
1

Deriving principle channel metrics from bank and long-1

profile geometry with the R-package cmgo 2

Antonius Golly1, Jens M. Turowski1 3

1) German Research Centre for Geosciences (GFZ), Telegrafenberg 14473, Potsdam, Germany 4

 5

Correspondence to: Antonius Golly (golly@gfz-potsdam.de) 6

Abstract 7

Landscape patterns result from landscape forming processes. This link can be exploited in 8

geomorphological research by reversely analyzing the geometrical content of landscapes to develop 9

or confirm theories of the underlying processes. Since rivers represent a dominant control on 10

landscape formation, there is a particular interest in examining channel metrics in a quantitative and 11

objective manner. For example, river cross-section geometry is required to model local flow 12

hydraulics which in turn determine erosion and thus channel dynamics. Similarly, channel geometry 13

is crucial for engineering purposes, water resource management and ecological restauration efforts. 14

These applications require a framework to capture and derive the data. In this paper we present an 15

open-source software tool that performs the calculation of several channel metrics (length, slope, 16

width, bank retreat, knickpoints, etc.) in an objective and reproducible way based on principle bank 17

geometry that can be measured in the field or in a GIS. Furthermore, the software provides a 18

framework to integrate spatial features, for example the abundance of species or the occurrence of 19

knickpoints. The program is available https://github.com/AntoniusGolly/cmgo and is free to use, 20

modify and redistribute under the terms of the GNU General Public License version 3 as published 21

by the Free Software Foundation. 22

https://github.com/AntoniusGolly/cmgo

2

1. Introduction 23

Principle channel metrics, for example channel width or gradient, convey immanent information 24

that can be exploited for geomorphological research (Wobus et al. 2006; Cook et al. 2014) or 25

engineering purposes (Pizzuto 2008). For example, a snap-shot of the current local channel 26

geometry can provide an integrated picture of the processes leading to its formation, if interpreted 27

correctly and examined in a statistically sound manner (Ferrer-Boix et al. 2016). Repeated surveys, 28

as time-series of channel gradients, can reveal local erosional characteristics that sharpen our 29

understanding of the underlying processes and facilitate, inspire and motivate further research 30

(Milzow et al. 2006). However, these geometrical measures are not directly available. Typically, 31

the measurable metrics are limited to the position of features, such as the channel bed or water 32

surface, or the water flow path or thalweg in two- or three-dimensional coordinates. The data can 33

be either collected during field surveys with GPS or total stations or through remote sensing, with 34

the need of post-processing for example in a GIS (geographical information system). To effectively 35

generate channel metrics such as channel width, an objective and reproducible processing of the 36

geometric data is required, especially when analyzing the evolution of channel metrics over time. 37

For river scientists and engineers a convenient processing tool should incorporate a scale-free 38

approach applicable to a broad spectrum of environments. It should be easy to access, use and 39

modify, and generate output data that can be integrated in further statistical analysis. Here, we 40

present a new algorithm that meets these requirements and describe its implementation in the R 41

package cmgo (https://github.com/AntoniusGolly/cmgo). The package derives a reference 42

(centerline) of one or multiple given channel shapes and calculates channel length, local and 43

average channel width, local and average slope, knickpoints based on a scale-free approach 44

(Zimmermann et al. 2008), local and average bank retreat, or the distances from the centerline 45

respectively, as well as allows to project additional spatial metrics to the centerline. 46

2. Literature review 47

Computer-aided products for studying rivers have a long tradition, and solutions for standardized 48

assessments include many disciplines, as for example for assessing the ecological status of rivers 49

(Asterics 2013) or for characterizing heterogeneous reservoirs (Lopez S., Cojan I., Rivoirard J. 50

2008). There are also numerous efforts to derive principle channel metrics from remote or in-situ 51

measurements of topography or directly of features such as channel banks. Available products, 52

which we review in detail next (Table 1), are helpful for many scientific applications and are used 53

https://github.com/AntoniusGolly/cmgo

3

by a large community. However, they often do not provide the degree of independency, 54

transparency or functionality that is necessary to fit the versatile requirements of academic or 55

applied research and thus the call for software solutions remains present (Amit 2015). The currently 56

available solutions can be separated into two groups: extensions for GIS applications and 57

extensions for statistical programming languages. The first group incorporates programs that are 58

published as extensions for the proprietary GIS software ArcMap (ESRI 2017), which are generally 59

not open source and are thus lacking accessibility and often transparency and modifiability. 60

Furthermore, the individual solutions lack functionality. For example, the River Width Calculator 61

(Mir et al. 2013) calculates the average width of a given river (single value), without providing 62

spatially resolved information. The toolbox Perpendicular Transects (Ferreira 2014) is capable of 63

deriving channel transects locally, which are generally suitable for calculating the width. However, 64

the required centerline to which the orthogonals are computed is not generated within the tool itself. 65

Thus, the tool does not represent a full stack solution. Similarly, the Channel Migration Toolbox 66

(Legg et al. 2014), RivEX (Hornby 2017) and HEC-GeoRAS (Ackerman 2011) require prerequisite 67

products – a centerline – to compute transects and calculate the width. A centerline could be created 68

with the toolbox Polygon to Centerline (Dilts 2015), but manual post-processing is required to 69

ensure that lines connect properly. Further, the details of the algorithm are poorly documented and 70

intermediate results are not accessible, making it difficult to understand the data quality. Apart from 71

this, all of these products are dependent on commercial software, are bound to a graphical user 72

interface (not scriptable) and cannot be parametrized to a high degree. 73

The second group of solutions represent extensions for statistical scripting languages. The full stack 74

solution RivWidth (Pavelsky & Smith 2008) is written as a plugin for IDL, a data language with 75

marginal use (Tiobe 2017), which recently became member-restricted. The program requires two 76

binary raster masks, a channel mask and a river mask, which need to be generated in a pre-77

processing step, using for example a GIS. Bank geometry obtained from direct measurements, for 78

example from GPS surveys, do not represent adequate input. As a result of the usage of pixel-based 79

data – which in the first place does not properly represent the nature of the geometrical data – 80

computational intensive transformations are necessary, resulting in long computation times (the 81

authors describe up to an hour for their example). More importantly, the centerline position depends 82

on the resolution of the input rasters, and thus is scale-dependent. Good results can only be obtained 83

when the pixel size is at least an order of magnitude smaller than the channel width. The MATLAB 84

toolbox RivMap also works with raster data. It is well documented and has a scientific reference 85

(Schwenk et al. 2017). However, intermediate results are not accessible. For example the transects 86

used for generating the local width are not accessible. Thus, the tool lacks an important mechanism 87

4

to validate its results. However, since RivMap represents the best documented and most versatile 88

tool, we choose it to compare our results to in the section 8. Evaluation of the data quality. 89

To quantify channel bank retreat for repeated surveys, tools designed for other purposes could 90

potentially be used. Examples are DSAS (Thieler et al. 2009) and AMBUR (Jackson 2009), designed 91

for analyzing migrating shore lines. These tools also require a baseline that is not derived by the 92

program. AMBUR, scripted in the open-source environment R (Jackson 2009) could be adapted to 93

channels. However, we judge its approach to derive transects to be unreliable and unsuitable for 94

rivers, as the transects do not cross the channel orthogonally, leading to implausible results 95

especially in regions with large curvature. A further correction step is included to alleviate this 96

problem, but the resulting distances of the baselines seem arbitrary. Thus, although the tool is 97

among the best documented and accessible solutions currently available, its algorithm is not 98

suitable for generating channel metrics in an objective manner. We conclude that none of the 99

available approaches combines the criteria of being a tool for objectively deriving channel metrics, 100

being easy and free to use and modify and allowing a high degree of parametrization and fine-101

tuning. 102

Table 1: overview of existing products, 1) the two values indicate free use of framework (first) and plugin (second value), 2) a 103

product is considered free to modify if users can access and edit the source code and a license explicitly allows users to do so, 3) 104

a product is considered a full-stack solution if it performs all steps from the bank geometry to the derived channel metrics, 4) 105

relies on the publication of this manuscript, 5) gray cells indicate that no information could be gathered by the time of writing 106

this. 107

Name of the tool Platform Data

format

Last updated Free to use 1) Free to

modify 2)

Configurable Full-stack

solution 3)

Scientific

reference

Note

cmgo (this paper) R Vector July 2017 yes, yes yes yes yes yes 4)

RiverWidthCalculator ArcMap Raster June 2013 no, yes no no no yes
 single, average value

for a stream

Perpendicular

Transects
ArcMap Vector Dec 2014 no, yes yes

limited, no

smoothing
no no

 weak output on non-

smooth centerlines

Channel Migration

Toolbox
ArcMap Vector Oct 2014 no, yes no limited no yes

 fails silently

RivEX ArcMap Vector Feb 2017 no, no no yes no no
 works only on demo

data

HEC-GeoRAS ArcMap Raster July 2017 no, yes no yes no no
 only verified until

ArcMap 10.2

Polygon to Centerline ArcMap Vector Nov 2016 no, yes no
limited, no

smoothing
no no

 weak output for

high-resolution bank

geometry

Fluvial Corridor

Toolbox
ArcMap Vector Jan 2016 no, yes no yes no yes

 cannot be applied on

the raw data,

requires pre-

vectorization of

channel features

Stream Restoration

Toolbox
ArcMap Vector 5) no, yes no very limited no no

 limited functionality

 very unstable

RivWidth IDL Raster May 2013 no, yes yes 5) 5) yes
 limited access due to

IDL license

DSAS ArcMap Vector Dec 2012 no, yes no yes no yes
 primarily designed

for coast lines

AMBUR R Vector June 2014 yes, yes yes limited no yes
 no multi-temporal

analyses allowed

RivMap MATLAB Raster Apr 2017 no, yes yes yes limited yes
 primarily for large

scale river systems

 fails silent on errors

5

3. Description of the algorithm 108

Our aim in this paper is to develop a program that does not have the shortcomings of previous 109

approaches and offers a transparent and objective algorithm. The algorithm (full list of steps in 110

Table 2 and visualization in Figure 1) has two main parts. First, a centerline of the channel – defined 111

by the channel bank points – is derived and second, from this centerline the metrics – channel 112

length, width and gradient (the latter only if elevation is provided) – are calculated. Furthermore, 113

this reference centerline allows for projecting secondary metrics (as for example the occurrence of 114

knickpoints) and performing temporal comparisons (more information on temporal analyses in 115

section 5). 116

Table 2: full list of steps of the algorithm of the package cmgo and their functions 117

 118

Figure 1: visualization of the work flow of the package, a) the channel bank points represent the data input, b) a polygon is 119

generated where bank points are linearly interpolated, c-d) the centerline is calculated via Voronoi polygons, e) the centerline 120

is spatially smoothed with a mean filter, f) transects are calculated, g) the channel width is derived from the transects. 121

Step Description Function

1.1 Generate polygon from bank points
CM.generatePolygon()

1.2 Interpolate polygon points

2.1 Create Voronoi polygons and convert to paths

CM.calculateCenterline(
)

2.2 Filter out paths that do not lie within channel polygon entirely

2.3 Filter out paths that are dead ends (have less than 2 connections)

2.4 Sorting of the centerline segments to generate centerline

2.5 Spatially smooth the centerline segments (mean filter)

2.6 Measure the centerline’s length and slope

2.7 Project elevation to the centerline points (optional)

3.1 Derive transects of the centerline

CM.processCenterline()
3.2 Calculate intersections of the centerline with the banks

3.3 Project custom geospatial data onto centerline (optional)

3.4 Calculate knickpoints based on scale-free approach (Zimmermann et al. 2008)

6

It follows a detailed description of all steps of the algorithm. In step 1.1, the algorithm creates a 122

polygon feature from the bank points (Figure 1b), where the points are linearly interpolated (step 123

1.2) to increase their spatial resolution. This is a crucial step for improving the shape of the resulting 124

centerline – even for straight channel beds (see Fig. 2). From the interpolated points, Voronoi 125

polygons (also called Dirichlet or Thiessen polygons) are calculated (2.1, Figure 1c). In general, 126

Voronoi polygons are calculated around center points (here the bank points) and denote the areas 127

within which all points are closest to that center point. Next, the polygons are disassembled into 128

Figure 2: the plot shows to digitizations (Bank shape I and II) of the same channel stretch. They differ only in the

arrangement of bank points which are mainly opposite (Bank shape I, left column) or offset (Bank shape II, right column) to

each other. One can see how the offset negatively influences the shape of the centerline (top row). The problem can be

overcome by smoothing the centerline a-posteriori (middle row) or interpolating between the bank points a-priori (bottom

row). A combination of both methods is recommended and set as the default in cmgo.

7

single line segments. The segments in the center of the channel polygon form the desired centerline 129

(see Figure 1c). The algorithm then filters for these segments by first removing all segments that 130

do not lie entirely within the channel banks (step 2.2, Figure 3b). In a second step, dead ends are 131

removed (step 2.3, Figure 3c). Dead ends are segments that branch from the centerline but are not 132

part of it, which are identified by the number of connections of each segment. All segments, other 133

than the first and the last, must have exactly two connections. The filtering ends successfully if no 134

further dead ends can be found. In step 2.4, the centerline segments are chained to one consistent 135

line, the “original” centerline. In the final step 2.5 of the centerline calculation, the generated line 136

is spatially smoothed (Figure 1e) with a mean filter with definable width (see section 4.2) to correct 137

for sharp edges and to homogenize the resolution of the centerline points. This calculated centerline, 138

the “smoothed” centerline, is the line feature representation of the channel – for example it 139

represents its length, which is calculated in step 2.6. If elevation data is provided with the bank 140

point information (input data) the program also projects the elevation to the centerline points and 141

calculates the slope of the centerline in step 2.7. The program also allows projecting custom 142

geospatial features to the centerline – for example the abundance of species, the occurrence of 143

knickpoints, etc. – if in hand (see section 4.2). Projecting means here that elevation information or 144

other spatial variables are assigned to the closest centerline points. 145

 146

Figure 3: the filtering of the Voronoi segments (a) the final centerline by first taking only segments that lie fully within the 147

channel polygon (b) and then filter out dead ends (c). 148

To calculate the channel metrics based on the centerline, channel transects are derived (step 3.1). 149

Transects are lines perpendicular to a group of centerline points. In step 3.2, the intersections of the 150

transects with the banks are calculated (Figure 1g). When transects cross the banks multiple times, 151

the crossing point closest to the centerline is used. The distance in the x-y-plane between the 152

intersections represent the channel width at this transect. In addition to the width, the distances 153

from the centerline points to banks are stored separately for the left and the right bank. 154

8

4. Implementation and execution 155

The program is written as a package for the statistical programming language R (Yan et al. 2011). 156

The program can be divided into three main parts which are worked through during a project: 1. 157

initialization (loading data and parameters, section 4.1), 2. data processing (calculating centerline 158

and channel metrics, section 4.2), and 3. review of results (plotting or writing results to file, 159

section 4.3). 160

4.1. INITIALIZATION: INPUT DATA AND PARAMETERS 161

The package cmgo requires basic geometrical information of the points that determine a channel 162

shape – the bank points (Figure 1a) – while in addition of the coordinates the side of the channel 163

must be specified for each point. In principle, a text file with the three columns “x”, “y” and “side” 164

represent the minimum input data required to run the program (Codebox 1). The coordinates “x” 165

and “y” can be given in any number format representing Cartesian coordinates, and the column 166

“side” must contain strings (e.g. “left” and “right”) as it represents information to which of the 167

banks the given point is associated. Throughout this paper we refer to left and right of the channel 168

always in regard to these attributes. Thus, the user is generally free to choose which side to name 169

“left”. However, we recommend to stick to the convention to name the banks looking in 170

downstream direction. In addition, a fourth column “z” can be provided to specify the elevation of 171

the points. This allows for example for the calculation of the channel gradient. Note, that the order 172

of the bank points matter. By default it is expected that the provided list are all bank points in 173

upstream direction. If one – this can be the case when exporting the channel bed from a polygon 174

shape – or both banks are reversed, the parameters bank.reverse.left and/or bank.reverse.right 175

should be set TRUE. The units of the provided coordinates can be specified in the parameter 176

input.units and defaults to m (meters). 177

 178

Codebox 1: example of input data table with columns side and x,y,z-coordinates. 179

The data can be either collected during field surveys with GPS or total stations or through remote 180

sensing techniques with further digitizing for example in a GIS. In the latter case the data needs to 181

Name POINT_X POINT_Y
right 401601.0819 3106437.335
right 401586.5327 3106406.896
right 401568.3238 3106383.586
right 401558.4961 3106364.129
...
left 401621.4337 3106431.134
left 401602.9913 3106405.991
left 401574.6073 3106352.232
left 401582.2671 3106323.134

...

9

be exported accordingly. The input can be given in any ASCII table format. By default, the program 182

expects a table with tab-delimited columns and one header line with the column names POINT_X, 183

POINT_Y and POINT_Z (the coordinates of the bank points) where the z component is optional and Names 184

(for the side). The tab delimiter and the expected column names can be changed in the parameters 185

(see SM I for details). The input file(s) – for multiple files see also section 5 – have to be placed in 186

the input directory specified by the parameter input.dir (defaults to "./input") and can have any file 187

extension (.txt, .csv, etc.). The data reading function iterates over all files in that directory and 188

creates a data set for each file. 189

All the data and parameters used during runtime are stored in one variable of type list (see R 190

documentation): the global data object. Throughout the following examples this variable is named 191

cmgo.obj and its structure is shown in Codebox 2. The global data object also contains the parameter 192

list, a list of more than 50 parameters specifying the generation and plotting of the model results. 193

The full list of parameters with explanations can be found in SM I. 194

195

Codebox 2: structure of the global data object containing data and parameters. 196

To create this object, the function CM.ini(cmgo.obj, par) is used. Initially, the function builds a 197

parameter object based on the second argument par. If the par argument is left empty, the default 198

configuration is loaded. Alternatively, a parameter filename can be specified (see the R 199

documentation of CM.par() for further information). Once the parameter object is built, the function 200

fills the data object by the following rules (if one rule was successful, the routine stops and returns 201

the global data object): 202

1. If cmgo.objparworkspace.read is TRUE (default) the function looks for an .RData workspace 203

file named cmgo.objparworkspace.filename (defaults to "./user_workspace.RData"). Note: 204

there will be no such workspace file once a new project is started, since it needs to be saved 205

by the user with CM.writeData(). If such a workspace file exists the global data object is 206

created from this source, otherwise the next source is tested. 207

cmgo.obj = list(
data = list(# the data set(s), different surveys of the channel
 set1 = list(# survey 1
 filename = "input.1.csv”, # corresponding filename
 channel = list(), # input coordinates of banks
 polygon.bank.interpolate = TRUE,
 polygon = list(), # polygon object
 polygon.bank.interpolate.max.dist = 6,
 cl = list(), # centerlines (original and smoothed)
 metrics = list() # calculated metrics (width, etc.)
),
 set2 = list() # survey 2
 # ...
),
 par = list() # all model and plotting parameters
)

10

2. If data input files are available in the directory cmgo.objparinput.dir (defaults to "./input") 208

the function iterates over all files in this directory and creates the data object from this 209

source (see section "Input data" above for further information on the data format). In this 210

case the program starts with the bank geometry data set(s) found in the file(s). Otherwise 211

the next source is tested. 212

3. If the cmgo.obj argument is a string or NULL, the function will check for a demo data set with 213

the same name or “demo” if NULL. Available demo data sets are "demo", "demo1", "demo2" 214

and “demo3” (section 7). 215

CM.ini() returns the global data object which must be assigned to a variable, as for example 216

cmgo.obj = CM.ini(). Once the object is created, the data processing can be started. 217

4.2. CONTROLLING THE DATA PROCESSING 218

The processing includes all steps from the input data (bank points) to the derivation of the channel 219

metrics (Figure 1). Next, we describe the parameters that are relevant during the processing 220

described in section 0. When generating the channel polygon the spatial resolution of the bank 221

points is increased by linear interpolation (Figure 1b) in order to increase the resulting resolution 222

of the channel centerline. The interpolation is controlled through the parameters 223

cmgo.objparbank.interpolate and cmgo.objparbank.interpolate.max.dist. The first is a Boolean 224

(TRUE/FALSE) that enables or disables the interpolation (default TRUE). The second determines the 225

maximum distance of the interpolated points. The unit is the same as of the input coordinates, which 226

means, if input coordinates are given in meters, a value of 6 (default) means that the points have a 227

maximum distance of 6 meters to each other. These parameters have to be determined by the user 228

and are crucial for the centerline generation. Guidance of how to select and test these parameters 229

can be found in paragraph 6. Technical fails and how to prevent them. 230

During the filtering of the centerline paths, there is a routine that checks for dead ends. This routine 231

is arranged in a loop that stops when there is no further paths to remove. In cases, where the 232

centerline paths exhibit gaps (see section 6) this loop would run infinitely. To prevent this, there is 233

a parameter bank.filter2.max.it (defaults to 12) that controls the maximum number of iterations 234

used during the filtering. 235

In the final step of the centerline calculation, the generated line gets spatially smoothed with a mean 236

filter (Figure 1e) where the width of smoothing in numbers of points can be adjusted through the 237

parameter cmgo.objparcenterline.smoothing.width (by default equals 7). Note, that the degree of 238

smoothing has an effect on the centerline length (e.g. a higher degree of smoothing shortens the 239

centerline). Similar to the coast line paradox (Mandelbrot 1967), the length of a channel depends 240

11

on the scale of the observations. Technically, the length diverges to a maximum length at an 241

infinitely high resolution of the bank points. However, practically there is an appropriate choice of 242

a minimum feature size where more detail in the bank geometry only increases the computational 243

costs without adding meaningful information. The user has to determine this scale individually and 244

should be aware of this choice. To check the consequences of this choice, the decrease in length 245

due to smoothing is saved as fraction value in the global data object under 246

cmgo.obj$data[[set]]$cl$length.factor. A value of 0.95 means that the length of the smoothed 247

centerline is 95% the length of the original centerline paths. For the further calculations of transects 248

and channel metrics by default the smoothed version of the centerline is used. 249

The program will project automatically the elevation of the bank points to the centerline if elevation 250

information is provided in the input files (z component of bank points, see paragraph 4.1). Also 251

additional custom geospatial features – if available to the user – can be projected to the centerline, 252

for example the abundance of species, the occurrence of knickpoints, etc. Additional features are 253

required to be stored in the global data object as lists with x,y-coordinates (Codebox 3) to be 254

automatically projected to the centerline. Projecting here means that features with x,y-coordinates 255

are assigned to the closest centerline point. The distance and the index of the corresponding 256

centerline point are stored within the global data object. 257

 258

Codebox 3: the format of secondary spatial features to be projected to the centerline. 259

To calculate the channel metrics based on the centerline channel transects are derived. Transects 260

are lines perpendicular to a group of centerline points, where the size of that group is defined by 261

the parameter cmgo.objpartransects.span. By default this span equals three, which means for each 262

group of three centerline points a line is created through the outer points of that group to which the 263

perpendicular – the transect – is calculated (see Figure 4b). The number of resulting transects equals 264

the number of centerline points and for each centerline point the width w and further metrics are 265

calculated (see Codebox 4). The distances of the centerline points to the banks is stored separately 266

for the left and the right bank (d.r. and d.l), as well as factor (r.r and r.l) of +/- 1 representing the 267

side of the bank with regard to the centerline. Normally, looking downstream the right bank is also 268

right to the centerline (value of -1) and the left bank is always left to the centerline (value of +1). 269

cmgo.obj$data[[set]]$features = list(
 custom_feature_1 = list(
 x = c(),
 y = c()
),
 knickpoints = list(
 x = c(),
 y = c()
)
)

12

However, when using a reference centerline to compare different channel surveys, the centerline 270

can be outside the channel banks for which the metrics are calculated. To resolve the real position 271

of the banks for tracing their long-term evolution (e.g. bank erosion and aggradation) the factors of 272

r.r. and r.l must be considered for further calculations (see also section 5.1). A sample result for a 273

reach of a natural channel is provided in Figure 5. 274

 275

Figure 4: from the smoothed centerline (a) transects are calculated (b) by taking a group of centerline points and create a line 276

through the outer points. The perpendicular to that line is the transect. The algorithm now checks for the intersection of the 277

transect with the channel banks (c). 278

 279

Codebox 4: the calculated metrics and their variable names (stored in the global data object under cmgo.obj$data[[set]]). 280

4.3. REVIEW RESULTS: PLOTTING AND WRITING OF THE OUTPUTS 281

After the metrics are calculated and stored within the global data object, the results can be plotted 282

or written to data files. The plotting functions include a map-like type plan view plot 283

(CM.plotPlanView()), a plot of the spatial evolution of the channel width (CM.plotWidth()) and a plot 284

of the spatial and temporal evolution of the bank shift (CM.plotMetrics()). All plotting functions 285

require a data set to be specified that is plotted (by default “set1”). Additionally, all plotting 286

functions offer ways to specify the plot extent to zoom to a portion of the stream for detailed 287

analyses. In the plan view plot, multiple ways exists to define the plot region (also called extent), 288

$metrics$tr # linear equations of the transects
$metrics$cp.r # coordinates of crossing points transects / right bank
$metrics$cp.l # coordinates of crossing points transects / left bank
$metrics$d.r # distance of reference centerline point / right bank
$metrics$d.l # distance of reference centerline point / left bank
$metrics$w # channel width
$metrics$r.r # direction value: -1 for right, +1 for left to the centerline
$metrics$r.l # direction value: -1 for right, +1 for left to the centerline
$metrics$diff.r # difference between right bank point of actual time series and right bank
 # point of reference series
$metrics$diff.l # difference between left bank point of actual time series and left
 # bank point of reference series

13

which is determined by a center coordinate (x,y coordinate) and the range on the x and y axes (zoom 289

length). The zoom length is given via the function parameter zoom.length, or – if left empty – is 290

taken from the global parameter cmgo.objparplot.zoom.extent.length (140 m by default). Multiple 291

ways exists to determine the center coordinate: via pre-defined plot extent, via centerline point 292

index, or directly by x/y coordinates. Pre-defined plot extents allow for quickly accessing 293

frequently considered reaches of the stream and are stored in the parameter list (see Codebox 5). 294

The list contains named vectors, each with one x and one y coordinate. To apply a pre-defined 295

Figure 5: a) plan view of a short channel reach showing two channel surveys, 2014a (dashed channel outline) and 2017a (solid

channel outline. A centerline is calculated for both, but due to an enabled reference mode, the centerline of 2014a is used for

both surveys. This allows for the calculation of bank shift in b). The two stars mark to random locations to compare the

calculated metrics to each other.

14

extent the name of the vector has to be passed to the plot function as in CM.plotPlanView(cmgo.obj, 296

extent=”extent_name”). Another way of specifying the plot region is via a centerline point index, for 297

example CM.plotPlanView(cmgo.obj, cl=268). This method guarantees that the plot gets centered on 298

the channel. To find out the index of a desired centerline point, centerline text labels can be enabled 299

with cmgo.objparplot.planview.cl.tx = TRUE. Finally, the plot center coordinate can be given 300

directly by specifying either x- or y-coordinate or both. If either x- or y-coordinate is provided, the 301

plot centers at that coordinate and the corresponding coordinate will be determined automatically 302

by checking where the centerline crosses this coordinate (if it crosses the coordinate multiple times, 303

the minimum is taken). If both x and y coordinates are provided, the plot centers at these 304

coordinates. 305

306

Codebox 5: definition of pre-defined plot extents that allow to quickly plot frequently used map regions. The names, here “e1”, 307

“e2”, “e3”, contain a vector of two elements, the x and y coordinates where the plot is centered at. To plot a pre-defined region 308

call for example CM.plotPlanView(cmgo.obj, extent=”e2”). 309

A plot of the width of the whole channel (default) or for a portion (via cl argument) can be created 310

with CM.plotWidth(). Two data sets with the same reference centerline can also be compared. The cl 311

argument accepts the range of centerline points to be plotted, if NULL (default) the full channel length 312

is plotted. If a vector of two elements is provided (e.g. c(200, 500)), this cl range is plotted. If a 313

string is provided (e.g. "cl1"), the range defined in cmgo.objparplot.cl.ranges$cl1 is plotted. 314

Alternatively to the range of centerline indices, a range of centerline lengths can be provided with 315

argument d. If a single value (e.g. 500) is given 50m around this distance is plotted. If a vector with 316

two elements is given (e.g. c(280, 620)) this distance range is plotted. 317

The third plot function creates a plot of the bank shift (bank erosion and aggradation). This plot is 318

only available when using multiple channel observations in the reference centerline mode (see 319

section 5.1). The arguments of the function regarding the definition of the plot region is the same 320

as of the function CM.plotWidth(). 321

In addition to the plotting, the results can be written to output files and to an R workspace file with 322

the function CM.writeData(). The outputs written by the function depend on the settings in the 323

parameter object. If cmgo.objparworkspace.write = TRUE (default is FALSE) a workspace file is 324

written containing the global data object. The filename is defined in 325

cmgo.objparworkspace.filename. Further, ASCII tables can be written containing the centerline 326

plot.zoom.extents = list(# presets (customizable list) of plot regions
 e1 = c(400480, 3103130), # plot region definition e1 with x/y center coordinate
 e2 = c(399445, 3096220),
 e3 = c(401623, 3105925),
 all = NULL
)

15

geometry and the calculated metrics. If cmgo.objparoutput.write = TRUE (default is FALSE) an output 327

file for each data set is written to the output folder specified in cmgo.objparoutput.dir. The file 328

names are the same as the input filenames with the prefixes cl_* and metrics_*. All parameters 329

regarding the output generation can be accessed with ?CM.par executed in the R console or can be 330

found in the SM I. 331

5. Temporal analysis of multiple surveys 332

The program can perform analyses on time series of channel shapes. To do this, multiple input files 333

have to be stored in the input directory (see section 4.1). A data set for each file will be created in 334

global data object, mapped to the sub lists “set1”, “set2”, etc. (see Codebox 1). The program 335

automatically iterates over all data sets, processing each set separately. The order of the data sets is 336

determined by the filenames. Thus, the files need to be named according to their temporal 337

progression, e.g. “channelsurvey_2017.csv", "channelsurvey_2018.csv", etc. The mapping of the 338

filenames to data sets is printed to the console and stored in each data set under 339

cmgo.obj$data[[set]]$filename. 340

5.1. REFERENCE CENTERLINE 341

The channel metrics are calculated based on the centerline, which exists for every river bed 342

geometry. When there are multiple temporal surveys of a river geometry, a centerline for each data 343

set exists. Multiple centerlines prevent a direct comparison of the channel metrics as they can be 344

seen as individual channels. Thus, for temporal comparisons of the channel metrics, two modes 345

exist. Metrics are either calculated for each channel geometry individually. In this mode, the 346

channel metrics are the most accurate representation for that channel observation, for example 347

channel width is most accurately measured, but do not allow for a direct comparison of consecutive 348

surveys. In a second approach, a reference centerline for all metrics calculations can be determined. 349

In this approach, all metrics for the various bank surveys are calculated based on the centerline of 350

the data set defined in cmgo.objparcenterline.reference (default "set1"). This mode must be 351

enabled manually (see Codebox 6). This option should only be used if the bank surveys differ only 352

slightly. If there is profound channel migration or a fundamental change in the bed geometry, the 353

calculated channel metrics might not be representative (shown in Figure 6). To compare channel 354

geometries differing like that we recommend to calculate the metrics based on individual 355

centerlines and develop a proper spatial projection for temporal comparisons. 356

16

6. Technical fails and how to prevent them 357

There are certain geometrical cases in which the algorithm can fail with the default parametrization. 358

To prevent this, a customized parametrization of the model is required. The program prints 359

notifications to the console during runtime if the generation of the centerline fails and offers 360

solutions to overcome the issue. The main reason for failure occurs if the resolution of channel 361

bank points (controlled via cmgo.objparbank.interpolate.max.dist) is relatively low compared to 362

the channel width. In tests, a cmgo.objparbank.interpolat.max.dist less than the average channel 363

width was usually appropriate. Otherwise, the desired centerline segments produced by the Voronoi 364

polygonization can protrude the bank polygon (Figure 7a) and thus do not pass the initial filter of 365

the centerline calculation (see section 0), since this filter mechanism first checks for segments that 366

lie fully within the channel polygon. This creates a gap in the centerline, which results in an endless 367

loop during the filtering for dead ends. Thus, if problems with the calculation of the centerline arise, 368

an increase of the spatial resolution of bank points via cmgo.objparbank.interpolat.max.dist is 369

advised to naturally smooth the centerline segments (see Figure 7b). 370

cmgo.objparcenterline.use.reference = TRUE
cmgo.objparcenterline.reference = "set1"

Figure 6: two consecutive channel geometries (survey I and II) with a profound reorganization of the channel bed. In the

reference mode a centerline of one survey is used to build transects. Here, using the centerline of the first survey (blue line) as a

reference is not suitable to capture the channel width correctly for the second survey (dashed line) as the exemplary transect

(dashed orange line) suggests.

Codebox 6: the parameters to enable the reference mode for channel metrics calculations (only necessary for time series

analyses).

17

Another problem can arise from an unsuitable setting during the calculation of transects. If the 371

channel bed exhibits a sharp curvature a misinterpretation of the channel width can result (see 372

Figure 8). In that case, one of the red transects does not touch the left bank of the channel properly, 373

thus leading to an overestimated channel width at this location. To prevent this, the span of the 374

transect calculation can be increased. The results have to be checked visually by using one of the 375

plotting functions of the package. 376

 377

Figure 8: left: the transects (perpendiculars to the centerline) do not intersect with banks properly, thus the channel width is 378

overrepresented. Right: an increased transect span fixes the problem and channel width is now identified correctly. 379

Figure 7: a gap in the centerline occurs when the spacing of the bank points is too high compared to the channel width (left)

which can be fixed by previously increasing the resolution of the bank points (right).

18

7. How to use the program: step by step instructions 380

cmgo can be used even without comprehensive R knowledge and the following instructions do not 381

require preparatory measures other than an installed R environment (Yan et al. 2011). Once the R 382

console is started, installation of the cmgo package is done with the install.packages() function 383

(Codebox 7). 384

To quickly get started with cmgo, we provide four demo data sets. Using these data sets the 385

following examples demonstrate the main functions of the package, but, more importantly, allow 386

to investigate the proper data structure of the global data object. This is of particular importance 387

when trouble shooting failures with custom input data. 388

The general execution sequence includes initialization, processing and reviewing the results, with 389

a standard execution sequence shown in Codebox 8. To switch from demo data to custom data, 390

input files have to be placed in the specified input folder (“./input” by default) and CM.ini() has to 391

be called without any arguments. Since the file format of the custom input files can differ from the 392

expected default format, all program parameters regarding the data reading should be considered. 393

A list of all parameters available can be accessed with ?CM.par executed in the R console or can be 394

found in the SM I. To change a parameter, the new parameter value is assigned directly within the 395

global data object (e.g. cmgo.objparinput.dir = "./input"). 396

The plotting functions include a map-like plan view plot (CM.plotPlanView()), a line chart with the 397

channel width (CM.plotWidth()) and, if available, a plot of the bank retreat (CM.plotMetrics()). The 398

latter is only available in the reference centerline mode (see section 5.1). 399

400

Codebox 7: installation and embedding of the package in R 401

 402

Codebox 8: minimal example script to run cmgo with demo data set. 403

installation of dependencies (required only once)
install.packages(c("spatstat", "zoo", "sp", "stringr"))

installation (required only once)
install.packages("cmgo", repos="http://code.backtosquareone.de", type="source")

include the package (required for every start of an R session)
library(cmgo)

initialization: load data and parameters
cmgo.obj = CM.ini("demo") # check the data structure with str(cmgo.obj)

processing
cmgo.obj = CM.generatePolygon(cmgo.obj)
cmgo.obj = CM.calculateCenterline(cmgo.obj)
cmgo.obj = CM.processCenterline(cmgo.obj)

view results
CM.plotPlanView(cmgo.obj) # plot a map with pre-defined extent
CM.plotWidth(cmgo.obj) # plot the channel width in downstream direction
CM.plotMetrics(cmgo.obj) # plot a comparison of bank profiles

19

8. Evaluation of the data quality 404

We evaluated the quality of the derived channel width by cmgo to manually measured data and to 405

the best documented and versatile product of our literature review RivMap. First, we compared the 406

evolution of the channel width derived by the two automated products showing that there is a 407

general agreement (Figure 9). We picked 15 locations randomly, marked with the dashed vertical 408

lines, were we assessed the channel width manually (Figure 10). In a GIS we measured channel 409

width manually at these 15 locations on a “best guess” approach. 410

 411

Figure 9: channel width as observed by cmgo (blue line) and RivMap (red line) for 1506 locations along a 449 m reach of a 412

natural channel in upstream direction. The vertical dashed lines mark our points where we investigated the width manually 413

next. 414

 415

Figure 10: 15 random locations where we evaluated the width manually and compared to the width of the automated products. 416

20

The channel width at the transects is generally well captured by the automated products (Table 3) 417

as the mean errors are relatively low compared to the absolute width. However, compared to the 418

manually derived average width of 3.49 m the average width of all transects deviates only -0.07 m 419

for cmgo while it deviates -0.42 m for RivMap. Thus, cmgo performs generally better in deriving 420

the channel width for the test channel reach and RivMap seems to consistently underestimate the 421

channel width. This is also expressed in the smaller standard deviation of the differences which is 422

0.098 m for cmgo and 0.736 m for RivMap. The large scatter can also be observed in Fig. 9. 423

Compared to the error of the in-situ measurements of the channel banks with a total station (1 cm) 424

the precision of the channel width calculations by cmgo is within the same order of magnitude while 425

it is an order of magnitude larger for RivMap. 426

The channel centerlines of the two products differ in length. While the centerline of cmgo has a 427

length of 449 m along the river reach, the centerline of RivMap has a length of 588 m (30% longer). 428

Looking at the shape of the centerlines (Figure 11) we argue that the centerline of cmgo better 429

represents the channel in terms of large scale phenomena. It may for example be more useful for 430

reach-averaged calculations of bankfull flow. The centerline of RivMap contains a stronger signal 431

of the micro topography of the banks due to the way the centerline is created (eroding banks). The 432

difference in length also has an influence on slope calculations which will be lower for RivMap. 433

Transect
[No.]

Manual
approach [m]

CMgo width
[m]

CMgo difference
to manual [m]

RivMap width
[m]

RivMap difference
to manual [m]

1 4.01 4.02 0.01 2.83 -1.18

2 5.01 5.02 0.00 3.75 -1.27

3 4.57 4.55 -0.01 4.03 -0.54

4 2.66 2.59 -0.07 2.60 -0.06

5 6.79 6.83 0.04 5.37 -1.41

6 2.82 2.66 -0.15 2.12 -0.70

7 3.02 2.97 -0.06 2.55 -0.48

8 1.76 1.67 -0.09 2.60 0.84

9 2.27 1.93 -0.34 2.60 0.33

10 3.90 3.91 0.01 2.83 -1.07

11 3.82 3.66 -0.17 4.40 0.58

12 4.19 4.14 -0.05 3.04 -1.15

13 2.04 1.89 -0.15 1.34 -0.70

14 3.37 3.37 0.00 3.50 0.13

15 2.14 2.11 -0.03 2.50 0.36

avg. 3.49 3.42 -0.07 3.07 -0.42

st. dev. 1.340 1.399 0.098 0.997 0.736

Table 3: channel width at 15 randomly selected locations along a natural channel. The width was identified manually, by

CMgo and by RivMap. Differences of the width from the automated products were compared to the manual approach.

21

 434

Figure 11: the two different centerlines of the products cmgo (green line) and RivMap (red line) reveal differences in the shape 435

that influence also the channel length 436

9. Concluding remarks 437

The presented package cmgo offers a stand-alone solution to calculate channel metrics in an 438

objective and reproducible manner. At this, cmgo allows for close look into the interior of the 439

processing. All intermediate results are accessible and comprehensible. Problems that arise for 440

complex geometries can be overcome due to the high degree of parametrization. cmgo qualifies for 441

a highly accurate tool suited to analyze especially complex channel geometries. However, if 442

complex geometries should be compared to each other, for example when analyzing the evolution 443

of meandering channels, our product does not offer the ideal solution due to the style cmgo treats 444

the reference of the channels. Thus, our product should be the tool of choice if precise 445

measurements – both in location and quantity – are required and if geometrical and other spatial 446

data should be statistically analyzed. However, when large time series of meandering rivers are the 447

main purpose of the effort, other products, as for example the Channel Migration Toolbox, are more 448

suitable. 449

Since cmgo does not come with graphical user interface only static map views of the channel can 450

be obtained by scripting them. cmgo offers various plotting functions to do this which allow for 451

predictable and reproducible plot. The downside of this approach is that plots are naturally not 452

interactive which is the case for GIS applications. For people who prefer this functionality an export 453

of the intermediate and end results to GIS is recommended. 454

The only requirement for running cmgo is an installed environment of the open source framework 455

R. Thus, the prerequisites are narrowed down to a minimum to facilitate an easy integration and 456

wide a distribution for scientific or practical use. The license under which the package is provided 457

allows modifications to the source code. The nature of R packages determines the organization of 458

22

the source code in functions. This encapsulation comes at the cost of a sometimes untransparent 459

architecture making it difficult to modify or understand the code. Thus, for advanced users, who 460

desire a more flexible way of interacting with the algorithm, we refer to the raw source codes at 461

GitHub (https://github.com/AntoniusGolly/cmgo). 462

10. Code and Data availability 463

All codes and demo data are available at https://github.com/AntoniusGolly/cmgo. 464

11. Team list 465

Antonius Golly (Programming, Manuscript), Jens Turowski (Manuscript) 466

12. Competing interests 467

The authors declare that they have no conflict of interests. 468

13. Acknowledgments 469

We thank Michael Dietze for giving the helpful R-courses that facilitate the development of cmgo 470

as an R-package and for the support during the debugging, Kristin Cook for providing the sample 471

data for the demo data sets and Marisa Repasch-Elder for the guidance in MATLAB. 472

https://github.com/AntoniusGolly/cmgo
https://github.com/AntoniusGolly/cmgo

23

References 473

Ackerman, P.E.C.T., 2011. HEC-GeoRAS GIS Tools for Support of HEC-RAS using ArcGIS 474

User’s Manual. , (February), p.244. 475

Amit, 2015. Estimating river Channel Width using Python/ArcGIS/MATLAB/R? Sep 24, 2015. 476

Available at: http://gis.stackexchange.com/questions/164169/estimating-river-channel-477

width-using-python-arcgis-matlab-r [Accessed March 14, 2017]. 478

Asterics, S., 2013. Software-Handbuch ASTERICS, Version 4 1. , pp.1–120. Available at: 479

http://www.fliessgewaesser-bewertung.de/downloads/ASTERICS_Update 480

4.0.4_Dokumentation.pdf. 481

Cook, K.L., Turowski, J.M. & Hovius, N., 2014. River gorge eradication by downstream sweep 482

erosion. Nature Geoscience, 7(9), pp.682–686. 483

Dilts, T.E., 2015. Polygonto Centerline Tool for ArcGIS. University of Nevada Reno. Available at: 484

http://www.arcgis.com/home/item.html?id=bc642731870740aabf48134f90aa6165 485

[Accessed March 15, 2017]. 486

ESRI, 2017. ESRI ArcMap Desktop. 487

Ferreira, M., 2014. Perpendicular Transects. Available at: http://gis4geomorphology.com/stream-488

transects-partial/ [Accessed March 15, 2017]. 489

Ferrer-Boix, C. et al., 2016. On how spatial variations of channel width influence river profile 490

curvature. Geophysical Research Letters. Available at: 491

http://doi.wiley.com/10.1002/2016GL069824. 492

Hornby, D., 2017. RivEX. Available at: http://www.rivex.co.uk/Online-Manual/RivEX-Online-493

Manual.html?Extractchannelwidths.html [Accessed March 15, 2017]. 494

Jackson, C.W., 2009. The Ambur project: Analyzing Moving Boundaries Using R. Department of 495

Geology & Geography Georgia Southern University. 496

Legg, N. et al., 2014. The Channel Migration Toolbox: ArcGIS Tools for Measuring Stream. , 497

(Publication no. 14-no. 06-no. 032). Available at: 498

https://fortress.wa.gov/ecy/publications/SummaryPages/1406032.html. 499

Lopez S., Cojan I., Rivoirard J., G.A., 2008. Process-based stochastic modelling: meandering 500

channelized reservoirs. Spec. Publ. Int. Assoc. Sedimentol., 40(September), p.139:144. 501

Mandelbrot, B., 1967. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional 502

Dimension. Science, 156(3775), pp.636–638. Available at: 503

http://www.sciencemag.org/cgi/doi/10.1126/science.156.3775.636. 504

Milzow, C. et al., 2006. Spatial organization in the step-pool structure of a steep mountain stream 505

(Vogelbach, Switzerland). Water Resources Research, 42(4), pp.1–11. 506

Mir, K., Tariq, A. & Atif, S., 2013. River Width Calculator. Available at: 507

http://www.arcgis.com/home/item.html?id=4e7c9370e3e8455e8ff57d6b23baf760. 508

Pavelsky, T.M. & Smith, L.C., 2008. RivWidth: A Software Tool for the Calculation of River 509

Widths From Remotely Sensed Imagery. IEEE Geoscience and Remote Sensing Letters, 5(1), 510

pp.70–73. Available at: 511

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4382932. 512

Pizzuto, J.E., 2008. Streambank Erosion and River Width Adjustment. In Sedimentation 513

Engineering. Reston, VA: American Society of Civil Engineers, pp. 387–438. Available at: 514

http://ascelibrary.org/doi/10.1061/9780784408148.ch07. 515

Schwenk, J. et al., 2017. High spatiotemporal resolution of river planform dynamics from Landsat: 516

The RivMAP toolbox and results from the Ucayali River. Earth and Space Science. Available 517

at: http://doi.wiley.com/10.1002/2016EA000196. 518

Thieler, E.R. et al., 2009. Digital Shoreline Analysis System (DSAS) version 4.0— An ArcGIS 519

extension for calculating shoreline change. U.S. Geological Survey Open-File Report 2008, 520

p.1278. Available at: http://woodshole.er.usgs.gov/project-pages/DSAS/. 521

Tiobe, R., 2017. TIOBE Index. Victory House II, Company Number 2089, Esp 401, 5633 AJ 522

Eindhoven, The Netherlands. Available at: http://www.tiobe.com/tiobe-index/ [Accessed 523

March 16, 2017]. 524

Wobus, C. et al., 2006. Tectonics from topography: procedurses, promise, and pitfalls. Geological 525

Society of America Special Paper, 398(4), pp.55–74. 526

Yan, J. et al., 2011. R: A Language and Environment for Statistical Computing. R Foundation for 527

24

Statistical Computing, 1(2.11.1), p.409. 528

Zimmermann, A.E., Church, M. & Hassan, M. a., 2008. Identification of steps and pools from 529

stream longitudinal profile data. Geomorphology, 102(3–4), pp.395–406. Available at: 530

http://linkinghub.elsevier.com/retrieve/pii/S0169555X08001384 [Accessed November 5, 531

2013]. 532

533

 534

