with the generalized Pareto distribution in the form of Eq. (H4) because of the clear connection between its parameters5

and the disentrainment rate function, Eq. (H3), and because the condition a < 0 is physically meaningful.

Appendix I: Kirkby-Statham formulation

The formulation of Kirkby and Statham (1975) assumes that initial particle kinetic energy is dissipated in work performed by a

fixed Coulomb-like friction to give an average travel distance. This idea can be formulated in terms of momentum and energy,

then recast in terms of the rate of change in energy with respect to position x for comparison with the formulation presented in10

the main text.

In appealing to a Coulomb-like friction behavior, Kirkby and Statham (1975) start with Fx =mg sinθ−µdmg cosθ. With

particle velocity u we write this as

du(t)
dt

= g sinθ−µdg cosθ . (I1)

Note that u(t) must be envisioned as representing an idealized “average” velocity of a group of particles viewed over time.15

This gives

u(t) = (g sinθ−µdg cosθ)t+u0 . (I2)

For a total travel time T ,

up(T ) = 0 = (g sinθ−µdg cosθ)T +u0 , (I3)

so that20

T =− u0

g sinθ−µdg cosθ
. (I4)

In turn we rewrite Eq. (I2) as

dx(t)
dt

= (g sinθ−µdg cosθ)t+u0 , (I5)

so that

x(t) =
1
2

(g sinθ−µdg cosθ)t2 +u0t . (I6)25
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The total travel distance X is thus

x(T ) =X =− u2
0

g sinθ−µdg cosθ
. (I7)

Using the initial squared velocity u2
0 = ε2ghsin2 θ,

X =− ε2hsin2 θ

sinθ−µd cosθ
. (I8)

This is the result that Kirkby and Statham (1975) offer as representing the average travel distance.5

We now turn to kinetic energy. Let A= g sinθ−µdg cosθ. Multiplying Eq. (I1) by mu then leads to

d
dt

(m
2
u2
)

=
dEp
dt

=mAu. (I9)

With u=At+u0 from Eq. (I3),

dEp
dt

=mA2t+mAu0 . (I10)

This leads to10

Ep(t) =
1
2
mA2t2 +mAu0t+Ep0 . (I11)

We now solve Eq. (I6) for t in terms of x to give

t=
1

2A

(
−2u0 +

√
4u2

0 + 8Ax
)
. (I12)

Substituting this into Eq. (I11) and doing algebra then yields Ep(x) =mAx+E0. The derivative of this result with respect to

x is15

dEp(x)
dx

=mg sinθ−µdmg cosθ . (I13)

This result is like Eq. (57), but absent the effect of deposition and the associated apparent heating, as it strictly applies to the

motion of an individual particle or a group of particles acting like a rigid body. It does not describe an ensemble averaged

motion.

Appendix J: Gabet-Mendoza formulation20

Gabet and Mendoza (2012) appeal to ideas from Samson et al. (1998) and Quartier et al. (2000) and suggest that the motion of

an individual particle can be described as

du(t)
dt

= g sinθ−µdg cosθ−κuψ . (J1)

However, whereas the derivative term on the left side of Eq. (J1) and the first two terms on the right side pertain to the

instantaneous motion of an individual sliding particle or group of particles acting like a rigid body, the third term on the25
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right side, representing collisional friction, actually is relevant to time-averaged or ensemble-averaged behavior rather than the

instantaneous behavior of an individual particle (Riguidel et al., 1994a, 1994b; Samson et al., 1998, 1999). These terms are not

additive as written. The gravity and Coulomb friction terms are like those in the formulation of Kirkby and Statham (1975).

Because there is confusion in the literature regarding the collisional friction term, here we elaborate its form.

Let nt denote the expected number of particle-surface interactions (collisions) per unit time as a particle moves downslope,5

and let βx denote the proportion of momentum parallel to x that is extracted during an individual collision involving the particle

velocity u. Recognizing that both βx and u must be treated as random variables, and letting angle brackets denote an ensemble

average, we may now assume that

m
d〈u〉
dt
≈mg sinθ−mnt〈βxu〉 . (J2)

The first term on the right side of Eq. (J2) represents the uniform gravitational force, and the second term on the right side10

represents a frictional force due to particle-surface collisions (compare with Eq. (2) in Riguidel et al., 1994). As a reminder,

this term is entirely analogous to the dissipation term that Haff (1983) introduced (formulated in terms of energy rather than

momentum), leading to Haff’s cooling law (Brilliantov and Pöschel, 2004; Yu et al., 2020). The proportion of momentum

extracted, βx, involves an appropriate coefficient of restitution depending on the geometrical details of the collision. We may

now assume that nt ∼ 〈u〉/l, where l denotes a characteristic length scale representing the expected distance between collisions.15

This leads to

d〈u〉
dt
≈ g sinθ− 1

l
〈βxu〉〈u〉 , (J3)

which is close to the form of Eq. (J1) with ψ = 2 (neglecting the Coulomb friction term), but not quite.

We now focus on uniform, steady conditions such that 〈u〉 is unchanging with position or time, consistent with various

experiments (Riguidel et al., 1994; Samson et al., 1998). This leads to20

〈βxu〉〈u〉 ≈ lg sinθ . (J4)

We now write βx = 〈βx〉+β′x and u= 〈u〉+u′, where primes denote deviations about the expected values. Substituting these

expressions into Eq. (J4) and taking expected values then leads to

〈βx〉〈u〉2 + 〈β′xu′〉〈u〉 ≈ lg sinθ . (J5)

The product 〈βx〉〈u〉2 has the appearance of a nominal, nonlinear viscous term. Samson et al. (1998) suggest that this represents25

a Bagnold-like friction based on analogy with the scaling provided by Bagnold (1954), preceding the critical assessment of

Bagnold’s experimental work presented by Hunt et al. (2002). The term 〈β′xu′〉〈u〉, neglected at the outset by Riguidel et al.

(1994), looks like a linear viscous term, where the “viscosity” is given by the covariance 〈β′xu′〉.
Noting that Eq. (J5) is quadratic, we can solve for the velocity 〈u〉 and determine that at lowest order

〈u〉 ≈
(
lg sinθ
〈βx〉

)1/2

, (J6)30
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so long as (〈β′xu′〉/〈βx〉)2 < 4lg sinθ/〈βx〉. If this inequality is satisfied, then Eq. (J3) becomes

d〈u〉
dt
≈ g sinθ− 1

l
〈βx〉〈u〉2 , (J7)

giving ψ = 2. Note that the squared average velocity in Eq. (J7) does not imply that collisional friction is scaled with kinetic

energy rather than momentum. This result occurs because nt is initially scaled with 〈u〉 and l. Quartier et al. (2000) present

an analogous formulation; see their Eq. (4) and explanation of the squared velocity term. Dippel et al. (1997) also discuss this5

point.

In relation to their experiments involving particles of radius R moving down an inclined surface roughened with a quasi-

random monolayer of particles with radius rm, Riguidel et al. (1994) and Samson et al. (1998) propose the hypothesis that

〈u〉 ∼ sinθ. This derives from a scaling analysis in which the magnitude of the collisional momentum extraction (i.e., 〈βx〉) is

written as a function of the relative smoothness R/rm by introducing an unconstrained velocity quantity. These authors plot10

measured values of 〈u〉 versus sinθ and suggest that the linear fit confirms a viscous-like behavior. Note, however, that because

of the rather limited experimental range of sinθ (Figure 2 in Riguide et al., 1994; Figure 2 in Samson et al., 1998; Figure 4 in

Samson et al., 1999), the data are equally well fit by a straight line in a plot involving
√

sinθ (Figure J1), consistent with the

Figure J1. Plot of ensemble averaged particle velocity 〈u〉 versus
√

sinθ involving a steel sphere (R= 2.5 mm) moving over glass beads

(rm = 0.53 mm) giving R/rm = 4.7; data from Samson et al. (1998).

collisional-based formulation, Eq. (J7). (Sampson et al. (1999) acknowledge this limitation of the range of sinθ.) In addition,

we can scale the length l as l ∼ rm/cA, where cA = 0.67 is the areal concentration of the surface-roughness particles. For a15

fixed velocity 〈u〉, Eq. (J7) gives l ≈ 〈βx〉〈u〉2/g sinθ. With R/rm = 4.7 and a coefficient of restitution of ε≈ 0.8, we can

estimate 〈βx〉 ≈ 0.05. This gives l ≈ 0.5− 0.6 mm over the range of measured velocities in Figure J1, which is close to the

experimental value of l = rm/cA = 0.8 mm, thereby reinforcing the collisional basis of Eq. (J7). Thus, a spherical particle that

macroscopically rolls over a monolayer roughness is actually going bumpety-bump, colliding with monolayer particles during

its motion.20
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Because the relative smoothness R/rm is not entirely adequate in scaling the collisional friction as cA varies (Samson et al.,

1998), it remains unclear whether these experimental conditions involve an apparent viscous-like behavior where the effective

viscosity depends only on roughness geometry (Dippel et al., 1997; Samson et al., 1999) or a squared-velocity behavior as in

Eq. (J7). Dippel et al. (1997) note that there is an apparent cross-over in behavior for very large and heavy spheres. Effects of

the covariance of βx and u in relation to roughness geometry and the details of motions, including transverse motions, likely are5

important. Nonetheless, we emphasize that in the formulations of Riguidel et al. (1994) and Samson et al. (1998), a Coulomb

friction behavior is not involved.

Returning to Eq. (J1), similarly there is no clear reason to include a Coulomb-like friction term, as natural irregular particles

mostly do not slide down natural rough surfaces. In addition, if the starting point involves the derivative term on the left side

and the gravitational term on the right side as written, then the collisional term on the right side should be a random quantity,10

thus leading to a stochastic differential equation — that is, a Langevin-like equation (Riguidel et al., 1994) — not an ordinary

differential equation. Moreover, the idea of a dynamic friction coefficient is misapplied in the situation where rarefied particles

tumble, roll and skitter over the surface. A Coulomb model is appropriate for sustained contact, and even then a dynamic

friction involves collisional friction at the surface asperity scale. Particle-surface contacts on natural granular surfaces are not

smooth at a scale commensurate with a sliding Coulomb model. A rolling coefficient of friction works for spheres moving over15

a relatively smooth surface, not for irregular tumbling particles involving non-collinear impacts. Moreover, the static normal

weight of a particle,mg cosθ, does not set the particle-surface friction. Rather, dynamic forces during collision impulses matter

(Brach, 1991; Stronge, 2000). This includes the dynamic Coulomb friction force associated with conversion of translational

to rotational kinetic energy during collisions (Appendix E). Any resulting dynamic friction coefficient represents an ensemble

averaged ratio of tangential to normal momentum exchanges, both of which are random variables. (This point currently is being20

examined in studies of bed load and aeolian transport; see for example Pähtz and Duran (2018).) Finally, the experiments of

Quartier et al. (2000) involved rolling a cylinder over an inclined row of cylinders in an experiment designed to remove the

transverse degree of freedom of motion. The Coulomb-like term in their formulation (see their Eq. (5)) arises from trapping of

the rolling cylinder between bumps, and is unrelated to sliding as in a conventional Coulomb model.
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