Final answer to the referee 2

First of all, we would like to thank the referee for her/his review on our paper and for giving us the
opportunity to improve our paper.

Now, we organized the answer to the comments as follows. First, we list some changes afford to the
manuscript then detail our answers to the questions raised by the referee.

List of changes for the revision
Major changes

The formalism has been reworded to match the usual notation of data assimilation (Sec. 2). In
particular Sec. 2.1 has been split so to better introduce the modelling of the model-error covariance
matrix that is now presented in Sec. 2.2. To this end, a new figure 1 has been introduced to sketch
the dynamics of the uncertainty in presence of model error and to facilitate the setting of the
framework considered here: the case where the numerical model is (more) dissipative compared to
the nature. The formalism of the model error has been clarified, with the details of formulations of
the forecast error that are given in Appendix A. A specific notation has been introduced for the
predictability error of the nature ($\widetilde{\eps}"p$) so to avoid any confusion with the forecast
error as usually encountered in data assimilation. Now, every $\widetilde{.}$ symbols refer to the
uncertainty of the nature.

Sec 4.2 has been split in two part, one for the nature, the other for the model. The dynamics of the
average over the model has been introduced to quantity the evolution of the variance and the length-
scale fields. In particular, the Sec. 4.2.2 provides an analytical evolution of the predictability-error
variance of the model which better explore the PKF equations. This quantitative evolution of the
predictability-error variance is also now explored in section 4.3 for the model-error variance.

A section 5 has been introduced to discuss the results and the connexion with the previous work of
Meénard et al 2000s that support the interest of the method introduced here, but in a real data
assimilation system.

Minor changes

The detail of the ensemble estimation was missing in the previous version of the manuscript, this
has been introduced in the introduction of Sec. 4.2.

There was an error on the definition of the time representation of Fig. 3 and later where the results
are shown every $0.1T$, moreover the lead time of the simulation has been indicated $T=2.0$ (this
was missing).

P10, line 12: The chordal distance was used in the numerical simulation, but we wrote the distance
as |x-y| in the manuscript. While there is no difference between the two distances with the value of
D and I_h used here, the chordal distance leads to a valid correlation function on the circle (that is
not the case with the previous distance — this theoretical consideration is not discussed in the
manuscript but justifications can be found in the article Pannekoucke et al. 2018).

Differences between the two version of the manuscript

To facilitate the comparison between the two version of the manuscript, a companion version of the
manuscript lists all the modifications where old (new) statements are in red (blue).



Answer to the question of the referee
We copied your commentary in italics below, we reply in normal blue font.

1. “Please discuss the condition that the assumption of the decorrelation between the analysis error
and the model error is valid.”

Actually, this assumption may never apply in the real world. However, since it is hard to account in
the modelling of the model-error it is often introduced with the consequence that the resulting
modelling of the model-error certainly lead to over-estimate the “true” forecast-error statistics: the
role of the cross covariance terms is to reduce the variance. This is now discussed in the new Sec.
2.2 (p3, 143-50):

“Then, assuming a decorrelation between the analysis and the model errors is certainly wrong for
deterministic error as the model error due to the discretization of the dynamics; but it might apply
for highly non-linear processes as for the turbulent processes and transport by the turbulent. Again,
assuming the decorrelation between the analysis and the model errors leads to over-estimate the true
effect of the model-error with an over-estimation of the true forecast-error uncertainty.”

2. “Since the prediction error is obtained from the tangent linear model, its validity depends on the
error magnitude and the forecast range. Thus the method proposed in this paper also depends on
the error magnitude and the forecast range? Please discuss.”

Thank you very much for the comment. We agree with this limitation and we have introduced a
section dedicated for the discussion where this question is now addressed in the discussion part Sec.
5 among other points. In particular, we answered to the referee’s comment as follows:

“While the PKF is designed from the TL approximation, it is a second order Gaussian filter

that is a particular implementation of non-linear Kalman filter (Cohn, 1993):

for non-linear dynamics, the PKF equation of the mean state depends on the second order moments.
However, for long-term predictions, or when the magnitude of the error is too large, the PKF would
fails to provide an accurate estimation of the covariance matrices.” (from p16, 1 4)

3. “There are many formulas in the paper, please make sure all the symbols have been explained.
For example, what is the meaning of subscript “q”?”

The subscript $g$ is for the time. This is now explicitly mentioned in the manuscript at p2 line 47.
We have checked for other symbol to be sure that they were correctly explained.

4. “To what extend can the PKF approximation provide the estimation of model-error covariance
characteristics? Will it depend on the complexity of the model?”

The PKF approximation can applies for non-linear dynamics by considering the TL dynamics of the
uncertainty at the second order (see the answer to point 2). Actually, a closure appears even for
linear dynamics when the order of the spatial derivative is larger than 1. Here, a closure is needed
for the diffusion term that appears in Eq. (34). The closure we have used is the one introduced by
Pannekoucke et al. (2018). As now better discussed in Sec. 5, the PKF is ready to be used for the
tracer dynamics in 1D as well as in 2D and 3D domains. However, for multivariate dynamics, the
PKF has to be developed. These limitations are now clearly stated in Sec. 5 (see p16, 131-43):



“For the dynamics of a tracer, the PKF applies in 1D as well
as in 2D and 3D domains, where the number of equations are
this time of five in 2D and eight in 3D (the additional equa-
tion are for the components of the local anisotropic tensor).
However, in general, the use of the PKF is limited by the
knowledge of the parameters dynamics. The formalism of
the PKF is adapted for dynamics given by partial differential
equations, as for the advection of a tracer, but the design of

a multivariate PKF formulation is needed so to address multi-
variate dynamics. Note that for the model error as presented
here, the knowledge of the modified equation is a prerequi-
site that can be difficult to determine in general.”

and in the conclusion (p17, 151-59):

“However, the parametric dynamics faces closure issues

that have to be addressed depending on applications. Here, the
investigation of diffusive model errors has been made pos-
sible thanks to the Gaussian closure of P18. For other kind

of numerical errors, an appropriate closure will have to be
specified, either from theoretical closures or from the data as
suggested by the data-driven and physics-informed identifi-
cation of uncertainty dynamics of Pannekoucke and Fablet
(2020).”
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Abstract. This contribution adresses-addresses the charac-
terization of the model-error covariance matrix from the
new theoretical perspective provided by the parametric
Kalman filter method which approximates the covariance
dynamics from the parametric evolution of a covariance
model. The classical approach to obtain the modified equa-
tion of a dynamics is revisited to formulate a paramet-
ric diagnosis-modelling of the model-error covariance ma-

trix which applies when the numerical model is dissipative
compared with the true dynamics. As an illustration, the

particular case of the advection equation is considered as a
simple test bed. After the theoretical derivation of both the
foreecast-error-and-thepredictability-error covariance matri-
ces of the nature and of the numerical model, a numeri-
cal simulation is proposed which demonstrates—the—skill-of

the—parametric—methodeology—tn—reproducing—the-illustrates

the properties of the resulting model-error covariance ma-
trixinformation.

Copyright statement. TEXT

1 Introduction

A significant portion of the work being carried out in state-
of-the-art data assimilation concerns the treatment of the
forecast-error covariance matrix. th&eﬁ%emb}&mefhed%a%

Actually, the forecast-error is composed of two parts.
While one part of it is related to the uncertainty in the ini-
tial condition, another part is due to the model-error (Daley,
1991; Dee, 1995). The model-error corresponds to the dif-
ference between the simulation and the true behavior of a
system, and several representations of the model error can
be introduced in numerical weather prediction (Houtekamer
et al., 2009). For instance, the model error can be related to
the misrepresentation of the small-scales and how this influ-
ences the large-scales. Stochastic physics such as Stochastic
Kinetic Energy Backscatter (Shutts, 2005) or the Stochas-
tically Perturbed Parametrization Tendencies (Palmer et al.,
2009) are examples of methods encountered in NWP for this
part of the model error.

Although some theoretical studies have been conducted
in the past, which elucidate the generic behavior related to
the model-error from the dynamical system perspective and
in connexion with the data assimilation (e.g. Nicolis (2003);
Vannitsem and Toth (2002); Carrassi and Vannitsem (2010)),
as far as we know there has been little investigation of the ef-
fect of the discretization of partial derivative equations on the
model error and on model-error covariance in particular. One
reason why the effect of numerical schemes is rarely consid-
ered is because it tends to be quite difficult to describe the
dynamics of large covariance matrices as encountered in the
Kalman filter.

It has been noted in Kalman filtering and EnKF that the
propagation of error covariance with a discretized advection
model produces a model error (variance) in the form of a
variance loss (Ménard et al., 2000, 2020). This error is related
to the spatial splitting error in covariance propagation that
exists with discretized models and not in continuous propa-
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gation of covariance functions i.e. the propagation by the true
equations of the dynamics.

Recently, Pannekoucke et al. (2016, 2018b) (P16) have
proposed to solve the Kalman filter equations, and its
second-order extension for nonlinear dynamics, using ap-
proximated covariance matrieies-matrices through a covari-
ance model characterized by certain parameters, leading to
the so-called parametric Kalman filter (PKF). With this ap-
proximation, the dynamics of the covariances is replaced by
the dynamics of the parameters. For instance, when consid-
ering the class of covariance matrices parametrized by the
variance field and the local anisotropic tensors (VLATcov),
the evolution of the matrices is deduced from the evolution of
the variance and the local anisotropic tensors {Cehn;+993:-2)
(Cohn, 1993; Pannekoucke, 2020). This approach relies on
the partial differential equations encountered in geosciences
that are often nonlinear.

The aims of the present work are to study how the para-
metric dynamics for covariance matrix evolution can help
to characterize the model-error covariance matrix, and more
precisely, to determine if is it possible to capture some part
of the model-error covariance which is due to the numer-
ical scheme. In this methodological contribution, we will
limit ourselves to diffusive numerical-errors whose uncer-
tainty dynamics have-beer-explored-by-can be explored from
the results of Pannekoucke et al. (2018a) (P18).

The paper is organized as follows, the uneertainty
viewed in Section 2 from which the formalism of the
model-error covariance matrix can—be-deduced-atleast-on
modelling that could apply when the numerical model is
dissipative. The model-error covariance matrix estimation
based on the PKF is detailec-llustrated for the particular one-
dimensional transport equation in Section 3 in the context of
the Euler-upwind and semi-Lagrangian schemes. A numeri-
cal test bed is proposed in Section 4 to assess the ability of the
PKF approach to successfully estimate-the-medel-error-due
model the flow-dependent part of the model-error covariance
matrix to numerical schemes in a one-dimensionnal-setting:
one-dimensional setting. A discussion_on_ the results is

roposed in Section 5. Conclusions and perspectives are
given in the last section, Section 6.

2 Theoretical considerations

2.1 Background in uncertainty propagation and the
model error

Here we assume that the nature is governed by the determin-
istic equation

OX =N (t.X), )

TEXT: TEXT

where X stands for the state. Note that X' can be either dis-
crete or continuous: the discrete case leads to matrix of alge-
braic relations while the continuous case is suitable for the-
oretical treatment with partial differential equations. There-
after, for any state X’ of a suitable set, there exists a single
trajectory Xy = Ny o(X), where Ny, stands for the prop-
agator of the dynamics Eq. (1) from 0O to ¢. Hence, if th de-
notes the true state of the nature at time ¢, then the true state
of the nature at time ¢, 1 is

X;J,-l = J\/'tq+1<—tq (th)J

2
where the subscript ¢ is used to denote the time ¢,,.

Due to the imperfect knowledge of the nature and the
limitations encountered during the computation, the nature
dynamics is only approximated b

0, = M(1.). ®

where M is the numerical dynamics. Compared with the

nature, the time evolution of the true state Eq. (2) is now
related to the numerical dynamics as

“4)

where €, (X!) is the model error with respect to the true
state, and where £, , is the function defined b

m
€1 = Mthrl‘*tq _'/\[tq+1<*tq'

&)

The model error €™ ,(X!) represents collectively the

numerical discretization error and the effect of unresolved

rocesses. It is often modeled as a random field of zero mean

ie. E[e™ , (XH] =0, and of covariance matrix

r = [eqin (X" (5 (X)) ©)

where E |-] denotes the expectation operator.

In practice, the true state th is unknown and only an
estimation can be deduced from prior-informations—a _prior
information and the available observations. This estimation
is called the analysis state, X“, and it is expanded as
Xg =X} +¢, ©)
where ef stands for the so called analysis errormedel-, that
is modeled as a random field of zero mean and covariance
matrix P = E [e2 (%) | -with- B} -being—the-expectation
operator. The forecast state is the prediction made from the
analysis state,

qu+1 = MMtq+1<—tq (X;)-

®)
Similarily to the analysis state, the forecast state expands as

Xl = +8¢§+1a )

q q
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TEXT: TEXT

where 55 41 stands for the so-called forecast error, that is

modeled as a random field of zero mean and covariance ma-
trix P/ =E [5q+1( (J;_H)T]

The forecast error covariance matrix is related to the anal-
ysis error covariance matrix through a deterministic relation
as follows. From the definition of the forecast error Eq. (9)
its dynamics is given by

3

o _ a
Equl - NLq+l<*Lq’X(§l€q’

where N7 e, vrstands(see Eq. (A2) in Appendix A)

wel ) =Me? +em, (XD), (10)
where M is a simplified notation for M « that is

for the tangent linear (TL) propagator along the natureThE

dynamiesdefined—by—analysis trajector. The TL dynamics,
with respect to the analysis state, is defined b

15 O :EMt,Xf& (11)

where Ny =M xr My xe = dM); xa is the differen-

tial of MM at (t, X);-and-whieh—. This TL model gov-
erns the evolution of small perturbations along the forecast
trajectory starting from the analysis state. Note that the va-
lidity of the TL dynamics depends on the error magnitude
and on the forecast range. As-a-consequenceMoreover, the
decomposition of the forecast-error Eq. (10), makes appear
the predictability-error £” defined by

y4 . a
Eq1 = Meg

2

S

12)

25 consequently, the forecast error covariance matrix becomes

@

f _ a T
P‘Z+1 - th+1<*tq-VX;PC{N"’QJrl(*tq’X;— 13)

% and-the-limitationsencountered-duringthe-computation;the

s the-numerical-dynamies-as-

t m
q+1 qu+1<—f (Xq) +€q+17

m 1Q 1 < agQ
where—eg Tis-the-modelerror—which-canbe-modeled-as

m — e m e
a iaﬂd.em freld 5. q+1 — éq+1 Tg+1 field-of-mean éq+1 and
B e
40 PTH =E [77(717;1(77(1+1)T} =E [€T+1(5;n+1)T] - erl( T-s-l)T-

. A v the_al lefinitions—Henee._d

q+1 Mtq+1<—f (Xa)

while the forecast errorevolvesas- 45

f

— a__ _.m
Cqt1 = Mlqﬂelqﬁ){;gq Eq+15

CFe i Tgr1+ g, propag
8155 :Mt,X{‘E,

50

f)’L
Eq+1s

f _.p
€q+1 = g1~

where-

p — a
g1 = Mtq+1<_tzl¢X;Eq7

i< the-so-called-predictabil ' 55

Pl =P +PR, VT
(14)

is the predictability-error covariance matrix (Daley, 1992
and VP, =E |P, (e™

matrix between the predictability error and the model error.
When the analysis error and the model error are

decorrelated, the forecast-error covariance matrix writes 65

denotes the cross covariance

123

Porr =Pon + Poin (15)

Note that, in the case where the true nature is used to

matrix _coincide with the predictability-error_covariance
matrix. In the latter, the predictability-error with respect to 7o
the nature dynamics plays an important role. So in order to

avoid any confusion with the predictability error associated
with the numerical model, the notation -~ is used when the

MRS AR IR, SN SR AU R B WL S
dynamics is the nature i.e.

P}, =P, =NPINT, (16)

—H(VER)T s wherewherePy, , = MF



= Ne? denotes the

forecast error in the particular case where the dynamics is

the nature, which coincide with the predictability error in
o dynamics governed by Ny e = dNjy e (the differential of

Nat (£, X)),

2.2 Discussion on the modelling of the model error

The modelling of the model error can be seen as a trade-off

between its real properties and the lack of knowledge to
is address this error. In particular, the various assumptions

encountered in_data assimilation may_be considered as

suboptimal ways to model this error. For instance, assuming

that the model error is unbiased, leads to_model the
bias_as _some_ variance, and over-estimates the effective

2 model-error_ variance. Then, assuming a_decorrelation
between_the analysis and the model errors is_certainly
wrong for deterministic error, as for the model error due
to_the discretization of the dynamics; but it may not
apply for highly non-linear processes as for the turbulent

25 processes and transport by the turbulent. Again, assuming
the decorrelation between the analysis and the model errors
leads to over-estimate the true effect of the model-error
However, with these assumptions, or actually this modelling,

% some part of the model-error statistics can be estimated from
the data. For instance, with the assumption that the analysis
and the model errors are decorrelated, leading to Eq. (15), it
is possible to estimate the homogeneous correlation and the
stationary part of the climatological model-error covariance

s (Daley, 1992; Boisserie et al., 2013).

By some aspects, the understanding and the specification
of the model-error _covariance matrix look like to_the
development of the background-error covariance matrix
some_decades ago where, in variational data assimilation,

« the climatological background-error covariance matrix has
been progressively replaced by a covariance matrix of the
day thanks to_the hybridization with ensemble methods,
used to characterize the predictability error. Nonetheless, the
situation of the model-error covariance matrix is different
model-error covariance matrix of the day is out of reach,

Because the model error can mean different things, to
understand the_context we are using model error, let’s
consider the situation sketched in Fig. 1. This figure mimics
nature and to_the numerical model. The initial Gaussian
analysis_error _is characterized by the analysis_state (the
black point) and the analysis-error covariance matrix (the
black ellipse). When this analysis uncertainty evolves by
the nature dynamics (blue arrow), it becomes a Gaussian
uncertainty (under TL_ assumption) of mean the analysis

o

45

TEXT: TEXT

forecasted by the nature (blue point) and of covariance
matrix the associated predictability-error covariance matrix
(that is also_the forecast-etror covariance) (blue ellipse).
When_the analysis uncertainty _evolves by the numerical
model (red arrow), it becomes a Gaussian uncertainty (under
TL_assumption) of mean_ the analysis forecasted by the
model (red point) and of covariance matrix the associated
predictability-error_covariance matrix_(red ellipse). The
(pink arrow). Panels (a) and (b) illustrate what would be

Panel (a) represents the case where the forecast state

X[y is out of the predictability uncertainty of the nature:
in_that case, a model-error is_needed to_enlarge the
predictability-error_covariance of the numerical model so
that the forecast-error covariance is larger enough to account
difficult to speculate about what would be the characteristic
of the model error, beyond any climatological estimate. This
situation could be the typical picture for long term forecast.

Panel (b)_represents the situation where the time
within_the predictability uncertainty of the nature. This
situation is_encountered when_the numerical model is
more_dissipative than_the nature e.g. the resolution of
an_advection by a_semi-Lagrangian scheme. Then the
model-error uncertainty, required to correct the predictability
error of the numerical model, should be at least large enough
to_provide an uncertainty similar to the predictability error
covariance of the nature. So_ if we are able to quantify
the_predictability-error_covariances of the nature and of
the numerical model, then it would be able to specify a
flow-dependent part of the model-error covariance matrix.
To account for the bias, a climatological residual covariance
matrix would be necessary.

Thereafter, we consider the situation sketched in panel
(b), that suggests to decompose the forecast-error covariance

matrix as_

f  pP m
Pq+1 NPq+1+Hq+1 + Qq-i—l, (17)
where

m = NP*NT-M P°’M T 18
q+1 — q TV gty , XG g Y gt , X ( )

55

atrixd | etabil ardil te]
errorwould account for the flow-dependent part of the
model-error covariance matrix, while the remainin s

a residual model-error covariance, would account for the

bias and could be estimated from the climatology e.g. by
considering a chi-squared diagnostic (Ménard et al., 2000).
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Figure 1. Illustration of the evolution of the uncertainty by the nature and the numerical model: the generic situation (a), and the particular
situation particular situation where the forecast lies within the nature uncertainty and where the model is diffusive (b). The predicatbility-error

of the model MP2M”

covariance of the nature NP¢ N7 is the blue (red) elipse. The forecast-error covariance matrix is the orange elipse.

MMMM w0 that the model-error—covarianee—matrix——sinee—they—only
redictability-error covariance of the numerical model » rely—on—TE—dynamies—along—the—analysis—trajectory—while

should be modifed to find the one of the nature. We think  forecast-error covariance matrix also writes
that II'" ; could be a usefull proxy to characterize the
flow-dependent part of model-error covariance matrix. W, (20)

Note that the matrix L7, is symmetric but not necessary
positive. However, under the assumption depicted o panel oy he modet error—depends—on—the—nature—trajectory
(b). we will assume that TIg%, is positive. Note also that "o e :
I, is different from the model-error covariance matrix * "™ modelling of the model-etrer
Py, if there is no analysis uncertainty, then IIj7 , is zero. XSS

The-covarianee-matricesfor-The decomposition Eq. (17) P ~TI" , +Q 1)
can be justified from the decomposition of the forecast error ss ~27 2 KL LT
and-that can be written as (see Eq. (A6) in Appendix A)

allows to connect the two formulations Eq. (15) and Eq. (20)

Eg41 = Epp1 Tegin (), (190 of Py ;. In fact, while Eq. (15) and Eq. (20) result from
RN 20 a_decorrelation_assumption of the errors in Eq. (10) and

Eq. (19), and because II'" , is not necessary a covariance

which makes appear the forecast error, e/, as the pre- . i ¥ ) .
dlctablhty error appea%mefe—srmp}e—thﬁOf the nature, matrix, then expression of P roposed in Eq. (17), is

= Neg, plus a drift €77, (X?). Note that, the analysis more like that of Eq. (2.1) where there is no decorrelation

state X being known, the model error e (X9) is  2sumpton.

easier to handle than =" (X!) in Eq. (10), which »s  Compared with climatological modelling of the

is defined with respect to the true state X! that is rnodel—error. CQVATIANCE matux, . as usua.ll encounte.:red
in_data assimilation, the model for P in Eq. (21) is a

never known in practice. Now, when assuming that the '
: state-dependent model of the model-error covariance. Note
errors in Eq. (19) are decorrelated and when the model

T also that, in panel (b), assuming that there is no bias,
m _(X%) is unbiased (E |7 ,(X?)| =0), and of ; ; () > . :

pa s0 while there is one, leads to interpret the bias as a residual
covariance [ et ((X7) (7! (X = , it _results model-error whose magnitude can be estimated from the

CIror €
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climatology. Hence, considering-the-approximation-that-the
a-practieat-estimation P modeled by Eq. (21) is an hybrid
model that balance the model error of the day with the
climatological effect of the model error. In particular, if the
model-error is characterized by the climatological residual
term : the source of this uncertainty corresponds to
a forcing term that appears in the dynamics of the model
error (see e.g. Eq. (4) in Nicolis (2003)) ; this source term is
not explored here and its contribution is incorporated in Q
whose magnitude depends on the forecast time.

Note that the modeling Eq. (21) for P™ is actually
supported by at least one real experiment. In_the
Ménard et al. (2000) and ______Meénard and Chang (2000)
(M2000s) have observed a loss of variance: the variance
they _forecasted was lower than_the theoretical variance
that was transported by the flow for the advection equation
(Cohn, 1993). Said differently, in_their experiment, the
predicability-error_variance computed from the numerical
model was lower to the predicability-error variance of the
nature they considered, and M2000s related the loss_of
variance to the discretization of the continuous dynamics.
This loss of variance is also encountered when considering
an_ensemble forecasting of the uncertainty, as latter
illustrated in the numerical part (see Section 4.2.1) and also
observed in 3D domain simulations (Ménard et al., 2020).
Accompagning the loss of variance M2000s also_observed
that the correlation length-scale they predict where larger,
due to the same diffusive process that gives rise to the loss
of variance. To cope with the loss of variance, M2000s
proposed to correct the predictability-error_variance (the
diagonal of PP in Eq. (14)) so that its magnitude is
conserved, as it is supposed to be according to the theory.
This renormalization introduced an increase of correlation
length that was corrected by a Schur product of the new

model whose length-scale has been determined so that the
total _covariance is_conserved over time. Indeed, M2000s

introduced a modeling of the model-error covariance matrix
A

T
mo
Pq+1Nth+1<—2‘q,X <Py (th+1<—tq,/\.’;) -

T
a
Myt Py (Mict,ng )

thatis-
P P/ PP
q+1 ~ q+1 q+1-

similar to the Eq. (21) introduced here, although they did
not explicitly formalize it in this way: their objective was

TEXT: TEXT

not to characterize the model-error covariance matrix, but to

correct the predictability error covariance matrix that they
considered erroncous from a theoretical point of view. In
particular, M2000s_have observed that the Kalman filter,
with the corrected predictability-error covariance, required
less residual model-error see  Ménard et al. (2000),
Section 3), and improved the analysis-error_statistics (see
Ménard et al. (2000), Fig. 11): the flow dependent modeling
Eq. (21) of the model error is in a better agreement with the
real forecast uncertainty.
e

At a computational level, II'", ; in Eq. (18) is—still-quite
o] Fver for the f A . .

@

o

appears_easier to_obtain_than the model-error covariance
matrix Pyt as defined by Eq. (6): the predictability-error
covariance matrices of the model Py, (Eq. (14)) and
of the nawre P, (Eq. (16))_are based only on the TL
while_the model error £7,, () (Bq. (4)) depends on the

P?,. and P, . remains a challenge. First of all, the na-
ture dynamics is-either-unknown-ox\ is generally unknown

e.g. primitive equations are only an approximation of the
25 geophysical fluid dynamics. Then, when the nature consists

485

5%o

dynamics is (assume) known e.g. when it is given by PDEs,
» problem must be solved numerically: as M is presicely the
M@g&a high order numerical approxima-

tion AZof the nature dynamicsean-be-considered;—with-the

60

o hope—that-thenumerical-errors—are—, N, whose numerical
s error is much smaller than these-the one of M. But-the

MHMHAMQMWW&AW
P?,, and P?_ . But due to the large size of the numer-
ical state encountered in geophysies—practice, the direct

70

computation of eﬁ%tmpe%ﬁb}empfaeﬁeef’p
and P” | = MP*MT is impossible, even on supercomput-
ers, which are only able to handle a few numerical states

at full resolution: it is the limitation that motivated the

ensemble estimation to solve the Kalman filter equations
Evensen, 2009).

NS d ] . : leulati he
temporal—evelation—To overcome the above limitations, a

high order discretization ./\7 of A/ will be introduced in

the latter numerical simulation in place of A/, e.g. in
the ensemble estimation of the covariance matrieesmatrice

P? . ~NP®N7T only used for the validation. But the so
computation of P?,, = NP*N” and P? | is investigated
through an alternative to the ensemble estimation, as now

introduced in the next section.
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2.3 Parametric dynamics for VLATcov models

The parametric formulation ef-covariance-evolution—ean-be

stated—provides a framework where a limited number of
covariance parameters (based on the continuous PDE) of

the nature can be computed. The parametric formulation
works as follows. If P(P) denotes a covariance model

characterized by a set of parameters P = (p;)ics, then

there exists a set Pt PY—featuring—the—forecast—the
analysis)-error-featuring the forecast-error covariance matrix

so that P(P/) ~ P{ (; and there is a set P* featuring the
analysis-error covariance matrix so that P(P?) ~ P). In re-
verse, if the dynamics of the parameters Ptf is known, then
P(Ptf ) approximates the dynamics of P{ without using the
full matrix computation. This approach constitutes the so-
called parametric Kalman filter (PKF) approximation, intro-
duced by Pannekoucke et al. (2016, 2018a) (P16, P18).

The family of covariance models parametrized by the
vartanee-Variance field and the teeat-anisetropie-tensersLocal
Anisotropic Tensors, the VLATcov models, are of particu-
lar interest {2)(Pannekoucke, 2020): their parameters are di-
rectly related to the grid-point statistics of the error field €.
When the error is modeled as an unbiased random differen-
tial field, E [¢] = 0, the variance at a point x is written
V(x)=Ele(x)*]. (22)
The anisotropy of the correlation function p(x,y)=
\/leivy]E [e(x)e(y)] is deriveddefined, from the second order

expansion

p(x,x + 0x) %1—%\|5x||2 (23)

8xg(X)

by the local metric tensor g(x). An interesting result is that
the metric tensor can be obtained from the error as

win= e (G7)os ()]

(see e.g. {2-(Pannekoucke, 2020) for details). A VLATcov

model is then a covariance model parametrized by V" and g,
thatis P(V,g).

For instance, the diffusion operator of Weaver and Courtier
(2001) is an example of a VLATcov model: the local
anisotropic tensors are related to the local diffusion tensors,
v, from

(24)

3

1

_ —1
10 Vx = -8«

7 (25)

where the superscript ~! denotes the matrix inverse operator.

Eq. (25) holds under the local homogeneous assumption, that
is when the spatial derivatives are negligible.

Following Pannekoucke et al. (2018a), the parametric dy-

1s namics of a VLATcov model is deduced from the dynamics
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of the errors from
3tV =2E [EatE] s (268.)
15 €
0:8ii =W |E |0y | —= |0, | —= , 26b
o (o) (F)) e

where the expectation operator and the temporal derivative
commute, O,E[-] = E[;], as used in Eq. (26a). Therefore,
the dynamics of the VLATcov model is written P(V;,g;) or
P(V;,v¢) which are equivalent.

Now, we apply the parametric covariance dynamics for
model-error covariance estimation.

2.4 The model-error VLATcov approximation

and that there is no residual model-error QQ so to focus on

II"" alone, so that

Py ST, @

leads to model the forecast-error covariance matrix as

Pl AP I (28)

With the notations of the previous paragraph, a set P/ also
exists for the predictability-error covariance matrix leading
to the approximation P(P?) ~ P?.

If the dynamics of the parameters P? is known, then
starting from the initial condition P} =P it is possible to
approximately determine P} without solving Eq. (14) and
Eq. (16) explicitly.

Hence, thanks to the parametric dynamics in the case
where the nature is known from its partial derivative
equationequations, a new method to compute the model-
error covariance matrix can be proposed as follows. By con-
sidering the TL dynamics for the numerical model and for
the natureand-the-medel-, Equation (26) provides a way to
compute both the foreeast-error-covarianee-matrix PL;and

Wﬁ%&%@w&mmw
covariance matrices P? ~(Eq. (14)), and P” (Eq. (16)) ; from
which the medel-error-covartanee-matrix-model Eq. (27) of
P™ can be diagnosed—frem—evaluated. For or the covariance
model based on the diffusion equation, the model-error vari-
ance diagnosed from Eq. (18) is the difference

vm=vIive -

%3 (29a)

where ¥1V? and V? )-denotes-the-forecast-error{denote
the predictability-error }-varianee-fietdvariance fields of the
nature and of the numerical model. The field of the metric
tensor of the medel-errer-model error is approximately given
by

m o__

T ym

(29b)

g <Vfgf ﬁpgp _ Vpgp> ,
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where gf—~gP and gP ) denotes—theforecast-error
{predictability-error-metrie-tenser—field-respectively denote
the predictability error metric tensor fields of the nature and

of the numerical model (see Appendix B for details).
In the next section we apply the parametric model-error
dynamics to a transport equation.

3 Parametric characterization of the model error
covariance for the one-dimensional advection
equation

The transport equation of a passive scalar ¢ by the wind
u(t,x) is written as
Orc+udyc =0, (30)
and takes the place of the nature dynamics Eq. (1). Note that
dynamics Eq. (30) is linear, meaning that the tangent-linear
dynamics is also given by Eq. (30). The advection equation
has two aspects. The first side is given by the PDE Eq. (30)
which is referred to as the Euler point of view. The other side
is the analytico-geometric perspective known as the method
of characteristics (see e.g. (Boyd, 2001, chap. 14)) where the

dynamics can be solved as a local system of ordinary differ-
ential equations, given by

o

dr

E =u, (313)
dc

_o. 31b
dt 0 (31b)

Each system Eq. (31) describes the evolution of the couple
10 (x(t),c(t)) starting from an initial position 2(0) where the

scalar value is ¢(0,2(0)). At the geometric level, Eq. (31)

remains to compute the trajectory of a mobile point of co-

ordinate x(t), the characteristic curve, solution of the dy-

namics Eq. (31a), and transporting the scalar ¢ whose value
15 ¢(t) coincide with the field value (¢, z(t)). The transported
value ¢(t) evolves following Eq. (31b). In the present situa-
tion, since the right hand side of Eq. (31b) is null, ¢ is con-
served along the curve. This second point of view is referred
to as the Lagrangian description for the transport.

Two discretization methods are interesting to study for
the transport equation: the finite difference approach and the
semi-Lagrangian method resulting from the Lagrangian in-
terpretation of Eq. (30).

The aim of this section is to detail the model-error covari-
25 ance matrix for both schemes. This theoretical part is orga-

nized as follows. The error covariance parametric dynamics

for the nature is first described considering the covariance

model based on the diffusion equation, then both finite dif-

ference and semi-Lagrangian schemes are introduced with
a0 their particular parametric dynamics.
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3.1 PKF dynamics for the linear advection equation

To describe the time evolution of the fereeast—error
predictability-error covariance matrix, Eq. (16), it is neces-
sary to detail what is the TL dynamics ;~for the linear trans-
port, Eq. (30). Since this transport dynamics is linear, the
error evolves according to the same dynamics, and the TL
dynamics can be written as

0,278 +ud,e’EP = 0. (32)

The PKF approximation of the forecast-error covariance ma-
trix, relies on the dynamics of the variance and of the diffu-
sion fields deduced from Eq. (26). The equation for the vari-
ance is computed from Eq. (26a) by replacing the trend by
the TL dynamics Eq. (32), so that

8V IVP = 9K [ef (—ud,2P)] = —2uE[EP8,27]. (33)
From @ﬁ’d—:Qﬂe@ﬁLMmd by the com-
mutativity between the expectation operator and the spatial
derivative, the variance dynamics becomes

BV VP = 2B [ (—ud,2)) = —ud,E [(gp)?] .

(34)

By using the definition of the variance Eq. (22), it results that
the dynamics for the variance can be stated as

VIVP = —wo, VIve. (35)

The computation of the metric dynamics Eq. (26b) is simi-
lar to the above computation made for the variance dynamics,
and is detailed in P16 and P18 where the interested reader is
referred to. It results that the PKF evolution for the nature is
written

oV IVe o, vIve =o, (36a)

O P 4 udp ! P = (20,u) ! DP. (36b)

Note that a similar system has been first obtained, in data
assimilation, by Cohn (1993) (see their Eq. (4.30a) and
Eq.(4.34) when written without stochastic model error).

From Eq. (36), it results that the variance and the diffusion
are independent quantities. The variance is conserved, while
it is transported by the wind. The diffusion is not only trans-
ported, but it is also modified by the source term {284t}
(20,u)v" which results from the deformation of correlations
by the gradient of the flow wu: the diffusion tensor is not con-
served by the flow.

Hence, in this sub-section, the fereeast-error—covartance
dynamies—predicability-error covariance for the nature
Eq. (16) has been computed for the linear transport Eq. (30)
and corresponds to the time integration of the un-coupled
system Eq. (36) starting from prescribed analysis—error
analysis-error variance and diffusion tensor fields.

The finite difference scheme is now considered as a first
numerical integration method for Eq. (30), with the deriva-
tion of the predictability-error covariance matrix.
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3.2 Finite difference scheme and its equivalent PKF
dynamics

When the velocity field w is positive (which is assumed from
now without loss of generality), a conditionally stable dis-
cretization scheme is given by the Euler-upwind scheme,
C?“ —cf _ ¢l —cl )
5 = —Uy )
ox

ot

Stability is assured as long as the CFL condition

éﬁMﬂHﬂ%@# MME satisfied. Moreover the

scheme is consistent since in the limit of small §z and dt,
the dynamics Eq. (30) is recovered from the discrete equa-

1w tion Eq. (37). Thanks to the consistency and the stability,
the equivalence theorem of Lax and Richtmyer (1956) as-
sures to the convergence of Eq. (37) toward the true solution.
Equation Eq. (37) stands as an illustration of model dynamics
Eq. (3).

15 While the numerical solution computed with the aid of a
given numerical scheme can converge toward the true so-
lution as 0t — 0 and dz — 0, when 6t and dx are of finie
finite amplitude, the numerical solution often differs from
the theoretical one. Actually, there exists another partial dif-

20 ferential equation which offers a better fit to the numerical
solution and hightithgs-highlights the properties of the nu-
merical scheme (Hirt, 1968): the consistency, the stability as
well as the dissipative and dispersive nature of the numer-
ical scheme can be deduced trem-from the so-called modi-

2 fied equation (Warming and Hyett, 1974). Hence, while it is
supposed to solve Eq. (30) the numerical solution computed
from Eq. (37) is actually the solution of the modified equa-
tion.

(37

More precisely, if &—(C _denotes a smooth
30 function solution of the iterations Eq. (37) with
=10 (got,idz) = Cf, then the modified

equatlon is the partlal differential equation verified by &
C and at a given order of precision in 0t and dx. Here, it
is straightforward to show that at order O(6t2,52%), the

s partial differential equation best fitted by C' is given by
(see Appendix C)

0,C+Ud,C = rd2C, (38a)
where
U=u— ﬁ5',5u + ﬁuaggu (38b)
2 2
40 and
Uu
=3 (0x — udt) (38¢c)

are two functions of ¢ and z.
Compared with the nature Eq. (30), the modified equation
that best fits the Euler-upwind numerical scheme Eq. (37)

@

Oyu and the self advection ud,u of the wind u. The mag-
nitude of the correction scales as dt and is null at the limit
0t — 0. But this is not the only modification of the dynam-
ics, as a more critical difference emerges from the numerical
discretization: a diffusion term whose magnitude depends on
the CFL number udt/dz. In particular, the diffusion coeffi-
cient is negative when the CFL number is larger than one.
The diffusion breaks the conservation property of the initial
dynamics Eq. (30). This example shows the importance of
the modified equation: this provides a way to understand and
characterize the defects due to the numerical resolution. In
one dimension, for evolution equation, this can be diffusive
processes (associated with derivatives of even order) or dis-
persive processes (associated with derivatives of odd order).

From the PKF point of view, the modified equation is cru-
cial since it converts a discrete dynamics into a partial dif-
ferential equation, which appeared from P16 and P18, much
simpler to handle when considering error covariance dynam-
ics. Thanks to the modified equation Eq. (38), it is now pos-
sible to compute the TL evolution of the predictability error
for the Euler-upwind scheme, which can be expressed as
OieP + UD,eP = k2P, 39)

Equations of the PKF forecast can be computed under a
similar derivation as in the above Section 3.1. To simplify
the computation workflow, a splitting method has been intro-
duced in P16 and P18. Due to the diffusion process appear-
ing in Eq. (39), the PKF formulation faces a closure issue for
which a closure scheme has been successfully proposed in
P18, the Gaussian closure. The interested reader is referred
to P18 for the details. Note that an alternative to the Gaus-
sian closure can be deduced from the data through machine-
learning ¢>)}(Pannekoucke and Fablet, 2020). Hence, the re-
sulting dynamics for the parameter of the predictability-error
covariance model is given by

VP 9 K (8,VP)?
8tvp+Uanp——7+Hanp—W (4021)
O? + U9, P = (20, U)vP+
p
Haﬁyp+2f£, MKI+
14
21/p
OpkOx VP — Qazigmjmr
0, VP 20, V7 2(0,V)?
p_ Y%V p a\YzV ") . p
v KOy Ve VPO, K + Vet kP (40b)

Compared with the PKF dynamics of the nature Eq. (36),
the PKF for the Euler-upwind scheme gives rise to additional
terms which result from the numerical diffusion of magni-
tude k. Moreover, this time, the PKF for the Euler-upwind

presents a correction of the wind which depends on the trend 4 scheme presents a coupling between the variance and the
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10

10 diffusion, the coupling being a consequence of the numer-
ical diffusion only. Note that a coupling between the vari-
ance and the correlation scale also appeared in Eq. (4.30a)
and Eq. (4.34) of Cohn (1993), but without a link to the dis-
cretization scheme.

15 The model-error covariance matrix, Eq. (27), associated
with the Euler-upwind scheme can be deduced from the
forecast-and-thepredictability-errer-predictability-error co-
variance matrix approximations: starting from the initial
analysis-error variance and diffusion field, integration of the

20 pafdmeffﬁefe&xswﬁer—épfedwe&bthfy-eﬁeﬁ—ee&ﬂﬂaﬂee
Eq. (36)¢, and of the numerical discretization, Eq. (40))

AAAAANAANARAAARAANAANANAANAANSANARNNARAL

provides-the-forecast-error<, provides the predictability-error
Y-variance VL and-diffusion+/(variances V? and V?, and
2 the diffusion P and vP)-, which are used to compute e the
model-error covariance parameter Eq. (29).
As another example, the model-error parameters for the
semi-Lagrangian scheme are now discussed.

3.3 Semi-Lagrangian scheme and its equivalent PKF
3 dynamics

The modified equation technique has been previously con-
sidered for SL schemes. For instance, McCalpin (1988) has
shown for the case of constant adveeting-advection velocity
that a linear interpolation leads to an effective Laplacian dis-

a5 sipation while the quadratic and cubic interpolations lead to
a biharmonic dissipation.

Because we want to focus on the method to address
the issue of the model error, and since uncertainty pre-
diction of diffusive dynamics has been detailed by P18,

s we limit the presentation to the linear interpolation in the
semi-Lagrangian-, and we present the modified equation of
Eq. (30) for the study of its model error.

The Lagrangian perspective Eq. (31) of Eq. (30) suggests
to build curves along which c is constant. While simple, the
drawback of this analytico-geometric method is the possi-
ble occurrence of curve trajectory collapses which prevent
us from describing the time evolution of ¢ throughout the
geographical domain. It is possible to take advantage of the
geometrical resolution while avoiding the collapse by con-
sidering the so-called semi-Lagrangian procedure.

In the Lagrangian way of thinking, starting from a given
position z,, the question is where the mobile point lies
along the time axis, which makes evolving the computation
grid forward in time. The semi-Lagrangian perspective re-
verses this question by asking from which position z; origi-
nates the mobile point arriving at x,, at a given time. Hence,
the semi-Lagrangian leaves the computation grid unchanged
over the time steps of the integration, while letting the scalar
field c evolve. More precisely for the particular dynamics of
Eq. (30), by assuming the scalar field at time ¢ known for
each points of the computational grid, for grid point x;, the

TEXT: TEXT

scalar field evolves as

c(t+ot,x;) = c(t,xz}), 41
where «7 is the origin of the trajectory at time ¢ which arrives
at z; at time ¢+ 0¢. Since the point of origin 2 is unlikely to
be a point of the computational grid (except for very partic-
ular situations), the value c(t,z}) is computed as an interpo-
lation of the known values of c at time .

In its present form, the semi-Lagrangian procedure is not
suited to the PKF method since it does not give rise any par-
tial differential equation which lies at the core of the para-
metric approximation for covariance dynamics. To proceed
further and to obtain PDEs, additional assumptions are intro-
duced to translate the semi-Lagrangian procedure Eq. (41)
into a discrete scheme from which the modified equation is
deduced.

In the case where the discretization satisfies the CFL con-

dition fu{apde<6t0t < dz/Max |u(x)| and for linear in-
X

terpolation, it is straightforward to write the semi-Lagrangian
procedure Eq. (41) into a discrete scheme (see Appendix D
for the details) which is stated as follows:

eIt _ 4 c?—c?

1& 1:7uib(5; 1, foru; >0

T, @)
= —u; = 5, foru; <0

which give rise to the Euler-upwind/downwind schemes.
Then following the same derivation as previously presented
in Section 3.2, the modified equation resulting from the
scheme Eq. (42) is given as the PDE verified by a smooth
solution C' of Eq. (42). From the derivation detailed in Ap-
pendix D, the modified equations is

@

0,C+Ud,C = rTd2C, (43a)
where
440 U=u— ﬁﬁtqu ﬁ7.L(()"35’LL (43b)
2 2
and
KL = |“| (8z — |uldt) (43c)

50
are both functions of ¢ and x.

Hence, since this corresponds mainly to the modified
equation Eq. (38) encountered for the Euler-upwind scheme
Eq. (37), the parametric predictability-error covariance is
ss also given by Eq. (40), replacing « by its SL counterpart

value x5,

Note that the derivation leading to the Euler-upwind and

20 Buler-downwind schemes is due to the choice of the lin-
ear interpolation. The bridge between the SL and the Euler-

e up/down-wind procedures is not a novelty. The derivation has
been carried out since it offers an insight into how to build a
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modified equation for the SL scheme, and also for the self
consistency of the presentation. In the general situation, the
modified equation for the SL scheme is hard to obtain, if at
all possible, and it is not the idea to claim the procedure as
universal. But it provides a new insight into the model-error
covariance matrix for the SL scheme, which is one of the
main goals of the present contribution.

The next section presents the numerical experiments car-
ried out to assess the ability of the PKF to characterize the
model-error covariance matrix.

4 Numerical validation
4.1 Setting and illustration

In this experimental test bed, the domain is assumed to be
the one dimensional segment [0, D) with periodic boundary
conditions, where D = 1. The domain is discretized into a
regular grid of n = 241 points z; = idx for i € [0,240] and
dx=D/n~4.11073.

The wind field u for the one-dimensional transport
Eq. (30) is set as the stationary field

u(z) =04+ ? (1 +cos (QI;T(xD/Zl))) :

showed in Fig. 2-(a), which appears as a jet with the entrance
(exit)atx = 0.75D (x = 0.25D): the flow accelerates (decel-
erates) until x = 0.25D (x = 0.75D). Latter, the lead time is
T=20.

In order to verify the CFL condition, the time step for the
numerical simulation is set to §¢t = 0.002 leading to a CFL
value of 0.48 < 1. The magnitude of the numerical diffusion
K, Eq. (38¢), associated with this setting is shown in Fig. 2-
(b), normalized by the diffusion coefficient x, = 6x2 /dt.

For the numerical experiment, the initial state for c is set
to

¢(0,2) = exp (—Wsin (;T(a:—D/2))2> (45)

(44)

while the initial analysis-error covariance ma-
trix is set as the homogeneous Gaussian co-
variance matrix
005~ 1282P]

is the chordal distance between the two geographical
ositions 2 and y (Pannekoucke et al., 2018a, see Eq.(30)).

The analysis-error standard-deviation is set to the homoge-
neous value 1.0.

For numerical validation, since no simple analytical solu-
tion of the partial differential equation Eq. (30) exists, this
dynamics is integrated considering a fourth order Runge-
Kutta time scheme applied on the finite difference discretiza-

35
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tion

Ci+1 —Ci—1

YT (46)

6tci = —U;

where the spatial derivative is approximated by a centered
second order scheme. This constitutes the higherresolution
version-high_order discretization A/ of the model-nature
Nand-, as introduced in Section 2-42.2: N is assumed to
better reproduce the nature N —In—erder—to—compute—the

relative-error-of H/v/6400-~1-25%than the model M.

Figure 3 shows the trajectory computed from the nature
10 approximated by A and the natare-A‘numerical model M.
Since the transport equation conserves the value of the field
¢, the extremal values of ¢ do not change along the integra-
tion and the wind u > 0 causes the initial structure to move
to the right. While the field is conserved, it is also deformed
by the wind. For the particular choice of the initial condi-
tion made here, the signal is of larger (smaller) scale in the
region z € [0,0.5] ( z € [0.5,1]) than its initial shape. Panel
(a) shows that the nature approximation N is able to repro-
duce the conservation of ¢ as well as the stretching of the
signal along the time axis. Hence, the nature approximation
N is good enough to capture the main features of the na-
ture dynamics, which justifies the use of this approximation

@

4 in place of the true dynamics in the following. At the oppo-

site, the model A/~ M fails to maintain the magnitudes of the
extrema (panel (b)), in accordance with the modified equa-
tion Eq. (38a) of the Euler-upwind Eq. (37) which presents a
non-physical diffusion process resulting from the numerical

5 discretization. Note that the coefficient of the numerical dif-

fusion is heterogeneous over the domain with a typical value
of thereabout 0.1k, (see Fig. 2-(b)). This heterogeneity is
due to the scale variation of the signal, stretched by the wind
shear: when the signal is of smaller (larger) scale than its
initial shape, the second order derivative is larger (smaller),

ss which leads to an intensification (reduction) in the numerical

diffusion term in Eq. (38a).

Having validated the two numerical models MM it
is now possible to look at the covariance dynamics and how
the model-error covariance error can be estimated from the
PKF prediction.

4.2 Assessment of the PKF in predicting the

f L Yieabili
redictability-error covariance dynamics of the
nature and of the numerical model

The PKF foreeast-error-predictability-error covariance ma-

es trix dynamics for the transport equation Eq. (30) is given

10 by the system Eq. (36). The PKF predictability-error covari-
ance matrix dynamics resulting from the Euler-upwind in-
tegration Eq. (37) is given by Eq. (40). Both systems are
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(a) Wind velocity for nature and model
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(b) Magnitude of the numerical diffusion
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Figure 2. (a) Wind field specified for the nature dynamics and the one seen in the discretized model from Eq. (38b). Panel (b) represents the
numerical diffusion coefficient due to the discretization Eq. (38¢), normalized by x, = dz2 /dt.
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Figure 3. Nature (a) and numerical model (b) runs for times from ¢ =

numerically integrated by considering respectively an ex-
plicit RK4 time scheme for the nature and an Euler time
15 scheme for the Euler-upwind scheme. The time step used
for the integration is dt = 0.002. The forecast-error-and-the
predictability-error variance field-fields are shown in Fig. 4.
The foreeast-error<(predictability-error )-correlation length-
scale fieldfields, defined from the one-dimensional diffusion

LP = /207 y-is(numerical model), are shown in Fig. 5. The
variance and the length-scale, are shown for the PKF and the
an ensemble estimation, the latter being only computed for
the validation of the PKF (the ensembles are not needed nei-
25 ther used for the computation of the PKF systems).

To do so. an ensemble of N = 6400 analysis_ errors
has been generated, (£f ;)xep. n.). Where each member is
computed as_e§ ;, = (P{_0)"/2G with ¢y a sample of the
Gaussian_random _vector of zero mean and of covariance
w mauix _the identity matrix I. This large size limits the
sampling noise to a relative error of 1/ Ne ~ 1.25%.

Because the dynamics are linear, the TL nature and model
are independent of any analysis state, and the ensemble is
computed from the forecasts, by the high order discretization

0.8 1.0

0to t =T and represented each 6:2F0.17".
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of the nature A" and the model M, of the ensemble of

analysis errors (e2 , ).

4.2.1 Validation of the PKF for the nature

The predictability-error covariance dynamics for the nature
is first considered. Since the variance of the nature Eq. (36a)

is conserved, it results that with the choice of an initial ho-
mogeneous variance, the trend is null and the variance field
is the stationary homogeneous field 1.0. This theoretical re-
sult is well reproduced in Fig. 4-(a) from the PKF integra-
tion while the ensemble estimation, Fig. 4-(c) also shows
this stationary but to within the sampling noise. The length-
scale (Fig. 5-(a)) shows a periodic evolution where, start-
ing from the homogeneous field of £y value [, the length-
scale first increases (decreases) in the entrance (exit) of
the jet, then these evolutions are attenuated then compen-
sated with the transport. Then ensemble estimation Fig. 5-(c)
presents the same variations (again to within the sampling
noise), which validates the PKF dynamics for the nature.

As a consequence, the PKF dynamics Eq. (36) can be used
to understand the dynamics of the uncertainty. In particular,
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12 (a) Variance for Nature (from PKF)
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(b) Variance for Euler-upwind (from PKF)
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Figure 4. Foreeast-error-Predictability-error variance field, J/—LH—‘F)W for the nature Eq. (30), computed from the PKF Eq. (36) (panel
a), and predieatbility-error-predictability-error variance field, V'* (¢, ), for the numerical model resulting from the finite difference & Euler

discretization Eq. (37), computed from the PKF Eq. (40) (panel b).

Panels (c) and (d) are the ensemble estimation for panels (a) and (b),

where the nature dynamics is approximated by Eq. (46) dynamics in panel (c) (6400 members are used here). Fields are represented for times

from ¢t = 0 to ¢ = T and represented each 6:270.17.

the length-scale field at t = 0.17 is well explained by the
source/sink term 2(0;u)v” in Eq. (36b) whose magnitude,
that lies from —0.004 to 0.004, implies a rapid emergence
of a heterogeneity leading to large (small) length-scales for
2 €[0,0.25D]U[0.75D, D] (for z € [0.25D,0.75D]) where
9yu >0 (9yu < 0); and by the transport term ud,v”_that
shifts_the fields to the right. Note that, by introducing
the spatial average operator defined for any function f by

t) =+ t,x)dx as represented in Fig. 6, the averaged
length-scale (LP)(¢) ranges in [120x,17.50x] (see Fig. 6-(b))
while the (V?)(#) is the constant 1. (see Fig. 6- b)).

4.2.2  Validation of the PKF for the numerical model

The predictability-error covariance dynamics for the
numerical model is now discussed. For the Euler-upwind
scheme, the numerical diffusion resulting from the spatio-
temporal discretization in Eq. (38a) implies a damping of
the variance along the time axis (see Fig. 4-(b)). The at-
tenuation of the uncertainty governed by Eq. (40), leads
to a heterogeneous damping over the domain and appears
much stronger in the middle of the domain (z = 0.5) than

near the boundaries (x = 0 and x = 1), while transported by
the flow. The length-scale, Fig. 5-(b) increases by the dif-
fusion while the shear produces similar patterns as for the
forecast-error statistics. The ensemble estimation in Fig. 4-

e (d) and Fig. 5-(d) shows the same signal as the PKF predic-
tion (within the sampling noise) which validates the system
Eq. (40). As for the nature, it appears that the PKF dynamics
for the numerical model, Eq. (40), explains the dynamics of
the uncertainty. In particular, again, the length-scale field at

os 1= 017 is well explained by the source/sink strain term
2(0zu)v”_in Eq. (40b) and by the transport term ud,1?,
but this time, compared with Eq. (36b), the source term
215 in Eq. (40b) implies an increase of the length-scale L7.
Note that the influence of the remaining terms in Eq. (40b)
can be neglected at the prime instants of the dynamics:
this is_because at t =0, V¥ and v” are constant fields
o nature, the behavior of the predictability-error variance of
the numerical model presents some source/sink terms (rhs
of Eq. (40a)) that explain the emergence of a heterogeneity
of the variance field. In particular, the term — 5 V? being

7 strictly_negative, it is responsible of the damping of the
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s0 (a) Length-Scale for Nature (from PKF) s0 (b) Length-Scale for Euler-upwind (from PKF)
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Figure 5. The length-scale counterpart of Fig. 4 representing the -predictability-error length-scale field

LLfields P (nature) and LP w&&%‘m@ in panels (a,c) (in panels (b-d)). The tength-seale-is-length-scales are diagnosed from the

diffusion : e E = coefficients from the formula L = v/2v and normalized by the grid spacing dz.
Top panels are computed from the PKF while the bottom panels are estimated from the same large ensemble of forecasts as considered in
Fig. 4. Fields are represented for times from ¢ = 0 to ¢ = T" and represented each 6:24-0.17

(a) Spatial averaged variance (b) Spatial averaged length-scale
¥ — ([P) (pkF data)
x —— (LP) (pkf data)
B | — @ (pkf analytic)
081 ) ——- (LM (pkfdata)
g === (L™) (pkf analytic)
=
c
8 o6 )20
= ®©
8 £
=
(]
o -—
0.4
z 8 s
- _ a
Rocs —— (VP) (pkf data) e
0.2 ol —— (V) (pkf data) oY
: c
el —— (VP (pkf analytic) S 104
s === (V™) (pkf data) —
004 7 === (V™) (pkf analytic)
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0
ur ur

Figure 6. Time evolution of the spatial average over the domain of the predictability-error variance (a) and length-scale (b), computed from

the PKF for the nature (blue) and the numerical model (orange). The analytical PKF approximation Eq. (48) for the numerical model is in
reen. The model error variance (Eq. (29a)) and length-scale (Eq. (49)) are also represented (in dashed lines for the spatial averaged of the

PKF results shown in Fig. 7 (a) and (b) (red), and the analytical approximation (purple).

15 variance ; it is also responsible of the heterogeneity at the large) length-scales (see Fig. 4-(b) versus Fig. 5-(b) for
rime instants: the length-scale L being heterogeneous, the t =0.1T7). In terms of spatial average, with the assumption
damping will be more (less) intense in the areas of small that the variations around each averaged field are smalls so 20
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that for any fields f and g the approximation ~ s the_numerical model is dissipative, then the modelling
applies, then the spatial averaged of the dynamics Eq. (40) Eq. (21) of the model-error covariance matrix can be
writes estimated—from—the—difference—between—the—forecast-error
and—introduced, that is a flow dependent modelling of

(VP = —ﬂ<v>, (47a)  the model-error covariance plus a climatological residual.
R G s This is the situation encountered in the present numerical

&Q% the predictability-error eevaﬁaﬁeeﬂﬂamWeﬁ—fhe

Q") = 2(r), (47b)

~

where the property that for any function f and integer k£ > 0,

0% fY =0 has been used to eliminate all the other terms.
Eq. (47) can be solved analytically, ad its solutions writes

eevaﬁﬂﬁee#mﬁheﬁppmﬂma&m\m

(wP)(0) 1/2 1 which is larger than the bias (that is at most 0.2 when

V) = (V9)(0) () ; (48a)  comparing the nature and the numerical model evolution
(20 £ 24t in_Fig. 3), while_the predictability-error_variance of the

WPt = WP)(0)+2(k)t. (48b)  Dumerical model rapidly fails with at its worst a reduction of
T 60% of the predictability-error variance of the nature (see the

The analytical solution Eq. (48) successfully reproduces the re.ductlon atr =0.6D when comparing panels 2 and (b)in
; : Lo ; Fig. 4). It results that the flow-dependent modelling Eq. (21)
time evolution of the statistics in the present experiment. v anolv hore

may apply here.

For the length-scale, Eq. (48b) reproduces the increase (see s In order € - . cpm
Fig. 6-(b)), with an underestimation because this solution 1 order to

doesn’t account for the oscillation due to the strain term

that has been neglected in the dynamics Eq. (47b). For the . » .t . L m

variance, Eq. (48a) explains a linear decrease at the prime . ’ . L focus
- AR R ts-compared-to-the-direct-ensemble-estimation—of-the-focus
instant, followed by an attenuation in ¢ (see Fig. 6:(a)). on the flow dependent part of Eq. (21), the approximation

423 Intermediate result Eq. (27) is_considered. Here, P™ is computed from

T T the parametric_approach discussed in_Section 2.4, with
As a conclusion of this section, the PKF is-appears able ~ (he_parameters Eq. (29). where the predictability-error
to predict the variance and the legnih-sealefeature—ofthe ~ Sovariance statistics are computed from Eq. (36) for the
forecast-error-length-scale features of the predicability-error ~ Dature and Eq. (40) for the numerical model. Note that in
covariance dynamics of the nature dynamies Eq. (30) and of ~ this 1D_domain situation, Eq. (29b) is equivalent to the
10 the predietability-errorecovarianee-dynamiesresulting from computation of the local correlation length-scales b

numerical model, that corresponds to the discretization of the
true dynamics given by Eq. (37). These results are now con-

3

sidered to provide an estimation of the model-error covari- ym
ances. L"(tz)=,| == ) (49)
Ve/(LP)? = VP /(LP)?
15 4.3 Model-error covariance diagnesis-from the PKF R
prediction

The flow-dependent model-error covariance eempufed«ffem

estimates—parameters are shown in Fig. 7, with the variance

in panel (a) and the length-scale in panel (b).
As—disetssed—in—Seetion—2-+—From the previous section, At the initial time, as there is no model-error, the

AR AAAR AN AN AAANANAANRI AN AANA R AN AN AAANAANAANANAANAAANAANAAN

the Euler-upwind discretization of the advection Eq. (30) ~ model-error_variance is zero. But then, the model-error

leads to an heterogeneous dissipative term, which affects the  variance should increase linearly because, the sink term
dynamics of the numerical model uncertainty by damping 5 V" that is the only non-zero right hand side term in
the variance while increasing the correlation length-scale.  Eq. (36a) and Eq. (40a) (see also the spatially averaged
When_the bias_due to_the model-error is lower than  dynamics Eq. (47a)) is a source of model-error variance at
the_predictability-error variance of the nature and that  the initial time, so that for small ¢, the order of magnitude of
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; (a) Model-error variance (from pkf nature-model)
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2% 0(b) Model-error length-scale (from pkf nature-model)
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Figure 7. Flow-dependent Model-error variance:—(a)-computed-under-decorrelation-assumption-covariance, modelled from Eq. (21) as the

difference-between-the-varianee P = I1" + Q, and computed from the PKF ig/rvtgg\rla/glvrggnd Sh@Wﬂ—lﬂ’th—4the Euler-upwind scheme.

The variance (a) and the length-scale (bnormalized by dx) :-(b)

sented for times from +=-627-t = 0.17 to t =T and-represented-at each 6:27-0.1T (for ¢ = 0 the model error 1s null) W

s-are repre-

the ensemble estimation of the variance (c) and the length-scale (d) of P, Eq. (53).

VI is given by

(V) ~t (V)(0), (50)

{7)(0)

which relates the increase of the model error variance to the
numerical diffusion. Note that the numerical diffusion is not

the only process that induces a model error e.g. the phase
shift due to the correction of the numerical velocity %t ud,u

in Eq. (38b) is also a source term while it has been removed

from by the averaging here. Hence, Eq. (50) provides the
order of magnitude of the model-error eovariance-is—made

by-leoking-at-variance at time ¢ = 0.17: when considering
the initial conditions v?(t = Q) = [? =0)=1,
and the order of magnitude of the diffusion coefficient
(r) ~ 0192/t (see Fig. 2-(b)), then the typical values of
the model-error variance and-ength-seale-fields—
HW%M—%WHW%

(50) s

Vm 0.17") ~0.12. This in accordance with the

ical values observed in F1 for that time. Note
that the heterogeneity of the model-error variance field ¥5™

80

diffusion field ¥ as discussed in the previous section 4.2.2.
Then, the model-error variance continues to_grow, with
a peak of uncertainty that evolves with the flow. In_this

numerical experiment, the magnitude of the 17” bein
constant and equals to 1., the magnitude of the model-error

variance V™ = VP — VP, shown in Fig. 6-(a), and-estimated
", 5 m___ f P

model-error—statisties—Both—estimates—of—the-evolves from
Eq. (48a) as.

l% 1/2
vy~ ( ) 51)
2+ 4(k)t
when using the initial values (vP)(0) =112 and

VP)(0) = 1.0. Note that Eq (51) asymptotically behaves as
—1 -1/2 where 7 = L =~ 1.37T is the half-magnitude
that is in accordance with the simulation since

T) ~ 0.5 at the end of the simulation.

time,
V’rn
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The model-error varianee—prediet—a—variance—bump—that
5 bump—pfedieted—frem%e—lll@e%m%eﬂ—épaﬂe}—a)—ﬁ—m
aceordance-with-the-true-statisties(panel-length-scale, given
by Eq. (49), is more difficult to interpret (Fig. 7-(b)) because
of the oscillation due to the periodic domain, However, the
evolution of the spatial average of the length-scale fields
o (red _dashed line in Fig. 6-(b)) shows an increase of the
averaged length-scale with the time, that is in accordance the
order of magnitude for the model-error length-scale Eq. (49)
computed from the analytical approximations Eq. (48) and
Eq. (51), with (V?)(t) = L and (L7)(t) ~ Iy, (purple dashed
s line in Fig. 6-(b))

Note that the model-error length-scale is much smaller,
but_not_null, that will balance the large length-scale
of the predictability-error_covariance matrix PP”. Hence,
as_expected, the model-error modeled by Eq. (21) is_a

2 heterogeneous covariance that depends on the state and the
time: it is flow dependent.
of the unbiased error £57% = (N~ M)eg that appears in
the decomposition of the forecast error (see Eq. (A3) in
25 Appendix A).

ma

Ers1 = Epn Fegin Tegs (X)),

I (52)

Indeed, if the errors in the right hand side of Eq. (52)
were decorrelated (that is not) then in Eq. (17)

would have been replaced by the covariance matrix

w P =B [ept ()] given by (see Eq. (A5) in
Appendix A):

v =TI, + [(MPDT) + (MPDT) "] (53)

with D = M — N. Butthe-magnitade-of the-variancediffers:
% under-the-anatysis-error/In practice, P can be estimated

from the ensemble of 6400 errors £7¢ — Ne?, — Me& 7
where 5“7 is one of the analysis errors detailed in
Section 4.2, and where N is the TL dynamics associated

with the high order numerical approximation J\A/' of N.
40 Because in the present experiment the dynamics of the

ma

nature and of the model are linear, & is computed here
as srf‘a = N(%,) - M 6“’ . The estimated variance and
length-scale fields of P"** are shown in Fig. 7 (¢) and (d).
Compared with the PKF modellin anel a and b), the time

evolution shows a similar behavior, but the variance of P"¢

is smaller, as well as its length-scale. In this simulation, the
contribution of the terms in D, Eq. (53), is to reduce the

variance with a maximum of 0.4 at the end of the simulation.

However, the minimum of variance of the predictability error

3

17

(e.g. in Q) so to obtain a magnitude of forecast error similar

to the predictability of the nature.

Hence, the present numerical experiment illustrated and
characterized the flow-dependent part of the model-error
| . | 1 ) hof g? |
covariance P™, modeled by Eq. (21), in the situation
where the model error is related to_the discretization of

the advection by an heterogeneous wind, leading to a

numerical model that is more diffusive than the nature. In this
experiment, a linear increase in time, followed by a saturation
in t~'/ has been found for the order of magnitude of the
model-error variance{panet-b. The residual climatological
covariance, Q in Eq. (21), has yet to be estimated (not

considered here).

5 Discussion

Before to conclude, we end this work by addressing some
general points about the flow-dependent model which has
been introduced here.

The originality of the present contribution is twofold. First,
we have formulated a theoretical background corresponding
to_the_model-error covariance matrix_and_introduced a
modelling for its flow-dependent part, Eq. (21). This
provides a_theoretical framework to the correction of
the_predictability-error_introduced in M2000s. Then, we

have provided theoretical and quantitative results about the
diffusive effect due to the discretization that can leads to a

loss of variance as observed in M2000s: this has been done

by combining the formalism of the PKF and the modified
equation. The interest for this modelling of the model-error
covariance is supported by the results of M2000s who have
observed an improvement of the quality of the analysis in
their data assimilation system of stratospheric observations.

The length-seale-diagnosis;showninFigure- 22 illustrates
a—similar—behaviour—At—+=0;—thelength-seale—is—net
determined—sinee—the—flow-dependent_component of the
model-error covariance introduced here can be computed in
practice, because it relies on: (1) the analysis uncertainty as
characterized by the analysis state and its error covariance
that can be estimated in data assimilation; and (2) the time
evolution of the analysis-error covariance by the nature and
by the numerical model that can be computed from an
ensemble method or from the PKE approach.

Note that, if the difference between a low and a high
resolution forecast is often used to compute the model-error
at_a_given time, this does not tell anything about the
model-error_covariances at that time. At most, the model
errors_collected for a large number of dates, and for
the_same forecast time, can be used to_compute the
climatological bias and the climatological model-error co-

is also nearly 0.4. Thus if P™® were considered in place of s variancematrix—ts—nul—forboth—simulations;—so—+=027

II'", then a residual variance of order 0.2 would be needed

20 is—represented—in—replacement—The—. To capture the error
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of the day following Eq. (21), the computation of the

predictability-error covariance matrices is needed.
Hence,_the employ of the PKE is important because

Eq. (21) needs to estimate not only the predictability-error

25 covariance matrix of the numerical model, but also the one
of the nature. If an ensemble estimation of the latter matrix

is possible in the research e.g. by computing an ensemble

w difficult to use Eq. (21) in an ensemble method. Compared
with an_ensemble method, the PKF remains to_compute
the evolution of a reduced set of covariance parameters,
by computing equations_similar to_ the one encountered
in_geosciences. For the passive tracer in 1D, the PKF
dynamics consists in three equations: for the transport of
the_concentration, the dynamics of the variance and the

dynamics of the local anisotropy (here a diffusion coefficient,
related to the correlation length-scaletranstates-with-the-flow

and—increases—or—deereases—due—to—). So, the numerical
cost _of the PKF three e uatlons for the ve}eei%y—sheaf

3

&

4

S

the-ensemble-of simulations—(panel-btracer (one equation)
compared to the dozen of members often used in ensemble
methods (from which the statistics are corrupted by the
sampling noise).

e sirmalation. . .

length-sealefieldFor the dynamics of a tracer, the PKF
applies in 1D as well as in 2D and 3D domains, where the
number of equations are this time of five in 2D, and eight
in 3D (the additional equation are for the components of the
PKE is limited by the knowledge of the parameters dynamics.
The formalism of the PKF is adapted for dynamics given
by partial differential equations. as for the advection of a
tracer, but the design of a multivariate PKFE formulation is
needed so to address multivariate dynamics. Note that for the
model error as presented here, the knowledge of the modified
equation is a prerequisite that can be difficult to determine in
general,

While the PKF is designed from the TL approximation,
it is_a second order Gaussian filter that is a particular
implementation  of  nonlinear  Kalman-like lters
(Cohn, 1993): for non-linear dynamics. the PKF equation
of the mean state depends on the second order moments.
However, for long-term predictions, or when the magnitude
of the error is tog large, the PKF would fails to provide an

TEXT: TEXT

6 Conclusions

In this contribution, the part of the model-error covariance
due to the spatio-temporal discretization scheme is explored
by considering the parametric approximation for the Kalman
filter (PKF). The PKF approach applies for a system whose
dynamics is given by a set of partial differential equations
(PDEs). In the PKF formulation, covariances are approxi-
mated by covariance models which-are-characterized by a

set of parameterscovariance parameters, whose dynamics is
deduced from the PDEs of the system, supplemented by an
appropriate closure if necessary. We focused on the class
of covariance model distinguished by the varianee-Variance
field and the }WWWW
Tensors (VLATcov). Therefore, for VLATcov matrices, the
covariance dynamics is given by the dynamics of the vari-
ance and the local anisotropic tensors, whose dynamics are
deduced from the partial differential equations of the system.

s and—the—model—error,—In_the case where the numerical
model presents a_dissipation due to the discretization,
or_where the numerical model is more dissipative than
the nature, we introduced a modelling of the model-
error covariance, where its flow-dependent part is approx-
4o imated as the difference between the parametric approx-
imation of the fereeast-error—and—the—predictability-error
eovarianee matrieespredictability-error covariance matrix of
the nature and of the numerical model, plus a residual
climatological covariance matrix. This modelling of the
flow-dependent part_can be computed in_real application
because it relies on quantities that can be estimated: the
analysis_state and its analysis-error_covariance matrix (or
some of its characteristics). For a dynamics given by a
partial differential equation, the parametric ferecast-error

20 covartanee—matrix—predictability-error covariance matrix of

the nature is deduced from the evolution equation while
the predieta predictability-error-covarianee-matrix-predictability-error
covariance matrix of the numerical model is computed from
the modified evolution, i.e. the partial differential equation
equations that best fits the numerical solution.

The ability of the parametric approach to characterize part
of the model-error covariance dynamics has been illustrated
in a numerical test bed in 1D. We have considered the trans-
port of a scalar by a heterogeneous velocity field. In this case,
the parametric dynamics of the fereacastforecast error shows
that the variance is conserved along the flow, while the local
anisotropic tensor is transported by the flow and deformed by
the gradient of the velocity.

For this transport dynamics, two numerical schemes have
been considered: an Euler-upwind scheme and a semi-
Lagrangian scheme in the case of a linear interpolation. The
modified equations of both schemes make appear an addi-
tional heterogeneous dissipation and a perturbation of the ve-
locity, whose characteristics depend on the spatio-temporal
w0 diseretisationdiscretization (dt,dx), the trend and the shear
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of the flow. Because of the numerical diffusion, the variance
of the predictability error is not conserved and a coupling
with the anisotropy appears. This effect has been noted as
well in 3D global transport models (Ménard et al., 2020)
where the loss of error variance is stronger for short corre-
lation length-scales.

An ensemble of forecasts has been introduced, taken as
the reference, to compare the true covariance evolution with
the parametric approximation. The numerical experiment
shows the ability of the parametric dynamics to reproduce
the fereeast-error-and-the-predictability-error covariance dy-
namics. ForThen, the modelling of the flow dependent part
of the model-error covariance ;-the-difference-between-the
fefee&%t-effer—aﬂd—ﬂae—pfedief&bﬁ}ty-efrer—eev&ﬁaﬂeeq—wa%
not-able-to-perfectly recover matrix has been computed and
discussed. In particular, we discussed the growth of the
model-error_variance from the understanding of the PKF
dynamics, showing a linear increase in time followed by a

The flow-dependent formulation being introduced for
modelling the situation where the numerical model is more
dissipative than the nature, the model-error variance provided
by the PKF should be a lower bound of the true model-
enoreev&ﬂaﬂeedyﬂaﬂﬂes—ﬂﬂ%—ﬁ—dﬂe{e—ﬂieﬁe%-eeﬁe}&&eﬂ

taken-into-account-here—Nonetheless-the-variance, that need

ARARANINARAANARIIS

a residual climatological covariance to account for the bias.
While there is no data assimilation experiment here,
this contribution provides a theoretical background on

the model-error variance—and—local—anisotropy—obtained
ffem—fh&PKF—shafed—seme—stmﬂaﬂ&e%Wt&hfhe—eﬂsemb}e

W&%WW
light on a study previously done by Ménard et al. (2000) and
Ménard and Chang (2000) (M2000s), who have observed a
tracer_by using a Kalman filter: the variance forecasted
was_ lower than the theoretical variance that is supposed
to_be conserved for the advection (Cohn, 1993). Actually,
interpreted as_an account of the model error due to the
discretization scheme, the correction made by M2000s is
similar to the modelling of the flow-dependent part of the
model-error eovariance-characteristiescovariance matrix we
proposed here. In particular, M2000s_have observed that
the_Kalman filter, with the corrected predictability-etror
covariance, required less residual climatological model-etror
(see Ménard et al. (2000), Section 5). and an improvement
of the analysis-error_statistics (see Ménard et al. (2000),

ig. 11), and thus indicating that the modeling of the
model error, as proposed here, is in_a better agreement
with optimality _of the nature, Hence, the benefit of
the flow-dependent modelling introduced here appears as
s supported by the improvement of the analysis observed by
M2000s in their experiment.

19

The methodology introduced here has shown the potential
of exploring the model-error covariance from the parametric
dynamics of error covariance. While the characterization of

10 the model-error covariance is a challenge, as in air quality

s forecasts (Emili et al., 2016), the parametric approach ap-

pears as a new theoretical tool to tackle this issue. In order

to represent the uncertainty of the small scales, it would be

interesting to combine the parametric approach with other

15 new methods e.g. the modelling under location uncertainty
so (Resseguier et al., 2017).

However, the parametric dynamics faces closure issues
that have to be adressed—addressed depending on appli-
cations. Here, the investigation of diffusive model errors

20 has been made possible thanks to the Gaussian closure of
ss P18. For other kind of numerical errors, an appropriate clo-
sure will have to be specified, either from theoretical clo-
sures or from the data as suggested by the data-driven and
physics-informed identification of uncertainty dynamics of 2

Pannekoucke and Fablet (2020).
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Appendix A: Expressions for the forecast error

The aim of this section is to provide the demonstrations
of some decompositions of the forecast error: the usual
expression as encountered in data assimilation, an expression

80

where the model error is considered with respect to the ss

analysis state, and an expression that makes appear the
redictability error with respect to the nature.
85

Al Expression of the forecast error as usuall
encountered in data assimilation

The forecast error is defined in Eq. (9). as the difference «

RACASRAAANARAARRAS

=M, X%) — X! . Thanks to Eq. (4), the true
state at time ¢ can be replaced so that

qu+1 g ( qa) - Mtq+1<—tq (X(f) + 6:1n+1(th)7

q+1

(Al
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that makes appear the model error defined by Eq. (5)

m —

as g = Mygact, =Ny o, However,  with
M, XH = M, X% —¢%)  which expands
for small analysis error as

Mtrﬂrl‘*tq (X;> = Mttﬂrl‘*tq <Xl;l) — Mey

q’

M denotes the propagator of the TL model along the
analysis state trajectory, see Section 2.1 for details) the

forecast error Eq. (A1) becomes
ef  =Me® e (X
el e ekl
that is written as _

a1 = S S (Xg), (A2)

where g,y =Meg is the predictability error, Eq. (12),
with respect to the model. The expression Eq. (A2) is the
expression of the forecast error usually introduced in data
assimilation (Daley, 1992, see Eq. (2.8)). Note that in_this
expression, the model error is evaluated at the true state X
while it is never known in practice. It would be interesting
to consider an expression with known guantities e.g. with the
analysis state ; this is now detailed in the next subsection.

A2 Expression of the forecast error considering the
model error with respect to the analysis state

The forecast error Eq. (A2) can be obtained by rewriting the

model error term as €7, (X)) =™, (X? — %), Hence, the
taylor expansion of £ , with respect to X'* for small error

and lead time, leads to

5;”+1(X;)

__m a m a
= g1 (Ag) = quJrl,Xq“gq’

where de™_denotes the differential of the model error
£ = M =N (Eq. (5)) which exists when M and A are

where N is the propagator of the TL nature along the

analysis state trajectory (see Section 2.1 for details). Then,
the forecast error Eq. (A2) expands as_

o1 = S T e (), (a3

where €% is defined b

s eg1 = (N —M)eg. (A4)
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Note that €7’% is unbiased (at least when the analysis error
is unbiased) i.e. E |¢7°% | = 0, so that is covariance matrix is

Pme =T [em® (™% )T which expands as

ma __ antT’ anxgT

~ [ (MPyNT) + (NPeMT) ]

Replacing the TL model M by N = M — D, leads to

ma
P

T
— 11, + [ (MPSDT) + (MP;D)" | (A3)
where IT™ | = NP°N” — MP°M7 (see Eq. (18)).
As ™% contains the predictability error, a final expression

of the forecast error can be obtained as shown now.

A3 Expression of the forecast error formulated in term
of nature predictabilit

Considering the definition of the predictability error Eq. (12),
the forecast error Eq. (A3) rewrites as

E(];+1 = Neg +e541 (X)), (A6)

which makes appear the predictability error with respect to

the nature, e-_ , = Ne?,
Note that Eq. (A6) can be obtained directl
from the definition of the forecast error Eq. (9)

as__ follows. By _ replacing  the forecast b

M o (XY =N, XM e (XY,

the forecast error first writes
ef =N XY =Ny ey (XD +e™ (X9,
where the definition of the nature
Xt =N, X%) has been used. Then, rewritin

N, (XD =N, . (X2 —¢%),  whose  Taylor
expansion is N (XD =N; g (X2 — Ne? leads

to the forecast error Eq. (A6).

Appendix B: Approximation of the model-error metric
tensor field

Here, we consider the particular case where the model-error
covariance model is approximated under—the—white—noise

assumption-as-as Eq. (27) i.e.
me = Eﬁp - Pp;a

assuming this matrix is a covariance matrix. The local metric
tensor can be diagnosed from the Taylor expansion of the

model-error correlation function

1
VP (x,x)P7(x + 0%, X + 0x)
(ﬂﬁp(x, x+6x) — PP(x,x+ 5x)> . (B

§7" (3, % + %) =

25

30

35

40



o

20

TEXT: TEXT

Under
the

an assumption of local of

variance,

homogeneity

and P?(x,x)~ PP(x+ dx,x + 0x), which leads to the
P/(x,x) PP(x,x)
Pm’(X,X

expansmn
1
1—Z|6x|)? a0 | —
)P"”(X,X) ( 2” X|| g)f‘g’3>

P(x,x 1 9
ﬁ (]. 2||5X|g£> . (B2)

Since, [|0x||3, = 6x” gx0x, the correlation is expanded as

P (X, x+0%) &

P (X, x4 0x) ~ 1—

léxT |: ! (Pff’p (Xax)ggxip -

2 [y Pt )| ox

(B3)

After identification with the expected form of the expansion

1
P (%% 4 0%) ~ 1= S[0% gy, (B4)
it follows that
1 1 ~
fyp > fp
gy = ~ VIVP(x)ggx'r —
Vi(x) - VP(x) Vp(x)—VP(x)< (e

(B3)

where the variance are denoted by PLl{se;se)—V1{x)
P (x,x) = 7 (x) and P7(x,x) = V7(x).

Appendix C: Computation of the modified equation for
Euler scheme

The modified partial differential equation associated with the
numerical scheme Eq. (37) is the partial differential equa-
tion of a smooth function C, solution of the scheme, so that

C(qdt,idz) = C ie.
Ccitt _ e cil—-cl
e (Ch)

for which the Taylor formula in time and space at order
O(6t2,62%) is

2,C + —(;tafc+ O(5t%) =
0x o 9
—ul0,C— 5 9;C+0(0x%) ] (C2)

The second order time derivation-derivative can be replaced
from the equation Eq. (C2) itself, at an appropriate order.
Due to the dt, an expansion at order O(dt) only requires to

50
w 02C

P P
(ét)éxgvafc = kO2C + O(58,62),

21

25 express the second order derivative at the lead order, that is
P™(x,x) # P™(x +0x,x+0x), s from

P e se) e PLse+-d33+85)PP (x,x) & PP (x + 0%, X + 0X),

"0,C = —ud,C + O(dt,dx). (C3)
Then, from the time derivationderivative, the second order
derivative can be replaced by

0; (—ud,C) + O(3t,6x),
—0;ud,C —ud?,C + O(8t,dx),

thenconsequently, the second order derivative 92,C can be
deduced from spatial derivation-derivative of Eq. (C3), and
writes
92,0 —0,(u0,C) + O(6t,0x),

—0,u0,C+—ud2C + O(6t,0x).

It results that Eq. (C2) writes

ot

—u (axc— 02 e ) +O(5t2,527)
then-so that

(C4)

where U = u— 2 0yu+2Lud,uand k = % (6 — udt) are two
functions of ¢ and x.

Appendix D: Computation of the modified equation for
Semi-Lagrangian scheme

The aims of this section is twofold, the first goal is to obtain
a discrete scheme from the semi-Lagrangian procedure, then
to deduce the modified equation of the discrete scheme.

For the sake of simplicity, the linear advection dynamics
O0rc +ud,c = 0 is first considered with a velocity u > 0.

From the characteristic curve resolution it follows that
c(tg+1,2i) = c(ty,x}), where the originate point x} is as-
sumed in between points x;_; and z;, which means that the
CFL constraint udt < dx is verified. This originate point can
be approximated as z} = x; — u;6t, and if a linear interpola-
tion is considered for the computation of ¢(t,z?), it follows

that
%
C(tq’xi) =
1 T, —Tj—1 Ty —Tj-1 q T, —Ti-1 q
- ) i1t i
Tj— Thi—1 Tj — Ti—1 Ti — Ti—1

w; 0t u; 0t
=——¢ 1— —— ¢
dx Cll+< ox >C“
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Hence, the numerical scheme writes

Cot1i = 5 ~Cqi-1t (1= == | cqi.

(D2)

The modified differential equation is obtained by replacing
¢ by a smooth function ¢, solution of the numerical scheme
Eq. (D2). The computation of the modified equation is simi-
lar to the Euler case detailed in Appendix C, leading to

0,C + (u - %@u—!— (;tuawu) 0,C =

1 1, 9
(zuéx iu 615)61,0. (D3)

When u < 0, the differential equation writes

ot

(9tC'—|- <U — §6tu—|— 6t

Qu&vu) 0,C =

(;(_u)gx - ;u25t> 92C  (D4)

Hence, in the general situation,

0, C + <u - %@u—i— (;tuawu) 0,C =

(;|u|5:p - ;u25t) 92C, (D5)

whatever the sign of the velocity w.
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