
Final answer to the referee 2

First of all, we would like to thank the referee for her/his review on our paper and for giving us the
opportunity to improve our paper. 

Now, we organized the answer to the comments as follows. First, we list some changes afford to the
manuscript then detail our answers to the questions raised by the referee.

List of changes for the revision

Major changes

The formalism has been reworded to match the usual notation of data assimilation (Sec.  2). In
particular Sec. 2.1 has been split so to better introduce the modelling of the model-error covariance
matrix that is now presented in Sec. 2.2. To this end, a new figure 1 has been introduced to sketch
the  dynamics  of  the  uncertainty  in  presence  of  model  error  and to  facilitate  the  setting  of  the
framework considered here: the case where the numerical model is (more) dissipative compared to
the nature. The formalism of the model error has been clarified, with the details of formulations of
the forecast error that are given in Appendix A. A specific notation has been introduced for the
predictability error of the nature ($\widetilde{\eps}^p$) so to avoid any confusion with the forecast
error as usually encountered in data assimilation. Now, every $\widetilde{.}$ symbols refer to the
uncertainty of the nature.

Sec 4.2 has been split in two part, one for the nature, the other for the model. The dynamics of the
average over the model has been introduced to quantity the evolution of the variance and the length-
scale fields. In particular, the Sec. 4.2.2 provides an analytical evolution of the predictability-error
variance of the model which better explore the PKF equations. This quantitative evolution of the
predictability-error variance is also now explored in section 4.3 for the model-error variance. 

A section 5 has been introduced to discuss the results and the connexion with the previous work of
Ménard et  al  2000s that  support  the interest  of  the method introduced here,  but  in  a  real  data
assimilation system.

Minor changes

The detail of the ensemble estimation was missing in the previous version of the manuscript, this
has been introduced in the introduction of Sec. 4.2.

There was an error on the definition of the time representation of Fig. 3 and later where the results
are shown every $0.1T$, moreover the lead time of the simulation has been indicated $T=2.0$ (this
was missing).

P10, line 12: The chordal distance was used in the numerical simulation, but we wrote the distance
as |x-y| in the manuscript. While there is no difference between the two distances with the value of
D and l_h used here, the chordal distance leads to a valid correlation function on the circle (that is
not  the  case  with  the  previous  distance  –  this  theoretical  consideration  is  not  discussed  in  the
manuscript but justifications can be found in the article Pannekoucke et al. 2018).

Differences between the two version of the manuscript

To facilitate the comparison between the two version of the manuscript, a companion version of the
manuscript lists all the modifications where old (new) statements are in red (blue).  



Answer to the question of the referee

We copied your commentary in italics below, we reply in normal blue font.

1. “Please discuss the condition that the assumption of the decorrelation between the analysis error

and the model error is valid.”

Actually, this assumption may never apply in the real world. However, since it is hard to account in
the modelling of the model-error  it  is  often introduced with the consequence that  the resulting
modelling of the model-error certainly lead to over-estimate the “true” forecast-error statistics: the
role of the cross covariance terms is to reduce the variance. This is now discussed in the new Sec.
2.2 (p3, l43-50):
“Then, assuming a decorrelation between the analysis and the model errors is certainly wrong for
deterministic error as the model error due to the discretization of the dynamics; but it might apply
for highly non-linear processes as for the turbulent processes and transport by the turbulent. Again,
assuming the decorrelation between the analysis and the model errors leads to over-estimate the true
effect of the model-error with an over-estimation of the true forecast-error uncertainty.”

2. “Since the prediction error is obtained from the tangent linear model, its validity depends on the

error magnitude and the forecast range. Thus the method proposed in this paper also depends on

the error magnitude and the forecast range? Please discuss.”

Thank you very much for the comment. We agree with this limitation and we have introduced a
section dedicated for the discussion where this question is now addressed in the discussion part Sec.
5 among other points. In particular, we answered to the referee’s comment as follows:

“While the PKF is designed from the TL approximation, it is a second order Gaussian filter 
that is a particular implementation of non-linear Kalman filter (Cohn, 1993): 
for non-linear dynamics, the PKF equation of the mean state depends on the second order moments.
However, for long-term predictions, or when the magnitude of the error is too large, the PKF would
fails to provide an accurate estimation of the covariance matrices.” (from p16, l 4)

3. “There are many formulas in the paper, please make sure all the symbols have been explained.

For example, what is the meaning of subscript “q”?”

The subscript $q$ is for the time. This is now explicitly mentioned in the manuscript at p2 line 47.
We have checked for other symbol to be sure that they were correctly explained.

4. “To what extend can the PKF approximation provide the estimation of model-error covariance

characteristics? Will it depend on the complexity of the model?”

The PKF approximation can applies for non-linear dynamics by considering the TL dynamics of the
uncertainty at the second order (see the answer to point 2). Actually, a closure appears even for
linear dynamics when the order of the spatial derivative is larger than 1. Here, a closure is needed
for the diffusion term that appears in Eq. (34). The closure we have used is the one introduced by
Pannekoucke et al. (2018). As now better discussed in Sec. 5, the PKF is ready to be used for the
tracer dynamics in 1D as well as in 2D and 3D domains. However, for multivariate dynamics, the
PKF has to be developed. These limitations are now clearly stated in Sec. 5 (see p16, l31-43):



“For the dynamics of a tracer, the PKF applies in 1D as well
as in 2D and 3D domains, where the number of equations are
this time of five in 2D and eight in 3D (the additional equa-
tion are for the components of the local anisotropic tensor).
However, in general, the use of the PKF is limited by the
knowledge of the parameters dynamics. The formalism of
the PKF is adapted for dynamics given by partial differential
equations, as for the advection of a tracer, but the design of
a multivariate PKF formulation is needed so to address multi-
variate dynamics. Note that for the model error as presented
here, the knowledge of the modified equation is a prerequi-
site that can be difficult to determine in general.”

and in the conclusion (p17, l51-59):

“However, the parametric dynamics faces closure issues
that have to be addressed depending on applications. Here, the
investigation of diffusive model errors has been made pos-
sible thanks to the Gaussian closure of P18. For other kind
of numerical errors, an appropriate closure will have to be
specified, either from theoretical closures or from the data as
suggested by the data-driven and physics-informed identifi-
cation of uncertainty dynamics of Pannekoucke and Fablet
(2020).”
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Abstract. This contribution adresses
✿✿✿✿✿✿✿✿

addresses the charac-

terization of the model-error covariance matrix from the

new theoretical perspective provided by the parametric

Kalman filter method which approximates the covariance

dynamics from the parametric evolution of a covariance5

model. The classical approach to obtain the modified equa-

tion of a dynamics is revisited to formulate a paramet-

ric diagnosis
✿✿✿✿✿✿✿✿

modelling
✿

of the model-error covariance ma-

trix
✿✿✿✿✿

which
✿✿✿✿✿✿✿

applies
✿✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿

model
✿✿

is
✿✿✿✿✿✿✿✿✿

dissipative

✿✿✿✿✿✿✿✿

compared
✿✿✿✿

with
✿✿✿✿

the
✿✿✿✿

true
✿✿✿✿✿✿✿✿

dynamics. As an illustration, the10

particular case of the advection equation is considered as a

simple test bed. After the theoretical derivation of both the

forecast-error and the predictability-error covariance matri-

ces
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

nature
✿✿✿✿

and
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model, a numeri-

cal simulation is proposed which demonstrates the skill of15

the parametric methodology in reproducing the
✿✿✿✿✿✿✿

illustrates

✿✿

the
✿✿✿✿✿✿✿✿✿

properties
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

resulting
✿

model-error covariance ma-

trixinformation.
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1 Introduction20

A significant portion of the work being carried out in state-

of-the-art data assimilation concerns the treatment of the

forecast-error covariance matrix. The ensemble method has

opened up a fantastic playground where variational DA and

the Kalman filter are now merged in hybrid or ensemble25

formulations.

Actually, the forecast-error is composed of two parts.

While one part of it is related to the uncertainty in the ini-

tial condition, another part is due to the model-error (Daley,

1991; Dee, 1995). The model-error corresponds to the dif- 30

ference between the simulation and the true behavior of a

system, and several representations of the model error can

be introduced in numerical weather prediction (Houtekamer

et al., 2009). For instance, the model error can be related to

the misrepresentation of the small-scales and how this influ- 35

ences the large-scales. Stochastic physics such as Stochastic

Kinetic Energy Backscatter (Shutts, 2005) or the Stochas-

tically Perturbed Parametrization Tendencies (Palmer et al.,

2009) are examples of methods encountered in NWP for this

part of the model error. 40

Although some theoretical studies have been conducted

in the past, which elucidate the generic behavior related to

the model-error from the dynamical system perspective and

in connexion with the data assimilation (e.g. Nicolis (2003);

Vannitsem and Toth (2002); Carrassi and Vannitsem (2010)), 45

as far as we know there has been little investigation of the ef-

fect of the discretization of partial derivative equations on the

model error
✿✿✿

and
✿✿

on
✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿

in
✿✿✿✿✿✿✿✿

particular. One

reason why the effect of numerical schemes is rarely consid-

ered is because it tends to be quite difficult to describe the 50

dynamics of large covariance matrices as encountered in the

Kalman filter.

It has been noted in Kalman filtering and EnKF that the

propagation of error covariance with a discretized advection

model produces a model error (variance) in the form of a 55

variance loss (Ménard et al., 2000, 2020). This error is related

to the spatial splitting error in covariance propagation that

exists with discretized models and not in continuous propa-
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gation of covariance functions i.e.
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

propagation
✿✿

by
✿✿✿

the
✿✿✿

true

✿✿✿✿✿✿✿✿

equations
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

dynamics.

Recently, Pannekoucke et al. (2016, 2018b) (P16) have

proposed to solve the Kalman filter equations,
✿✿✿✿

and
✿✿✿

its

✿✿✿✿✿✿✿✿✿✿

second-order
✿✿✿✿✿✿✿✿✿

extension
✿✿✿

for
✿✿✿✿✿✿✿✿✿

nonlinear
✿✿✿✿✿✿✿✿✿

dynamics,
✿

using ap-5

proximated covariance matricies
✿✿✿✿✿✿✿

matrices through a covari-

ance model characterized by certain parameters, leading to

the so-called parametric Kalman filter (PKF). With this ap-

proximation, the dynamics of the covariances is replaced by

the dynamics of the parameters. For instance, when consid-10

ering the class of covariance matrices parametrized by the

variance field and the local anisotropic tensors (VLATcov),

the evolution of the matrices is deduced from the evolution of

the variance and the local anisotropic tensors (Cohn, 1993; ?)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Cohn, 1993; Pannekoucke, 2020). This approach relies on15

the partial differential equations encountered in geosciences

✿✿✿

that
✿✿✿

are
✿✿✿✿✿

often
✿✿✿✿✿✿✿✿

nonlinear.

The aims of the present work are to study how the para-

metric dynamics for covariance matrix evolution can help

to characterize the model-error covariance matrix, and more20

precisely, to determine if is it possible to capture some part

of the model-error covariance which is due to the numer-

ical scheme. In this methodological contribution, we will

limit ourselves to diffusive numerical-errors whose uncer-

tainty dynamics have been explored by
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿

explored
✿✿✿✿

from25

✿✿

the
✿✿✿✿✿✿

results
✿✿

of
✿

Pannekoucke et al. (2018a) (P18).

The paper is organized as follows, the uncertainty

propagation is first
✿✿✿✿✿✿✿✿✿

background
✿✿

in
✿✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

is
✿

re-

viewed in Section 2 from which the
✿✿✿✿✿✿✿✿

formalism
✿✿✿

of
✿✿✿

the

model-error covariance matrix can be deduced at least on30

a theoretical level
✿✿

is
✿✿✿✿✿✿✿

detailed
✿✿✿✿✿

with
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

introduction
✿✿

of
✿✿

a

✿✿✿✿✿✿✿✿

modelling
✿✿✿✿

that
✿✿✿✿✿

could
✿✿✿✿✿✿

apply
✿✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model
✿✿

is

✿✿✿✿✿✿✿✿

dissipative. The model-error covariance matrix estimation

based on the PKF is detailed
✿✿✿✿✿✿✿✿

illustrated for the particular one-

dimensional transport equation in Section 3 in the context of35

the Euler-upwind and semi-Lagrangian schemes. A numeri-

cal test bed is proposed in Section 4 to assess the ability of the

PKF approach to successfully estimate the model error due

✿✿✿✿✿

model
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

flow-dependent
✿✿✿

part
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿

covariance

✿✿✿✿✿

matrix
✿

to numerical schemes in a one-dimensionnal setting.40

✿✿✿✿✿✿✿✿✿✿✿✿✿

one-dimensional
✿✿✿✿✿✿✿

setting.
✿✿✿

A
✿✿✿✿✿✿✿✿✿✿

discussion
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

results
✿✿

is

✿✿✿✿✿✿✿

proposed
✿✿✿

in
✿✿✿✿✿✿✿

Section
✿✿

5.
✿

Conclusions and perspectives are

given in the last section, Section 6.

2 Theoretical considerations

2.1 Background in uncertainty propagation and the45

model error

Here we assume that the nature is governed by the determin-

istic equation

∂tX =N (t,X ), (1)

where X stands for the state. Note that X can be either dis- 50

crete or continuous: the discrete case leads to matrix of alge-

braic relations while the continuous case is suitable for the-

oretical treatment with partial differential equations. There-

after, for any state X of a suitable set, there exists a single

trajectory Xt =Nt←0(X ),
✿

where Nt←0 stands for the prop- 55

agator of the dynamics Eq. (1) from 0 to t. Hence, if X t
q de-

notes the true state of the nature at time tq , then the true state

of the nature at time tq+1 is

X t
q+1 =Ntq+1←tq (X t

q )., (2)

✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿

subscript
✿

q
✿✿

is
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿

denote
✿✿✿

the
✿✿✿✿

time
✿✿✿

tq . 60

✿✿✿

Due
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

imperfect
✿✿✿✿✿✿✿✿✿

knowledge
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

nature
✿✿✿✿

and
✿✿✿

the

✿✿✿✿✿✿✿✿✿

limitations
✿✿✿✿✿✿✿✿✿✿

encountered
✿✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

computation,
✿✿✿✿

the
✿✿✿✿✿

nature

✿✿✿✿✿✿✿✿

dynamics
✿

is
✿✿✿✿✿

only
✿✿✿✿✿✿✿✿✿✿✿

approximated
✿✿✿

by

∂tX =M(t,X ),
✿✿✿✿✿✿✿✿✿✿✿✿✿

(3)

✿✿✿✿✿

where
✿✿✿

M
✿✿

is
✿✿✿✿

the
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿✿

dynamics.
✿✿✿✿✿✿✿✿✿✿

Compared
✿✿✿✿

with
✿✿✿

the 65

✿✿✿✿✿

nature,
✿✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿✿✿✿

evolution
✿✿✿

of
✿✿✿

the
✿✿✿✿

true
✿✿✿✿

state
✿

Eq. (2)
✿

is
✿✿✿✿

now

✿✿✿✿✿

related
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿

dynamics
✿✿

as
✿

X t
q+1 =Mtq+1←tq (X t

q )− εmq+1(X t
q ),

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(4)

✿✿✿✿✿

where
✿✿✿✿✿✿✿✿

εmq+1(X t
q )✿✿

is
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿

error
✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿✿

to
✿✿✿

the
✿✿✿

true

✿✿✿✿

state,
✿✿✿✿

and
✿✿✿✿✿

where
✿✿✿✿

εmq+1✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

function
✿✿✿✿✿✿✿

defined
✿✿

by
✿

70

εmq+1 =Mtq+1←tq −Ntq+1←tq .
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(5)

✿✿✿

The
✿✿✿✿✿✿✿

model
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

εmq+1(X t
q )✿✿✿✿✿✿✿✿✿✿

represents
✿✿✿✿✿✿✿✿✿✿

collectively
✿✿✿✿

the

✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿✿✿✿✿

discretization
✿✿✿✿

error
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿

effect
✿✿✿

of
✿✿✿✿✿✿✿✿✿

unresolved

✿✿✿✿✿✿✿✿

processes.
✿✿

It
✿✿

is
✿✿✿✿

often
✿✿✿✿✿✿✿✿

modeled
✿✿

as
✿

a
✿✿✿✿✿✿✿

random
✿✿✿✿

field
✿✿

of
✿✿✿✿

zero
✿✿✿✿

mean

i.e.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

E
[
εmq+1(X t

q )
]
= 0,

✿✿✿

and
✿✿

of
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿

matrix
✿

75

Pm
q+1 = E

[
εq+1(X t

q )
m
(
(εmq+1(X t

q )
)T ]

,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(6)

✿✿✿✿✿

where
✿✿✿✿

E [·]
✿✿✿✿✿✿

denotes
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

expectation
✿✿✿✿✿✿✿

operator.
✿

In practice, the true state X t
q is unknown and only an

estimation can be deduced from prior informations
✿

a
✿✿✿✿

prior

✿✿✿✿✿✿✿✿✿

information
✿

and the available observations. This estimation 80

is called the analysis state, X a,
✿

and it is expanded as

X a
q = X t

q + εaq , (7)

where εaq stands for the so called analysis errormodel
✿

,
✿✿✿

that

✿

is
✿✿✿✿✿✿✿✿

modeled
✿

as a random field of zero mean and covariance

matrix Pa = E
[
εaq (ε

a
q )

T
]
, with E [·] being the expectation 85

operator. The forecast state is the prediction made from the

analysis state,

X f
q+1 =NM

✿✿
tq+1←tq (X a

q ). (8)

Similarily to the analysis state, the forecast state expands as

X f
q+1 = X t

q+1 + εfq+1, (9) 90
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where εfq+1 stands for the so-called forecast error,
✿✿✿✿

that
✿✿

is

modeled as a random field of zero mean and covariance ma-

trix Pf = E

[
εfq+1(ε

f
q+1)

T
]
.

The forecast error covariance matrix is related to the anal-

ysis error covariance matrix through a deterministic relation5

as follows. From the definition of the forecast error Eq. (9)

its dynamics is given by

εfq+1 =Ntq+1←tq,Xa
q
εaq ,

where Ntq+1←tq,Xa
q

stands
✿✿✿

(see
✿

Eq. (A2)
✿✿

in
✿✿✿✿✿✿✿✿

Appendix
✿✿✿

A)

εfq+1 =Mεaq + εmq+1(X t
q ),

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(10)10

✿✿✿✿✿

where
✿✿✿

M
✿✿

is
✿✿

a
✿✿✿✿✿✿✿✿

simplified
✿✿✿✿✿✿✿✿

notation
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿

Mtq+1←tq,Xa
q ✿✿✿

that
✿✿

is

for the tangent linear (TL) propagator along the nature TL

dynamicsdefined by
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿

trajector.
✿✿✿✿

The
✿✿✿

TL
✿✿✿✿✿✿✿✿✿

dynamics,

✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿✿

state,
✿✿

is
✿✿✿✿✿✿✿

defined
✿✿

by
✿

∂tε =NM
✿✿

t,Xa
t
ε, (11)15

where Nt,Xa
t
= dN|t,Xa

t ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Mt,Xa
t
= dM|t,Xa

t
is the differen-

tial of N
✿✿✿

M
✿

at (t,X a
t ), and which

✿

.
✿✿✿✿

This
✿✿✿

TL
✿✿✿✿✿✿

model
✿

gov-

erns the evolution of small perturbations along the forecast

trajectory starting from the analysis state. Note that the va-

lidity of the TL dynamics depends on the error magnitude20

and on the forecast range. As a consequence
✿✿✿✿✿✿✿✿

Moreover,
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿✿

decomposition
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

forecast-error Eq. (10)
✿

,
✿✿✿✿✿

makes
✿✿✿✿✿✿

appear

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿

εp
✿✿✿✿✿✿

defined
✿✿

by
✿

εpq+1 =Mεaq
✿✿✿✿✿✿✿✿✿✿

(12)

✿✿✿✿✿✿✿✿✿✿✿

consequently, the forecast error covariance matrix becomes25

P
f
q+1 =Ntq+1←tq,Xa

q
Pa

qNtq+1←tq,Xa
q

T . (13)

While theoretically correct, the above picture remains

a crude idealized shortcut in the realm of numerical

predictions. Due to the imperfect knowledge of the nature

and the limitations encountered during the computation, the30

nature dynamics is only approximated by

∂tX =M(t,X ),

where M is the numerical dynamics . Compared with the

nature, the time evolution of the true state is now related to

the numerical dynamics as35

X t
q+1 =Mtq+1←tq (X t

q )+ εmq+1,

where εmq+1 is the model error, which can be modeled as

a random field εmq+1 = bmq+1 + ηmq+1 field of mean bmq+1 and

covariance matrix

Pm
q+1 = E

[
ηmq+1(η

m
q+1)

T
]
= E

[
εmq+1(ε

m
q+1)

T
]
− bmq+1(b

m
q+1)

T .40

The use of a numerical model in place of the nature

requires us to modify the above definitions. Hence, the

forecast state computed by the model is now written as

X f
q+1 =Mtq+1←tq (X a

q ),

while the forecast error evolves as 45

εfq+1 =Mtq+1←tq,Xa
q
εaq − εmq+1,

where Mtq+1←tq,Xa
q

denotes the propagator of the model

TL dynamics

∂tε =Mt,Xa
t
ε,

where Mt,Xa
t
= dM|t,Xa

t
is the differential of M at (t,X a

t ). 50

Hence, the forecast errorcan be expanded as

εfq+1 = εpq+1 − εmq+1,

where

εpq+1 =Mtq+1←tq,Xa
q
εaq ,

is the so-called predictability error. 55

In the general setting where the model error is serially

correlated, the predictability error is correlated with the

model error, and the forecast-error covariance matrixhas the

form

P
f
q+1 =P

p
q+1+Pm

q+1−+
✿

V
pm
q+1−+

✿

(Vpm
q+1)

T ,wherewhere
✿✿✿✿✿

P
p
q+1 =MP

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(14) 60

✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿✿✿✿✿✿✿✿✿✿

(Daley, 1992)

✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

V
pm
q+1 = E

[
εpq+1

(
εmq+1

)T ]
✿✿✿✿✿✿✿

denotes
✿✿✿

the
✿✿✿✿

cross
✿✿✿✿✿✿✿✿✿

covariance

✿✿✿✿✿

matrix
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

predictability
✿✿✿✿✿

error
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿

error.
✿

✿✿✿✿✿

When
✿✿✿✿

the
✿✿✿✿✿✿✿✿

analysis
✿✿✿✿✿

error
✿✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

model
✿✿✿✿✿

error
✿✿✿✿

are

✿✿✿✿✿✿✿✿✿✿

decorrelated,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

forecast-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿✿✿✿

writes 65

P
f
q+1 =P

p
q+1 +Pm

q+1.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(15)

✿✿✿✿

Note
✿✿✿✿

that,
✿✿✿

in
✿✿✿

the
✿✿✿✿

case
✿✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿

true
✿✿✿✿✿✿

nature
✿✿

is
✿✿✿✿✿

used
✿✿

to

✿✿✿✿✿✿

forecast
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

uncertainty,
✿✿✿✿

then
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

forecast-error
✿✿✿✿✿✿✿✿✿

covariance

✿✿✿✿✿

matrix
✿✿✿✿✿✿✿✿

coincide
✿✿✿✿✿

with
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿✿✿✿

covariance

✿✿✿✿✿✿

matrix.
✿✿

In
✿✿✿

the
✿✿✿✿✿

latter,
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to 70

✿✿

the
✿✿✿✿✿✿

nature
✿✿✿✿✿✿✿✿

dynamics
✿✿✿✿✿

plays
✿✿✿

an
✿✿✿✿✿✿✿✿

important
✿✿✿✿

role.
✿✿✿

So
✿✿

in
✿✿✿✿✿

order
✿✿

to

✿✿✿✿

avoid
✿✿✿✿

any
✿✿✿✿✿✿✿✿

confusion
✿✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

predictability
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿

associated

✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model,
✿✿✿

the
✿✿✿✿✿✿✿

notation
✿✿̃

·
✿✿

is
✿✿✿✿

used
✿✿✿✿✿

when
✿✿✿

the

✿✿✿✿✿✿✿✿

dynamics
✿

is
✿✿✿

the
✿✿✿✿✿✿

nature i.e.

P̃
f
q+1 = P̃

p
q+1 =NPa

qN
T ,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(16)
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✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

P̃f = E

[
ε̃f
(
ε̃f
)T ]

✿✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿✿✿✿

ε̃fq+1 =Nεaq ✿✿✿✿✿✿✿

denotes
✿✿✿

the5

✿✿✿✿✿✿

forecast
✿✿✿✿✿

error
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

particular
✿✿✿✿

case
✿✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿

dynamics
✿✿

is

✿✿

the
✿✿✿✿✿✿✿

nature,
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

coincide
✿✿✿✿

with
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

predictability
✿✿✿✿✿

error
✿✿

in

✿✿✿

this
✿✿✿✿

case
✿

i.e.
✿✿✿✿✿✿✿✿✿✿✿

ε̃fq+1 = ε̃pq+1 ✿

;
✿✿✿✿

and
✿✿✿✿✿✿

where
✿✿

N
✿✿✿

is
✿

a
✿✿✿✿✿✿✿✿✿

simplified

✿✿✿✿✿✿✿

notation
✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

propagator
✿✿✿✿✿✿✿✿✿✿✿

Ntq+1←tq,Xa
q ✿✿✿✿✿✿✿

solution
✿✿

of
✿✿✿

the
✿✿✿

TL

✿✿✿✿✿✿✿✿

dynamics
✿✿✿✿✿✿✿✿

governed
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Nt,Xa
t
= dN|t,Xa

t ✿✿✿✿

(the
✿✿✿✿✿✿✿✿✿

differential
✿✿

of10

✿✿

N
✿✿

at
✿✿✿✿✿✿✿

(t,X a
t )).✿

2.2
✿✿✿✿✿✿✿✿✿

Discussion
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿

modelling
✿✿

of
✿✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿

error

✿✿✿

The
✿✿✿✿✿✿✿✿✿

modelling
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿

error
✿✿✿✿

can
✿✿

be
✿✿✿✿

seen
✿✿

as
✿✿

a
✿✿✿✿✿✿✿

trade-off

✿✿✿✿✿✿✿

between
✿✿

its
✿✿✿✿

real
✿✿✿✿✿✿✿✿✿

properties
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿

lack
✿✿

of
✿✿✿✿✿✿✿✿✿✿

knowledge
✿✿

to

✿✿✿✿✿✿

address
✿✿✿✿

this
✿✿✿✿✿

error.
✿✿✿

In
✿✿✿✿✿✿✿✿✿

particular,
✿✿✿✿

the
✿✿✿✿✿✿

various
✿✿✿✿✿✿✿✿✿✿✿

assumptions15

✿✿✿✿✿✿✿✿✿✿

encountered
✿✿✿

in
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿

may
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿

considered
✿✿

as

✿✿✿✿✿✿✿✿✿

suboptimal
✿✿✿✿✿

ways
✿✿

to
✿✿✿✿✿

model
✿✿✿✿

this
✿✿✿✿

error.
✿✿✿✿

For
✿✿✿✿✿✿✿

instance,
✿✿✿✿✿✿✿✿

assuming

✿✿✿

that
✿✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿

error
✿✿✿

is
✿✿✿✿✿✿✿✿✿

unbiased,
✿✿✿✿✿

leads
✿✿✿

to
✿✿✿✿✿✿✿

model
✿✿✿

the

✿✿✿

bias
✿✿✿

as
✿✿✿✿✿

some
✿✿✿✿✿✿✿✿✿

variance,
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿

over-estimates
✿✿✿

the
✿✿✿✿✿✿✿✿

effective

✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿

variance.
✿✿✿✿✿✿✿

Then,
✿✿✿✿✿✿✿✿✿

assuming
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

decorrelation20

✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿

analysis
✿✿✿✿

and
✿✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿✿

errors
✿✿

is
✿✿✿✿✿✿✿✿

certainly

✿✿✿✿✿

wrong
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿

deterministic
✿✿✿✿✿

error,
✿✿

as
✿✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿

error
✿✿✿

due

✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

discretization
✿✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

dynamics;
✿✿✿

but
✿✿✿

it
✿✿✿✿✿

may
✿✿✿

not

✿✿✿✿

apply
✿✿✿✿

for
✿✿✿✿✿✿

highly
✿✿✿✿✿✿✿✿✿

non-linear
✿✿✿✿✿✿✿✿

processes
✿✿✿

as
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

turbulent

✿✿✿✿✿✿✿✿

processes
✿✿✿

and
✿✿✿✿✿✿✿✿

transport
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿

turbulent.
✿✿✿✿✿✿

Again,
✿✿✿✿✿✿✿✿

assuming25

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

decorrelation
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿

errors

✿✿✿✿

leads
✿✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿

over-estimate
✿✿✿

the
✿✿✿✿

true
✿✿✿✿✿✿

effect
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

model-error

✿✿✿✿

with
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿✿

over-estimation
✿✿

of
✿✿✿

the
✿✿✿

true
✿✿✿✿✿✿✿✿✿✿✿✿

forecast-error
✿✿✿✿✿✿✿✿✿

uncertainty.

✿✿✿✿✿✿✿✿

However,
✿✿✿✿

with
✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿✿

assumptions,
✿✿

or
✿✿✿✿✿✿✿

actually
✿✿✿

this
✿✿✿✿✿✿✿✿✿

modelling,

✿✿✿✿

some
✿✿✿✿

part
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿

statistics
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿

from30

✿✿

the
✿✿✿✿✿

data.
✿✿✿

For
✿✿✿✿✿✿✿✿

instance,
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assumption
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿

analysis

✿✿✿

and
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿✿

errors
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

decorrelated,
✿✿✿✿✿✿

leading
✿✿

to
✿

Eq. (15)
✿

,
✿

it

✿

is
✿✿✿✿✿✿✿

possible
✿✿✿

to
✿✿✿✿✿✿✿

estimate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

homogeneous
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿

and
✿✿✿

the

✿✿✿✿✿✿✿✿

stationary
✿✿✿✿

part
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

climatological
✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿

covariance

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Daley, 1992; Boisserie et al., 2013).
✿
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✿✿

By
✿✿✿✿✿

some
✿✿✿✿✿✿✿

aspects,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

understanding
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

specification

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿

matrix
✿✿✿✿✿

look
✿✿✿✿

like
✿✿✿

to
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

development
✿✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

background-error
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix

✿✿✿✿

some
✿✿✿✿✿✿✿

decades
✿✿✿✿

ago
✿✿✿✿✿✿

where,
✿✿✿

in
✿✿✿✿✿✿✿✿✿

variational
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilation,

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

climatological
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

background-error
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿✿

has40

✿✿✿✿

been
✿✿✿✿✿✿✿✿✿✿✿

progressively
✿✿✿✿✿✿✿✿

replaced
✿✿✿

by
✿

a
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿

of
✿✿✿

the

✿✿✿

day
✿✿✿✿✿✿

thanks
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

hybridization
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿

methods,

✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿✿✿✿

characterize
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

predictability
✿✿✿✿✿

error.
✿✿✿✿✿✿✿✿✿✿

Nonetheless,
✿✿✿

the

✿✿✿✿✿✿✿

situation
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿

matrix
✿✿

is
✿✿✿✿✿✿✿

different

✿✿✿✿✿

since,
✿✿

up
✿✿✿

to
✿✿✿✿✿

now,
✿✿

no
✿✿✿✿✿✿✿✿✿

equations
✿✿✿

are
✿✿✿✿✿✿

known
✿✿✿

to
✿✿✿✿✿✿✿✿✿✿

characterize 45

✿✿

its
✿✿✿✿✿✿✿✿✿

properties.
✿✿

It
✿✿✿✿✿✿

seems
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

prospect
✿✿

of
✿✿✿✿✿✿✿✿✿

estimating
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿

matrix
✿✿✿

of
✿✿

the
✿✿✿✿

day
✿✿

is
✿✿✿

out
✿✿

of
✿✿✿✿✿

reach.
✿

✿✿✿✿✿✿✿

Because
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿

error
✿✿✿✿

can
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

things,
✿✿

to

✿✿✿✿✿✿✿✿✿

understand
✿✿✿

the
✿✿✿✿✿✿✿

context
✿✿✿✿

we
✿✿✿✿

are
✿✿✿✿✿

using
✿✿✿✿✿✿

model
✿✿✿✿✿✿

error,
✿✿✿✿

let’s

✿✿✿✿✿✿✿

consider
✿✿✿

the
✿✿✿✿✿✿✿

situation
✿✿✿✿✿✿✿✿

sketched
✿✿

in
✿✿✿✿

Fig.
✿✿

1.
✿✿✿✿

This
✿✿✿✿✿

figure
✿✿✿✿✿✿

mimics 50

✿✿

the
✿✿✿✿✿✿✿✿✿

evolution
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to
✿✿✿

the

✿✿✿✿✿

nature
✿✿✿✿

and
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model.
✿✿✿✿

The
✿✿✿✿✿✿

initial
✿✿✿✿✿✿✿✿

Gaussian

✿✿✿✿✿✿

analysis
✿✿✿✿✿

error
✿✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿

state
✿✿✿✿

(the

✿✿✿✿

black
✿✿✿✿✿✿

point)
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

analysis-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿✿✿

(the

✿✿✿✿

black
✿✿✿✿✿✿✿✿

ellipse).
✿✿✿✿✿

When
✿✿✿✿

this
✿✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿✿

evolves
✿✿✿

by 55

✿✿

the
✿✿✿✿✿✿

nature
✿✿✿✿✿✿✿✿✿

dynamics
✿✿✿✿✿

(blue
✿✿✿✿✿✿✿

arrow),
✿✿

it
✿✿✿✿✿✿✿

becomes
✿✿

a
✿✿✿✿✿✿✿✿

Gaussian

✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿✿

(under
✿✿✿✿

TL
✿✿✿✿✿✿✿✿✿✿

assumption)
✿✿✿

of
✿✿✿✿✿

mean
✿✿✿✿

the
✿✿✿✿✿✿✿

analysis

✿✿✿✿✿✿✿✿

forecasted
✿✿✿

by
✿✿✿✿

the
✿✿✿✿✿✿

nature
✿✿✿✿✿

(blue
✿✿✿✿✿✿

point)
✿✿✿✿

and
✿✿✿

of
✿✿✿✿✿✿✿✿✿

covariance

✿✿✿✿✿

matrix
✿✿✿

the
✿✿✿✿✿✿✿✿✿

associated
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix

✿✿✿✿

(that
✿✿

is
✿✿✿✿

also
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

forecast-error
✿✿✿✿✿✿✿✿✿✿

covariance)
✿✿✿✿✿

(blue
✿✿✿✿✿✿✿

ellipse). 60

✿✿✿✿✿

When
✿✿✿

the
✿✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿✿✿

evolves
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical

✿✿✿✿✿

model
✿✿✿✿

(red
✿✿✿✿✿✿

arrow),
✿✿

it
✿✿✿✿✿✿✿

becomes
✿

a
✿✿✿✿✿✿✿✿

Gaussian
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿

(under

✿✿

TL
✿✿✿✿✿✿✿✿✿✿✿

assumption)
✿✿✿

of
✿✿✿✿✿

mean
✿✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿✿✿

forecasted
✿✿✿

by
✿✿✿

the

✿✿✿✿✿

model
✿✿✿✿

(red
✿✿✿✿✿✿

point)
✿✿✿

and
✿✿✿

of
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿✿

the
✿✿✿✿✿✿✿✿✿

associated

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿

matrix
✿✿✿✿

(red
✿✿✿✿✿✿✿✿

ellipse).
✿✿✿✿

The 65

✿✿✿✿✿✿✿

evolution
✿✿✿

of
✿✿✿

the
✿✿✿✿

true
✿✿✿✿

state
✿✿✿✿✿

(pink
✿✿✿✿✿✿✿

crosses)
✿✿

is
✿✿✿✿

also
✿✿✿✿✿✿✿✿✿

represented

✿✿✿✿

(pink
✿✿✿✿✿✿✿

arrow).
✿✿✿✿✿✿

Panels
✿✿✿

(a)
✿✿✿✿

and
✿✿✿

(b)
✿✿✿✿✿✿✿✿

illustrate
✿✿✿✿✿

what
✿✿✿✿✿✿

would
✿✿

be

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

forecast-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿✿✿✿✿✿

(orange
✿✿✿✿✿✿

ellipse)
✿✿✿

in
✿✿✿

two

✿✿✿✿✿✿✿✿

situations:
✿

✿✿✿✿

Panel
✿✿✿✿

(a)
✿✿✿✿✿✿✿✿✿

represents
✿✿✿

the
✿✿✿✿✿

case
✿✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿

forecast
✿✿✿✿

state 70

✿✿✿✿

X f
q+1✿✿

is
✿✿✿✿

out
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

predictability
✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

nature:

✿✿

in
✿✿✿✿

that
✿✿✿✿✿

case,
✿✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

model-error
✿✿

is
✿✿✿✿✿✿✿

needed
✿✿✿

to
✿✿✿✿✿✿✿✿

enlarge
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model
✿✿

so

✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

forecast-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿

is
✿✿✿✿✿

larger
✿✿✿✿✿✿✿

enough
✿✿

to
✿✿✿✿✿✿

account

✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

nature.
✿✿

In
✿✿✿✿

this
✿✿✿✿✿✿✿✿

situation,
✿✿

it
✿✿✿✿✿

seems 75

✿✿✿✿✿✿

difficult
✿✿

to
✿✿✿✿✿✿✿✿

speculate
✿✿✿✿✿✿

about
✿✿✿✿

what
✿✿✿✿✿✿

would
✿✿

be
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

characteristic

✿✿

of
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿

error,
✿✿✿✿✿✿

beyond
✿✿✿✿

any
✿✿✿✿✿✿✿✿✿✿✿✿

climatological
✿✿✿✿✿✿✿

estimate.
✿✿✿✿

This

✿✿✿✿✿✿✿

situation
✿✿✿✿✿

could
✿✿

be
✿✿✿

the
✿✿✿✿✿✿

typical
✿✿✿✿✿✿

picture
✿✿✿

for
✿✿✿✿

long
✿✿✿✿

term
✿✿✿✿✿✿✿✿

forecast.

✿✿✿✿

Panel
✿✿✿✿

(b)
✿✿✿✿✿✿✿✿✿✿

represents
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

situation
✿✿✿✿✿✿

where
✿✿✿✿

the
✿✿✿✿✿

time

✿✿✿✿✿✿✿✿✿

integration
✿✿

is
✿✿✿✿

not
✿✿✿✿

too
✿✿✿✿✿✿

long,
✿✿✿

so
✿✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

state
✿✿✿✿

lies 80

✿✿✿✿✿

within
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

predictability
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿

nature.
✿✿✿✿

This

✿✿✿✿✿✿✿

situation
✿✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

encountered
✿✿✿✿✿

when
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿

model
✿✿

is

✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿

dissipative
✿✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿

nature
✿✿

e.g.
✿✿

the
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿

of

✿✿

an
✿✿✿✿✿✿✿✿✿

advection
✿✿✿

by
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian
✿✿✿✿✿✿✿✿

scheme.
✿✿✿✿✿✿

Then
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿

uncertainty,
✿✿✿✿✿✿✿

required
✿✿

to
✿✿✿✿✿✿

correct
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

predictability 85

✿✿✿✿

error
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model,
✿✿✿✿✿✿

should
✿✿✿

be
✿

at
✿✿✿✿✿

least
✿✿✿✿

large
✿✿✿✿✿✿

enough

✿✿

to
✿✿✿✿✿✿

provide
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿✿

similar
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

predictability
✿✿✿✿

error

✿✿✿✿✿✿✿✿✿

covariance
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿

nature.
✿✿✿✿

So
✿✿

if
✿✿✿

we
✿✿✿✿

are
✿✿✿✿

able
✿✿✿

to
✿✿✿✿✿✿✿

quantify

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿✿✿✿

covariances
✿✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿

nature
✿✿✿✿

and
✿✿

of

✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿

model,
✿✿✿✿

then
✿✿

it
✿✿✿✿✿✿

would
✿✿✿

be
✿✿✿✿

able
✿✿✿

to
✿✿✿✿✿✿✿

specify
✿

a5

✿✿✿✿✿✿✿✿✿✿✿✿

flow-dependent
✿✿✿✿

part
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix.

✿✿

To
✿✿✿✿✿✿✿

account
✿✿✿

for
✿✿✿

the
✿✿✿✿

bias,
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

climatological
✿✿✿✿✿✿✿

residual
✿✿✿✿✿✿✿✿✿

covariance

✿✿✿✿✿

matrix
✿✿✿✿✿✿

would
✿✿

be
✿✿✿✿✿✿✿✿✿

necessary.

✿✿✿✿✿✿✿✿✿

Thereafter,
✿✿✿

we
✿✿✿✿✿✿✿✿

consider
✿✿✿

the
✿✿✿✿✿✿✿✿

situation
✿✿✿✿✿✿✿✿

sketched
✿✿

in
✿✿✿✿✿

panel

✿✿✿

(b),
✿✿✿

that
✿✿✿✿✿✿✿✿

suggests
✿✿

to
✿✿✿✿✿✿✿✿✿

decompose
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

forecast-error
✿✿✿✿✿✿✿✿✿

covariance10

✿✿✿✿✿

matrix
✿✿

as
✿

P
f
q+1 ≈

✿✿✿✿✿✿

P
p
q+1+Πm

q+1 +Qq+1,
✿✿✿✿✿✿✿✿✿✿✿✿✿

(17)

✿✿✿✿✿

where

Πm
q+1

✿✿✿✿

=NPa
qN

T−
✿✿✿✿✿✿✿✿

Mtq+1←tq,Xa
q
Pa

qMtq+1←tq,Xa
q

T , (18)

is the predictability-error covariance matrix (Daley, 1992)15

and V
pm
q+1 = E

[
εpq+1

(
ηmq+1

)T ]
denotes the cross covariance

matrixbetween the predictability error and the model

error
✿✿✿✿✿

would
✿✿✿✿✿✿✿

account
✿✿✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

flow-dependent
✿✿✿✿✿

part
✿✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix,
✿✿✿✿✿

while
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

remaining
✿✿✿✿✿

Qq+1,

✿

a
✿✿✿✿✿✿✿

residual
✿✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿✿

covariance,
✿✿✿✿✿✿

would
✿✿✿✿✿✿✿

account
✿✿✿

for
✿✿✿

the 20

✿✿✿

bias
✿✿✿✿

and
✿✿✿✿✿

could
✿✿✿

be
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

climatology
✿

e.g.
✿✿

by

✿✿✿✿✿✿✿✿✿

considering
✿✿

a
✿✿✿✿✿✿✿✿✿✿

chi-squared
✿✿✿✿✿✿✿✿✿

diagnostic
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Ménard et al., 2000).
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Figure 1.
✿✿✿✿✿✿✿✿

Illustration
✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿

evolution
✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿✿

uncertainty
✿✿

by
✿✿✿

the
✿✿✿✿✿

nature
✿✿✿

and
✿✿

the
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model:
✿✿

the
✿✿✿✿✿✿

generic
✿✿✿✿✿✿✿

situation
✿✿✿

(a),
✿✿✿

and
✿✿

the
✿✿✿✿✿✿✿✿

particular

✿✿✿✿✿✿

situation
✿✿✿✿✿✿✿

particular
✿✿✿✿✿✿✿

situation
✿✿✿✿✿

where
✿✿

the
✿✿✿✿✿✿

forecast
✿✿✿

lies
✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿

nature
✿✿✿✿✿✿✿✿

uncertainty
✿✿✿

and
✿✿✿✿✿

where
✿✿

the
✿✿✿✿✿

model
✿✿

is
✿✿✿✿✿✿✿

diffusive
✿✿

(b).
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predicatbility-error

✿✿✿✿✿✿✿✿

covariance
✿✿

of
✿✿

the
✿✿✿✿✿

nature
✿✿✿✿✿✿✿

NPa
qN

T

✿✿✿

(of
✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

MPa
qM

T )
✿✿

is
✿✿

the
✿✿✿✿

blue
✿✿✿✿

(red)
✿✿✿✿✿

elipse.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

forecast-error
✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿

matrix
✿✿

is
✿✿

the
✿✿✿✿✿✿

orange
✿✿✿✿✿

elipse.

✿✿✿✿✿

Thus,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Πm
q+1 = P̃

p
q+1 −P

p
q+1✿✿✿✿✿✿✿✿✿✿

measures
✿✿✿✿✿✿

how
✿✿✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model 25

✿✿✿✿✿

should
✿✿✿

be
✿✿✿✿✿✿✿

modifed
✿✿✿

to
✿✿✿✿

find
✿✿✿

the
✿✿✿

one
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

nature.
✿✿✿✿

We
✿✿✿✿

think

✿✿✿

that
✿✿✿✿✿✿

Πm
q+1 ✿✿✿✿✿

could
✿✿✿

be
✿✿

a
✿✿✿✿✿✿✿

usefull
✿✿✿✿✿

proxy
✿✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

characterize
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿✿

flow-dependent
✿✿✿✿✿

part
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿

matrix.

✿✿✿✿

Note
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿

matrix
✿✿✿✿✿

Πm
q+1✿✿

is
✿✿✿✿✿✿✿✿✿

symmetric
✿✿✿✿

but
✿✿✿

not
✿✿✿✿✿✿✿✿

necessary

✿✿✿✿✿✿✿

positive.
✿✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿

under
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

assumption
✿✿✿✿✿✿✿✿

depicted
✿✿

in
✿✿✿✿✿

panel 30

✿✿✿

(b),
✿✿✿

we
✿✿✿✿

will
✿✿✿✿✿✿✿

assume
✿✿✿

that
✿✿✿✿✿✿

Πm
q+1✿✿

is
✿✿✿✿✿✿✿✿

positive.
✿✿✿✿

Note
✿✿✿✿✿

also
✿✿✿

that

✿✿✿✿✿

Πm
q+1 ✿✿

is
✿✿✿✿✿✿✿✿

different
✿✿✿✿

from
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix

✿✿✿✿✿

Pm
q+1:

✿✿

if
✿✿✿✿

there
✿✿

is
✿✿✿

no
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿✿

uncertainty,
✿✿✿✿

then
✿✿✿✿✿✿

Πm
q+1 ✿

is
✿✿✿✿

zero.

The covariance matrices for
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿

decomposition
✿

Eq. (17)

✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿

justified
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

decomposition
✿✿

of
✿

the forecast error 35

and
✿✿✿

that
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿

written
✿✿

as
✿✿✿✿

(see
✿

Eq. (A6)
✿✿

in
✿✿✿✿✿✿✿✿

Appendix
✿✿✿

A)

εfq+1 = ε̃pq+1 + εmq+1(X a
q ),

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(19)

✿✿✿✿✿

which
✿✿✿✿✿✿

makes
✿✿✿✿✿✿

appear
✿✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

error,
✿✿✿✿✿

εfq+1,
✿✿✿

as
✿

the pre-

dictability error appear more simple than
✿

of
✿✿✿✿

the
✿✿✿✿✿✿

nature,

✿✿✿✿✿✿✿✿✿✿

ε̃pq+1 =Nεaq ,
✿✿✿✿

plus
✿✿

a
✿✿✿✿

drift
✿✿✿✿✿✿✿✿✿

εmq+1(X a
q ).✿✿✿✿✿

Note
✿✿✿✿

that,
✿✿✿

the
✿✿✿✿✿✿✿

analysis

✿✿✿✿

state
✿✿✿✿

X a
q ✿✿✿✿✿✿

being
✿✿✿✿✿✿✿

known,
✿✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿

εmq+1(X a
q ) ✿✿

is

✿✿✿✿✿

easier
✿✿✿

to
✿✿✿✿✿✿✿

handle
✿✿✿✿✿

than
✿✿✿✿✿✿✿✿✿

εmq+1(X t
q )✿✿✿

in
✿✿

Eq. (10)
✿

,
✿✿✿✿✿✿

which

✿

is
✿✿✿✿✿✿✿✿

defined
✿✿✿✿✿

with
✿✿✿✿✿✿✿

respect
✿✿✿

to
✿✿✿✿

the
✿✿✿✿

true
✿✿✿✿✿

state
✿✿✿✿

X t
q✿✿✿✿✿

that
✿✿

is5

✿✿✿✿

never
✿✿✿✿✿✿✿

known
✿✿

in
✿✿✿✿✿✿✿✿

practice.
✿✿✿✿✿✿

Now,
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿

assuming
✿✿✿✿

that
✿✿✿

the

✿✿✿✿✿

errors
✿✿

in
✿

Eq. (19)
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

decorrelated
✿✿✿✿

and
✿✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿✿

model

✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

εmq+1(X a
q )✿✿✿

is
✿✿✿✿✿✿✿✿

unbiased
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(E
[
εmq+1(X a

q )
]
= 0),

✿✿✿✿

and
✿✿

of

✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

E

[
εmq+1(X a

q )
(
εmq+1(X a

q )
)T ]

=Qq+1,
✿✿

it
✿✿✿✿✿✿

results

✿✿✿

that
✿

the model-error covariance matrix , since they only10

rely on TL dynamics along the analysis trajectory while

✿✿✿✿✿✿✿✿✿✿✿

forecast-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿✿

also
✿✿✿✿✿✿

writes

P
f
q+1 = P̃

p
q+1 +Qq+1.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(20)

✿✿✿✿✿✿

Hence,
✿

the model error depends on the nature trajectory

from the unknown true state
✿✿✿✿✿✿✿✿

modelling
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

model-error15

✿✿✿✿✿✿✿✿✿

covariance
✿✿

as

Pm
q+1 ≈Πm

q+1 +Qq+1.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(21)

✿✿✿✿✿

allows
✿✿

to
✿✿✿✿✿✿✿

connect
✿✿✿

the
✿✿✿

two
✿✿✿✿✿✿✿✿✿✿✿

formulations Eq. (15)
✿✿✿

and
✿

Eq. (20)

✿✿

of
✿✿✿✿✿

P
f
q+1.

✿✿✿

In
✿✿✿✿

fact,
✿✿✿✿✿

while
✿

Eq. (15)
✿✿✿

and
✿

Eq. (20)
✿✿✿✿✿

result
✿✿✿✿

from

✿

a
✿✿✿✿✿✿✿✿✿✿✿

decorrelation
✿✿✿✿✿✿✿✿✿✿

assumption
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

errors
✿✿✿

in
✿

Eq. (10)
✿✿✿

and20

Eq. (19),
✿✿✿✿

and
✿✿✿✿✿✿✿

because
✿✿✿✿✿

Πm
q+1✿✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿

necessary
✿✿

a
✿✿✿✿✿✿✿✿✿

covariance

✿✿✿✿✿✿

matrix,
✿✿✿✿

then
✿✿✿✿✿✿✿✿✿

expression
✿✿✿

of
✿✿✿✿✿✿

P
f
q+1,

✿✿✿✿✿✿✿✿

proposed
✿✿

in
✿

Eq. (17),
✿✿

is

✿✿✿✿

more
✿✿✿✿

like
✿✿✿✿

that
✿✿

of
✿

Eq. (2.1)
✿✿✿✿✿

where
✿✿✿✿

there
✿✿

is
✿✿✿

no
✿✿✿✿✿✿✿✿✿✿✿

decorrelation

✿✿✿✿✿✿✿✿✿✿

assumption.

✿✿✿✿✿✿✿✿

Compared
✿✿✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

climatological
✿✿✿✿✿✿✿✿✿✿

modelling
✿✿✿✿

of
✿✿✿✿

the25

✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿

matrix,
✿✿✿

as
✿✿✿✿✿✿✿

usually
✿✿✿✿✿✿✿✿✿✿✿

encountered

✿✿

in
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilation,
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿

for
✿✿✿✿

Pm
✿✿

in
✿

Eq. (21)
✿✿

is
✿

a

✿✿✿✿✿✿✿✿✿✿✿✿✿

state-dependent
✿✿✿✿✿

model
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿✿

covariance.
✿✿✿✿

Note

✿✿✿

also
✿✿✿✿✿

that,
✿✿✿

in
✿✿✿✿✿

panel
✿✿✿✿

(b),
✿✿✿✿✿✿✿✿✿

assuming
✿✿✿✿

that
✿✿✿✿✿

there
✿✿

is
✿✿✿✿

no
✿✿✿✿

bias,

✿✿✿✿

while
✿✿✿✿✿

there
✿✿

is
✿✿✿✿

one,
✿✿✿✿✿

leads
✿✿✿

to
✿✿✿✿✿✿✿

interpret
✿✿✿

the
✿✿✿✿

bias
✿✿✿

as
✿

a
✿✿✿✿✿✿✿

residual30

✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿

whose
✿✿✿✿✿✿✿✿✿

magnitude
✿✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿

from
✿✿✿

the
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✿✿✿✿✿✿✿✿✿✿

climatology. Hence, considering the approximation that the

analysis errorand the model error are decorrelated (which is

not true but it is a common assumption in estimation theory)

a practical estimation
✿✿✿

Pm
✿✿✿✿✿✿✿

modeled
✿✿✿

by
✿

Eq. (21)
✿

is
✿✿✿

an
✿✿✿✿✿

hybrid35

✿✿✿✿✿

model
✿✿✿✿

that
✿✿✿✿✿✿✿

balance
✿✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿

error
✿✿✿

of
✿✿✿✿

the
✿✿✿

day
✿✿✿✿✿

with
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿

climatological
✿✿✿✿✿✿

effect
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿

error.
✿✿✿

In
✿✿✿✿✿✿✿✿

particular,
✿✿

if
✿✿✿

the

✿✿✿✿✿

initial
✿✿✿✿

state
✿✿

is
✿✿✿✿✿✿✿✿

perfectly
✿✿✿✿✿✿

known,
✿✿✿✿✿

then
✿✿✿✿✿

Πm
q+1✿✿

is
✿✿✿✿✿

zero,
✿✿✿

and
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

model-error
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

climatological
✿✿✿✿✿✿✿

residual

✿✿✿✿

term
✿✿✿✿✿✿

Qq+1:
✿✿✿

the
✿✿✿✿✿✿

source
✿✿✿

of
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿✿✿✿✿✿✿

corresponds
✿✿

to40

✿

a
✿✿✿✿✿✿

forcing
✿✿✿✿✿

term
✿✿✿✿

that
✿✿✿✿✿✿✿

appears
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dynamics
✿✿

of
✿✿✿✿

the
✿✿✿✿✿

model

✿✿✿✿

error
✿✿✿✿

(see e.g.
✿✿

Eq.
✿✿✿

(4)
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿

Nicolis (2003)
✿

)
✿

;
✿✿✿✿

this
✿✿✿✿✿

source
✿✿✿✿✿

term
✿

is

✿✿✿

not
✿✿✿✿✿✿✿

explored
✿✿✿✿

here
✿✿✿✿

and
✿✿

its
✿✿✿✿✿✿✿✿✿✿✿

contribution
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

incorporated
✿✿

in
✿✿

Q

✿✿✿✿✿

whose
✿✿✿✿✿✿✿✿✿

magnitude
✿✿✿✿✿✿✿

depends
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿

forecast
✿✿✿✿✿

time.

✿✿✿✿

Note
✿✿✿✿

that
✿✿✿✿

the
✿✿✿✿✿✿✿✿

modeling
✿

Eq. (21)
✿✿

for
✿✿✿✿

Pm
✿✿✿

is
✿✿✿✿✿✿✿

actually 45

✿✿✿✿✿✿✿✿

supported
✿✿✿✿

by
✿✿✿

at
✿✿✿✿✿

least
✿✿✿✿✿

one
✿✿✿✿✿

real
✿✿✿✿✿✿✿✿✿✿✿

experiment.
✿✿✿

In
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

of
✿✿

a
✿✿✿✿✿✿✿✿✿

chemical
✿✿✿✿✿

tracer
✿✿✿✿✿✿

using
✿✿

a
✿✿✿✿✿✿✿

Kalman
✿✿✿✿✿

filter,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ménard et al. (2000)
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ménard and Chang (2000)

✿✿✿✿✿✿✿✿

(M2000s)
✿✿✿✿✿

have
✿✿✿✿✿✿✿✿

observed
✿

a
✿✿✿✿

loss
✿✿✿

of
✿✿✿✿✿✿✿✿

variance:
✿✿✿✿

the
✿✿✿✿✿✿✿

variance

✿✿✿

they
✿✿✿✿✿✿✿✿✿✿

forecasted
✿✿✿✿

was
✿✿✿✿✿✿

lower
✿✿✿✿

than
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

theoretical
✿✿✿✿✿✿✿✿

variance 50

✿✿✿

that
✿✿✿✿

was
✿✿✿✿✿✿✿✿✿

transported
✿✿✿

by
✿✿✿

the
✿✿✿✿

flow
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

advection
✿✿✿✿✿✿✿

equation

✿✿✿✿✿✿✿✿✿✿✿

(Cohn, 1993).
✿✿✿✿✿

Said
✿✿✿✿✿✿✿✿✿✿

differently,
✿✿✿

in
✿✿✿✿✿

their
✿✿✿✿✿✿✿✿✿✿✿

experiment,
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predicability-error
✿✿✿✿✿✿✿

variance
✿✿✿✿✿✿✿✿✿

computed
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical

✿✿✿✿✿

model
✿✿✿✿

was
✿✿✿✿✿

lower
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predicability-error
✿✿✿✿✿✿✿✿

variance
✿✿

of
✿✿✿

the

✿✿✿✿✿

nature
✿✿✿✿

they
✿✿✿✿✿✿✿✿✿✿✿

considered,
✿✿✿✿

and
✿✿✿✿✿✿✿

M2000s
✿✿✿✿✿✿✿

related
✿✿✿

the
✿✿✿✿✿

loss
✿✿

of 55

✿✿✿✿✿✿✿

variance
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

discretization
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

continuous
✿✿✿✿✿✿✿✿✿

dynamics.

✿✿✿✿

This
✿✿✿

loss
✿✿✿

of
✿✿✿✿✿✿✿

variance
✿✿

is
✿✿✿✿

also
✿✿✿✿✿✿✿✿✿✿

encountered
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿✿

considering

✿✿

an
✿✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿✿

forecasting
✿✿✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

uncertainty,
✿✿✿

as
✿✿✿✿✿

latter

✿✿✿✿✿✿✿✿

illustrated
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿

part
✿✿✿✿

(see
✿✿✿✿✿✿✿

Section
✿✿✿✿✿

4.2.1)
✿✿✿✿

and
✿✿✿

also

✿✿✿✿✿✿✿

observed
✿✿✿

in
✿✿✿

3D
✿✿✿✿✿✿✿

domain
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Ménard et al., 2020). 60

✿✿✿✿✿✿✿✿✿✿✿✿

Accompagning
✿✿✿

the
✿✿✿✿

loss
✿✿✿

of
✿✿✿✿✿✿✿

variance
✿✿✿✿✿✿✿

M2000s
✿✿✿✿

also
✿✿✿✿✿✿✿✿

observed

✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿✿

they
✿✿✿✿✿✿✿

predict
✿✿✿✿✿✿

where
✿✿✿✿✿

larger,

✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿✿

diffusive
✿✿✿✿✿✿

process
✿✿✿✿

that
✿✿✿✿✿

gives
✿✿✿

rise
✿✿

to
✿✿✿✿

the
✿✿✿

loss

✿✿

of
✿✿✿✿✿✿✿✿

variance.
✿✿✿

To
✿✿✿✿✿

cope
✿✿✿✿

with
✿✿✿✿

the
✿✿✿✿

loss
✿✿✿

of
✿✿✿✿✿✿✿✿

variance,
✿✿✿✿✿✿✿

M2000s

✿✿✿✿✿✿✿

proposed
✿✿✿

to
✿✿✿✿✿✿✿

correct
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿✿

variance
✿✿✿✿

(the 65

✿✿✿✿✿✿✿

diagonal
✿✿✿

of
✿✿✿✿

Pp
✿✿

in
✿✿

Eq. (14)
✿

)
✿✿✿

so
✿✿✿✿

that
✿✿✿

its
✿✿✿✿✿✿✿✿✿✿

magnitude
✿✿

is

✿✿✿✿✿✿✿✿✿

conserved,
✿✿

as
✿✿

it
✿✿

is
✿✿✿✿✿✿✿✿

supposed
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

theory.

✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿✿✿✿

renormalization
✿✿✿✿✿✿✿✿✿

introduced
✿✿✿

an
✿✿✿✿✿✿✿

increase
✿✿✿

of
✿✿✿✿✿✿✿✿✿

correlation

✿✿✿✿✿

length
✿✿✿✿

that
✿✿✿✿

was
✿✿✿✿✿✿✿✿

corrected
✿✿✿

by
✿✿

a
✿✿✿✿✿

Schur
✿✿✿✿✿✿✿

product
✿✿✿

of
✿✿✿

the
✿✿✿✿

new

✿✿✿✿✿✿✿✿✿

covariances
✿✿✿✿✿

with
✿✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿

homogeneous
✿✿✿✿✿✿✿✿

isotropic
✿✿✿✿✿✿✿✿✿✿

correlation 70

✿✿✿✿✿

model
✿✿✿✿✿✿

whose
✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿✿✿✿✿

determined
✿✿

so
✿✿✿✿

that
✿✿✿

the

✿✿✿✿

total
✿✿✿✿✿✿✿✿✿

covariance
✿✿

is
✿✿✿✿✿✿✿✿✿

conserved
✿✿✿✿✿

over
✿✿✿✿✿

time.
✿✿✿✿✿✿✿

Indeed,
✿✿✿✿✿✿✿

M2000s

✿✿✿✿✿✿✿✿✿

introduced
✿

a
✿✿✿✿✿✿✿✿

modeling
✿

of the model-error covariance matrix

is given by

Pm
q+1 ≈Ntq+1←tq,Xa

q
Pa

q

(
Ntq+1←tq,Xa

q

)T
− 75

Mtq+1←tq,Xa
q
Pa

q

(
Mtq+1←tq,Xa

q

)T
,

that is

Pm
q+1 ≈P

f
q+1 −P

p
q+1.

✿✿✿✿✿✿

similar
✿✿

to
✿✿✿

the
✿

Eq. (21)
✿✿✿✿✿✿✿✿

introduced
✿✿✿✿✿

here,
✿✿✿✿✿✿✿✿

although
✿✿✿✿

they
✿✿✿

did

✿✿✿

not
✿✿✿✿✿✿✿✿

explicitly
✿✿✿✿✿✿✿✿

formalize
✿✿

it
✿✿✿

in
✿✿✿

this
✿✿✿✿✿

way:
✿✿✿✿

their
✿✿✿✿✿✿✿✿

objective
✿✿✿✿

was

✿✿✿

not
✿✿

to
✿✿✿✿✿✿✿✿✿✿

characterize
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix,
✿✿✿

but
✿✿

to

✿✿✿✿✿✿

correct
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

predictability
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿✿✿

that
✿✿✿✿

they

✿✿✿✿✿✿✿✿✿

considered
✿✿✿✿✿✿✿✿

erroneous
✿✿✿✿✿

from
✿✿

a
✿✿✿✿✿✿✿✿✿

theoretical
✿✿✿✿✿

point
✿✿✿

of
✿✿✿✿✿

view.
✿✿

In

✿✿✿✿✿✿✿✿

particular,
✿✿✿✿✿✿✿✿

M2000s
✿✿✿✿

have
✿✿✿✿✿✿✿✿

observed
✿✿✿✿

that
✿✿✿✿

the
✿✿✿✿✿✿✿

Kalman
✿✿✿✿✿

filter,5

✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿

corrected
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿✿✿✿

covariance,
✿✿✿✿✿✿✿

required

✿✿✿

less
✿✿✿✿✿✿✿✿

residual
✿✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿

Q
✿✿✿✿✿

(see
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ménard et al. (2000),

✿✿✿✿✿✿

Section
✿✿✿

5),
✿✿✿✿

and
✿✿✿✿✿✿✿✿

improved
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

analysis-error
✿✿✿✿✿✿✿

statistics
✿✿✿✿

(see

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ménard et al. (2000)
✿

,
✿✿✿✿

Fig.
✿✿✿

11):
✿✿✿

the
✿✿✿✿

flow
✿✿✿✿✿✿✿✿✿

dependent
✿✿✿✿✿✿✿✿

modeling

Eq. (21)
✿✿

of
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿

error
✿✿

is
✿✿

in
✿

a
✿✿✿✿✿

better
✿✿✿✿✿✿✿✿✿

agreement
✿✿✿✿

with
✿✿✿

the10

✿✿✿

real
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿✿✿✿✿✿

uncertainty.

Of course,

✿✿

At
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿

level,
✿✿✿✿✿

Πm
q+1✿✿

in
✿

Eq. (18) is still quite

difficult to solve: for the forecast-error covariance matrix

✿✿✿✿✿✿

appears
✿✿✿✿✿✿

easier
✿✿

to
✿✿✿✿✿✿

obtain
✿✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿

covariance15

✿✿✿✿✿

matrix
✿✿✿✿✿

Pm
q+1✿✿✿

as
✿✿✿✿✿✿

defined
✿✿✿

by
✿

Eq. (6):
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error

✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿

matrices
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿✿

P
p
q+1 ✿

(Eq. (14))
✿✿✿✿

and

✿✿

of
✿✿✿

the
✿✿✿✿✿✿

nature
✿✿✿✿✿

P̃
p
q+1✿✿

(Eq. (16))
✿✿✿✿

are
✿✿✿✿✿

based
✿✿✿✿✿

only
✿✿✿

on
✿✿✿

the
✿✿✿

TL

✿✿✿✿✿✿✿

forecasts
✿✿✿✿✿

with
✿✿✿✿✿✿✿

respect
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿

known
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿

state
✿✿✿✿

X a
q ,

✿✿✿✿

while
✿✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

εmq+1(X t
q )✿(Eq. (4)

✿

)
✿✿✿✿✿✿✿

depends
✿✿✿

on
✿✿✿

the20

✿✿✿

true
✿✿✿✿✿

state
✿✿✿

X t
q✿✿✿✿

that
✿✿✿

is
✿✿✿✿✿

never
✿✿✿✿✿✿✿

known.
✿✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿✿✿✿✿

computing

✿✿✿✿

P̃
p
q+1✿✿✿✿

and
✿✿✿✿✿✿

P
p
q+1 ✿✿✿✿✿✿✿

remains
✿

a
✿✿✿✿✿✿✿✿✿

challenge.
✿✿✿✿✿

First
✿✿

of
✿✿✿

all, the na-

ture dynamics is either unknown or
✿

N
✿✿

is
✿✿✿✿✿✿✿✿

generally
✿✿✿✿✿✿✿✿

unknown

e.g.
✿✿✿✿✿✿✿

primitive
✿✿✿✿✿✿✿✿

equations
✿✿✿✿

are
✿✿✿✿

only
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿✿

approximation
✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

geophysical
✿✿✿✿

fluid
✿✿✿✿✿✿✿✿✿

dynamics.
✿✿✿✿

Then, when the nature consists25

in PDEs, no exact solution exists which is easy to handle or

interesting enough for applications. For numerical studies,

✿✿✿✿✿✿✿✿

dynamics
✿✿

is
✿✿✿✿✿✿✿

(assume)
✿✿✿✿✿✿

known
✿

e.g.
✿✿✿✿✿

when
✿

it
✿✿

is
✿✿✿✿✿

given
✿✿✿

by
✿✿✿✿✿

PDEs,

✿✿✿✿

there
✿✿

is
✿✿✿✿✿

often
✿✿✿

no
✿✿✿✿✿✿✿✿

analytical
✿✿✿✿✿✿✿✿

solution
✿✿✿✿✿

which
✿✿✿✿✿✿

means
✿✿✿✿

that
✿✿✿

the

✿✿✿✿✿✿✿

problem
✿✿✿✿

must
✿✿✿

be
✿✿✿✿✿

solved
✿✿✿✿✿✿✿✿✿✿✿

numerically:
✿✿

as
✿✿✿✿

M
✿

is
✿✿✿✿✿✿✿✿

presicely
✿✿✿

the30

✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿✿✿✿✿✿

approximation
✿✿

of
✿✿✿

N ,
✿✿✿✿

the
✿✿✿✿

only
✿✿✿✿

way
✿✿✿

to
✿✿✿✿✿✿✿

compute

✿✿✿✿

P̃
p
q+1✿✿✿

is
✿✿

to
✿✿✿✿✿✿✿✿✿

introduce
✿

a high order numerical approxima-

tion N̂ of the nature dynamicscan be considered, with the

hope that the numerical errors are ,
✿✿✿✿

N̂ ,
✿✿✿✿✿

whose
✿✿✿✿✿✿✿✿✿

numerical

✿✿✿✿

error
✿✿

is
✿

much smaller than those
✿✿

the
✿✿✿✿

one
✿

of M. But the35

major limitation is
✿✿✿✿

And
✿✿✿✿✿✿✿

finally,
✿✿

it
✿✿✿✿✿✿✿

remains
✿✿✿

to
✿✿✿✿✿✿✿✿

compute

✿✿✿✿

P̃
p
q+1✿✿✿✿

and
✿✿✿✿✿✿

P
p
q+1.

✿✿✿✿

But
✿

due to the large size of the numer-

ical state encountered in geophysics:
✿✿✿✿✿✿✿

practice,
✿

the direct

computation of or is impossiblein practice
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

P̃
p
q+1 ≈ N̂Pa

qN̂
T

✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

P
p
q+1 =MPa

qM
T

✿

is
✿✿✿✿✿✿✿✿✿✿

impossible, even on supercomput-40

ers, which are only able to handle a few numerical states

at full resolution
✿

:
✿✿

it
✿✿

is
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

limitation
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿

motivated
✿✿✿

the

✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿

estimation
✿✿

to
✿✿✿✿✿

solve
✿✿✿✿

the
✿✿✿✿✿✿✿

Kalman
✿✿✿✿✿

filter
✿✿✿✿✿✿✿✿

equations

✿✿✿✿✿✿✿✿✿✿✿✿✿

(Evensen, 2009).

We now consider an alternative for calculating the 45

temporal evolution
✿✿

To
✿✿✿✿✿✿✿✿

overcome
✿✿✿✿

the
✿✿✿✿✿

above
✿✿✿✿✿✿✿✿✿✿✿

limitations,
✿

a

✿✿✿✿

high
✿✿✿✿✿

order
✿✿✿✿✿✿✿✿✿✿✿✿

discretization
✿✿✿̂

N
✿✿

of
✿✿✿

N
✿✿✿✿

will
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿

introduced
✿✿

in

✿✿

the
✿✿✿✿✿✿

latter
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿✿✿

simulation
✿✿

in
✿✿✿✿✿✿

place
✿✿✿

of
✿✿✿✿

N ,
✿

e.g.
✿

in

✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿

estimation
✿

of the covariance matrices
✿✿✿✿✿✿

matrice

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

P̃
p
q+1 ≈ N̂Pa

qN̂
T
✿✿✿✿✿

only
✿✿✿✿✿

used
✿✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

validation.
✿✿✿✿

But
✿✿✿

the 50

✿✿✿✿✿✿✿✿✿✿

computation
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

P̃
p
q+1 =NPa

qN
T
✿✿✿✿

and
✿✿✿✿✿

P
p
q+1✿✿

is
✿✿✿✿✿✿✿✿✿✿

investigated

✿✿✿✿✿✿

through
✿✿✿

an
✿✿✿✿✿✿✿✿✿

alternative
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿✿

estimation,
✿✿

as
✿✿✿✿

now

✿✿✿✿✿✿✿✿✿

introduced
✿✿

in
✿✿✿

the
✿✿✿

next
✿✿✿✿✿✿✿

section.
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2.3 Parametric dynamics for VLATcov models

The parametric formulation of covariance evolution can be 55

stated
✿✿✿✿✿✿✿

provides
✿

a
✿✿✿✿✿✿✿✿✿✿

framework
✿✿✿✿✿✿

where
✿✿

a
✿✿✿✿✿✿✿

limited
✿✿✿✿✿✿✿

number
✿✿

of

✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿✿✿

(based
✿✿✿

on
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

continuous
✿✿✿✿✿✿

PDE)
✿✿

of

✿✿

the
✿✿✿✿✿✿

nature
✿✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿✿

computed.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

parametric
✿✿✿✿✿✿✿✿✿✿

formulation

✿✿✿✿✿

works
✿

as follows. If P(P) denotes a covariance model

characterized by a set of parameters P = (pi)i∈I , then 60

there exists a set Pf
t (Pa) featuring the forecast (the

analysis) error
✿✿✿✿✿✿✿

featuring
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

forecast-error covariance matrix

so that P(Pf
t )≈P

f
t (

✿

;
✿✿✿✿

and
✿✿✿✿

there
✿✿

is
✿✿

a
✿✿✿

set
✿✿✿

Pa
✿✿✿✿✿✿✿✿

featuring
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿

analysis-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿

so
✿✿✿

that
✿

P(Pa)≈Pa). In re-

verse, if the dynamics of the parameters Pf
t is known, then 65

P(Pf
t ) approximates the dynamics of P

f
t without using the

full matrix computation. This approach constitutes the so-

called parametric Kalman filter (PKF) approximation, intro-

duced by Pannekoucke et al. (2016, 2018a) (P16, P18).

The family of covariance models parametrized by the 70

variance
✿✿✿✿✿✿✿

Variance
✿

field and the local anisotropic tensors
✿✿✿✿

Local

✿✿✿✿✿✿✿✿✿

Anisotropic
✿✿✿✿✿✿✿

Tensors, the VLATcov models, are of particu-

lar interest (?)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pannekoucke, 2020): their parameters are di-

rectly related to the grid-point statistics of the error field ε.

When the error is modeled as an unbiased random differen- 75

tial field, E [ε] = 0, the variance at a point x is written

V (x) = E
[
ε(x)2

]
. (22)

The anisotropy of the correlation function ρ(x,y) =
1√
VxVy

E [ε(x)ε(y)] is derived
✿✿✿✿✿✿

defined, from the second order

expansion 80

ρ(x,x+ δx)≈ 1− 1

2
||δx||2gxg(x)

✿✿✿

, (23)

by the local metric tensor g(x). An interesting result is that

the metric tensor can be obtained from the error as

gij(x) = E

[
∂xi

(
ε√
V

)
∂xj

(
ε√
V

)]
, (24)

(see e.g. (?)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pannekoucke, 2020) for details). A VLATcov

model is then a covariance model parametrized by V and g,

that is P(V,g).5

For instance, the diffusion operator of Weaver and Courtier

(2001) is an example of a VLATcov model: the local

anisotropic tensors are related to the local diffusion tensors,

ν, from

νx =
1

2
g−1
x

, (25)10

where the superscript −1 denotes the matrix inverse operator.

Eq. (25) holds under the local homogeneous assumption, that

is when the spatial derivatives are negligible.

Following Pannekoucke et al. (2018a), the parametric dy-

namics of a VLATcov model is deduced from the dynamics15

of the errors from

∂tV = 2E [ε∂tε] , (26a)

∂tgij = ∂t

(
E

[
∂xi

(
ε√
V

)
∂xj

(
ε√
V

)])
, (26b)

where the expectation operator and the temporal derivative

commute, ∂tE [·] = E [∂t·], as used in Eq. (26a). Therefore,20

the dynamics of the VLATcov model is written P(Vt,gt) or

P(Vt,νt) which are equivalent.

Now, we apply the parametric covariance dynamics for

model-error covariance estimation.

2.4 The model-error VLATcov approximation25

✿✿✿✿

From
✿✿✿✿✿

now,
✿✿✿

we
✿✿✿

will
✿✿✿✿✿✿✿

assume
✿✿✿

that
✿✿✿✿

Πm
✿✿

is
✿✿

a
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix,

✿✿✿

and
✿✿✿✿

that
✿✿✿✿

there
✿✿

is
✿✿✿

no
✿✿✿✿✿✿✿

residual
✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿

Q
✿✿

so
✿✿✿

to
✿✿✿✿✿

focus
✿✿

on

✿✿✿

Πm
✿✿✿✿✿✿

alone,
✿✿

so
✿✿✿

that
✿

Pm
q+1 ≈Πm

q+1,
✿✿✿✿✿✿✿✿✿✿✿✿

(27)

✿✿✿✿

leads
✿✿

to
✿✿✿✿✿✿

model
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

forecast-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿

as30

P
f
q+1 ≈P

p
q+1 +Πm

q+1.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(28)

With the notations of the previous paragraph, a set Pp
t also

exists for the predictability-error covariance matrix leading

to the approximation P(Pp
t )≈P

p
t .

If the dynamics of the parameters Pp
t is known, then35

starting from the initial condition Pp
0 = Pa it is possible to

approximately determine P
p
t without solving Eq. (14)

✿✿✿

and

Eq. (16) explicitly.

Hence, thanks to the parametric dynamics in the case

where the nature is known from its partial derivative 40

equation
✿✿✿✿✿✿✿✿

equations, a new method to compute the model-

error covariance matrix can be proposed as follows. By con-

sidering the TL dynamics for the
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model
✿✿✿

and
✿✿✿

for

✿✿

the
✿

natureand the model , Equation (26) provides a way to

compute both the forecast error covariance matrix Pf , , and 45

the predictability error covariance matrix
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error

✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿

matrices Pp ,
✿

(Eq. (14)
✿

),
✿✿✿✿

and
✿✿✿

P̃p
✿

(Eq. (16)
✿

) ; from

which the model-error covariance matrix
✿✿✿✿✿

model Eq. (27)
✿

of

Pm can be diagnosed from
✿✿✿✿✿✿✿✿

evaluated. For the covariance

model based on the diffusion equation, the model-error vari- 50

ance diagnosed from Eq. (18) is the difference

V m = V f Ṽ p −V p, (29a)

where V f (
✿✿

Ṽ p
✿✿✿✿

and V p ) denotes the forecast-error (
✿✿✿✿✿

denote

✿✿

the
✿

predictability-error ) variance field
✿✿✿✿✿✿✿

variance
✿✿✿✿✿

fields
✿✿

of
✿✿✿

the

✿✿✿✿✿

nature
✿✿✿✿

and
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿

model. The field of the metric 55

tensor of the model-error
✿✿✿✿✿

model
✿✿✿✿✿

error is approximately given

by

gm =
1

V m

(
V fgf Ṽ pg̃p −V pgp

)
, (29b)
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where gf (
✿✿̃

gp
✿✿✿✿✿

and
✿

gp ) denotes the forecast-error

(predictability-error) metric tensor field
✿✿✿✿✿✿✿✿✿

respectively
✿✿✿✿✿✿

denote 60

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

predictability
✿✿✿✿

error
✿✿✿✿✿✿

metric
✿✿✿✿✿

tensor
✿✿✿✿✿

fields
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

nature
✿✿✿

and

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model (see Appendix B for details).

In the next section we apply the parametric model-error

dynamics to a transport equation.

3 Parametric characterization of the model error 65

covariance for the one-dimensional advection

equation

The transport equation of a passive scalar c by the wind

u(t,x) is written as

∂tc+u∂xc= 0, (30) 70

and takes the place of the nature dynamics Eq. (1). Note that

dynamics Eq. (30) is linear, meaning that the tangent-linear

dynamics is also given by Eq. (30). The advection equation

has two aspects. The first side is given by the PDE Eq. (30)

which is referred to as the Euler point of view. The other side

is the analytico-geometric perspective known as the method

of characteristics (see e.g. (Boyd, 2001, chap. 14)) where the

dynamics can be solved as a local system of ordinary differ-5

ential equations, given by

dx

dt
= u, (31a)

dc

dt
= 0. (31b)

Each system Eq. (31) describes the evolution of the couple

(x(t), c(t)) starting from an initial position x(0) where the10

scalar value is c(0,x(0)). At the geometric level, Eq. (31)

remains to compute the trajectory of a mobile point of co-

ordinate x(t), the characteristic curve, solution of the dy-

namics Eq. (31a), and transporting the scalar c whose value

c(t) coincide with the field value c(t,x(t)). The transported15

value c(t) evolves following Eq. (31b). In the present situa-

tion, since the right hand side of Eq. (31b) is null, c is con-

served along the curve. This second point of view is referred

to as the Lagrangian description for the transport.

Two discretization methods are interesting to study for20

the transport equation: the finite difference approach and the

semi-Lagrangian method resulting from the Lagrangian in-

terpretation of Eq. (30).

The aim of this section is to detail the model-error covari-

ance matrix for both schemes. This theoretical part is orga-25

nized as follows. The error covariance parametric dynamics

for the nature is first described considering the covariance

model based on the diffusion equation, then both finite dif-

ference and semi-Lagrangian schemes are introduced with

their particular parametric dynamics.30

3.1 PKF dynamics for the linear advection equation

To describe the time evolution of the forecast error

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿

covariance matrix, Eq. (16), it is neces-

sary to detail what is the TL dynamics , , for the linear trans-

port, Eq. (30). Since this transport dynamics is linear, the35

error evolves according to the same dynamics, and the TL

dynamics can be written as

∂tε
f ε̃p +u∂xε

f ε̃p = 0. (32)

The PKF approximation of the forecast-error covariance ma-

trix, relies on the dynamics of the variance and of the diffu- 40

sion fields deduced from Eq. (26). The equation for the vari-

ance is computed from Eq. (26a) by replacing the trend by

the TL dynamics Eq. (32), so that

∂tV
f Ṽ p = 2E

[
εf (−u∂xε̃

p)
]
=−2uE [ε̃p∂xε̃

p] . (33)

From ∂xε
f 2 = 2εf∂xε

f
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

∂x(ε̃
p)2 = 2ε̃p∂xε̃

p
✿

and by the com- 45

mutativity between the expectation operator and the spatial

derivative, the variance dynamics becomes

∂tV
f Ṽ p = 2E [ε̃p (−u∂xε̃

p)] =−u∂xE
[
(ε̃p)

2
]
. (34)

By using the definition of the variance Eq. (22), it results that

the dynamics for the variance can be stated as 50

∂tV
f Ṽ p =−u∂xV

f Ṽ p. (35)

The computation of the metric dynamics Eq. (26b) is simi-

lar to the above computation made for the variance dynamics,

and is detailed in P16 and P18 where the interested reader is

referred to. It results that the PKF evolution for the nature is 55

written

∂tV
f Ṽ p +u∂xV

f Ṽ p = 0, (36a)

∂tν
f ν̃p +u∂xν

f ν̃p = (2∂xu)ν
f ν̃p. (36b)

Note that a similar system has been first obtained, in data

assimilation, by Cohn (1993) (see their Eq. (4.30a) and 60

Eq.(4.34) when written without
✿✿✿✿✿✿✿✿

stochastic model error).

From Eq. (36), it results that the variance and the diffusion

are independent quantities. The variance is conserved, while

it is transported by the wind. The diffusion is not only trans-

ported,
✿✿✿

but it is also modified by the source term (2∂xu)ν
f

65

✿✿✿✿✿✿✿✿

(2∂xu)ν̃
p which results from the deformation of correlations

by the gradient of the flow u: the diffusion tensor is not con-

served by the flow.

Hence, in this sub-section, the forecast-error covariance

dynamics
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predicability-error
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿

nature 70

Eq. (16) has been computed for the linear transport Eq. (30)

and corresponds to the time integration of the un-coupled

system Eq. (36) starting from prescribed analysis error

✿✿✿✿✿✿✿✿✿✿✿

analysis-error variance and diffusion tensor fields.

The finite difference scheme is now considered as a first 75

numerical integration method for Eq. (30), with the deriva-

tion of the predictability-error covariance matrix.



TEXT: TEXT 9

3.2 Finite difference scheme and its equivalent PKF

dynamics

When the velocity field u is positive (which is assumed from

now without loss of generality), a conditionally stable dis-

cretization scheme is given by the Euler-upwind scheme,

cq+1
i − cqi

δt
=−ui

cqi − cqi−1
δx

, (37)5

Stability is assured as long as the CFL condition

δx/Max
x

|u|< δt
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

δt < δx/Max
x

|u| is satisfied. Moreover the

scheme is consistent since in the limit of small δx and δt,
the dynamics Eq. (30) is recovered from the discrete equa-

tion Eq. (37). Thanks to the consistency and the stability,10

the equivalence theorem of Lax and Richtmyer (1956) as-

sures to the convergence of Eq. (37) toward the true solution.

Equation Eq. (37) stands as an illustration of model dynamics

Eq. (3).

While the numerical solution computed with the aid of a15

given numerical scheme can converge toward the true so-

lution as δt→ 0 and δx→ 0, when δt and δx are of finie

✿✿✿✿

finite
✿

amplitude, the numerical solution often differs from

the theoretical one. Actually, there exists another partial dif-

ferential equation which offers a better fit to the numerical20

solution and highlithgs
✿✿✿✿✿✿✿✿

highlights the properties of the nu-

merical scheme (Hirt, 1968): the consistency, the stability as

well as the dissipative and dispersive nature of the numer-

ical scheme can be deduced trom
✿✿✿✿

from
✿

the so-called modi-

fied equation (Warming and Hyett, 1974). Hence, while it is25

supposed to solve Eq. (30) the numerical solution computed

from Eq. (37) is actually the solution of the modified equa-

tion.

More precisely, if C
✿

C
✿✿✿

denotes a smooth

function solution of the iterations Eq. (37) with30

C(qδt, iδx) = Cq
i✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

C(qδt, iδx) = Cq
i , then the modified

equation is the partial differential equation verified by C

✿✿

C and at a given order of precision in δt and δx. Here, it

is straightforward to show that at order O(δt2, δx2), the

partial differential equation best fitted by C is given by35

(see Appendix C)

∂tC +U∂xC = κ∂2
xC, (38a)

where

U = u− δt

2
∂tu+

δt

2
u∂xu (38b)

and40

κ=
u

2
(δx−uδt) (38c)

are two functions of t and x.

Compared with the nature Eq. (30), the modified equation

that best fits the Euler-upwind numerical scheme Eq. (37)

presents a correction of the wind which depends on the trend 45

∂tu and the self advection u∂xu of the wind u. The mag-

nitude of the correction scales as δt and is null at the limit

δt→ 0. But this is not the only modification of the dynam-

ics, as a more critical difference emerges from the numerical

discretization: a diffusion term whose magnitude depends on 50

the CFL number uδt/δx. In particular, the diffusion coeffi-

cient is negative when the CFL number is larger than one.

The diffusion breaks the conservation property of the initial

dynamics Eq. (30). This example shows the importance of

the modified equation: this provides a way to understand and 55

characterize the defects due to the numerical resolution. In

one dimension, for evolution equation, this can be diffusive

processes (associated with derivatives of even order) or dis-

persive processes (associated with derivatives of odd order).

From the PKF point of view, the modified equation is cru- 60

cial since it converts a discrete dynamics into a partial dif-

ferential equation, which appeared from P16 and P18, much

simpler to handle when considering error covariance dynam-

ics. Thanks to the modified equation Eq. (38), it is now pos-

sible to compute the TL evolution of the predictability error 65

for the Euler-upwind scheme, which can be expressed as

∂tε
p +U∂xε

p = κ∂2
xε

p. (39)

Equations of the PKF forecast can be computed under a

similar derivation as in the above Section 3.1. To simplify

the computation workflow, a splitting method has been intro- 70

duced in P16 and P18. Due to the diffusion process appear-

ing in Eq. (39), the PKF formulation faces a closure issue for

which a closure scheme has been successfully proposed in

P18, the Gaussian closure. The interested reader is referred

to P18 for the details. Note that an alternative to the Gaus- 75

sian closure can be deduced from the data through machine-

learning (?)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pannekoucke and Fablet, 2020). Hence, the re-

sulting dynamics for the parameter of the predictability-error

covariance model is given by

80

∂tV
p +U∂xV

p =−V pκ

νp
+κ∂2

xV
p − κ(∂xV

p)
2

2V p
(40a)

∂tν
p +U∂xν

p = (2∂xU)νp+

κ∂2
xν

p +2κ− 2(∂xν
p)

2

νp
κ+

∂xκ∂xν
p − 2∂2

xV
p

V p
κνp+

∂xV
p

V
κ∂xν

p − 2∂xV
p

V p
νp∂xκ+

2(∂xV
p)

2

V p2
κνp (40b)

Compared with the PKF dynamics of the nature Eq. (36),5

the PKF for the Euler-upwind scheme gives rise to additional

terms which result from the numerical diffusion of magni-

tude κ. Moreover, this time, the PKF for the Euler-upwind

scheme presents a coupling between the variance and the
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diffusion, the coupling being a consequence of the numer-10

ical diffusion only. Note that a coupling between the vari-

ance and the correlation scale also appeared in Eq. (4.30a)

and Eq. (4.34) of Cohn (1993), but without a link to the dis-

cretization scheme.

The model-error covariance matrix,
✿

Eq. (27),
✿

associated15

with the Euler-upwind scheme can be deduced from the

forecast and the predictability error
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿

co-

variance matrix approximations: starting from the initial

analysis-error variance and diffusion field, integration of the

parametric forecast-error (predictability-error) covariance20

equation
✿✿✿✿✿✿✿✿✿✿✿✿✿

parametric-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿✿

equations
✿✿

of
✿✿

the
✿✿✿✿✿✿

nature,

Eq. (36)(
✿

,
✿✿✿✿

and
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿✿✿✿✿

discretization,
✿

Eq. (40))

provides the forecast-error (
✿

,
✿✿✿✿✿✿✿

provides
✿✿✿

the predictability-error

) variance V f and diffusion νf (
✿✿✿✿✿✿✿✿

variances
✿✿✿

Ṽ p
✿✿✿

and
✿

V p
✿

,
✿✿✿

and

✿✿

the
✿✿✿✿✿✿✿✿

diffusion
✿✿✿̃

νp
✿

and νp)
✿

,
✿

which are used to compute the25

model-error covariance parameter Eq. (29).

As another example, the model-error parameters for the

semi-Lagrangian scheme are now discussed.

3.3 Semi-Lagrangian scheme and its equivalent PKF

dynamics30

The modified equation technique has been previously con-

sidered for SL schemes. For instance, McCalpin (1988) has

shown for the case of constant advecting
✿✿✿✿✿✿✿

advection
✿

velocity

that a linear interpolation leads to an effective Laplacian dis-

sipation while the quadratic and cubic interpolations lead to35

a biharmonic dissipation.

Because we want to focus on the method to address

the issue of the model error, and since uncertainty pre-

diction of diffusive dynamics has been detailed by P18,

we limit the presentation to the linear interpolation in the40

semi-Lagrangian. ,
✿

and we present the modified equation of

Eq. (30) for the study of its model error.

The Lagrangian perspective Eq. (31) of Eq. (30) suggests

to build curves along which c is constant. While simple, the

drawback of this analytico-geometric method is the possi- 45

ble occurrence of curve trajectory collapses which prevent

us from describing the time evolution of c throughout the

geographical domain. It is possible to take advantage of the

geometrical resolution while avoiding the collapse by con-

sidering the so-called semi-Lagrangian procedure. 50

In the Lagrangian way of thinking, starting from a given

position xo, the question is where the mobile point lies

along the time axis, which makes evolving the computation

grid forward in time. The semi-Lagrangian perspective re-

verses this question by asking from which position x∗o origi- 55

nates the mobile point arriving at xo at a given time. Hence,

the semi-Lagrangian leaves the computation grid unchanged

over the time steps of the integration, while letting the scalar

field c evolve. More precisely for the particular dynamics of

Eq. (30), by assuming the scalar field at time t known for 60

each points of the computational grid, for grid point xi, the

scalar field evolves as

c(t+ δt,xi) = c(t,x∗i ), (41)

where x∗i is the origin of the trajectory at time t which arrives

at xi at time t+ δt. Since the point of origin x∗i is unlikely to 65

be a point of the computational grid (except for very partic-

ular situations), the value c(t,x∗i ) is computed as an interpo-

lation of the known values of c at time t.
In its present form, the semi-Lagrangian procedure is not

suited to the PKF method since it does not give rise any par- 70

tial differential equation which lies at the core of the para-

metric approximation for covariance dynamics. To proceed

further and to obtain PDEs, additional assumptions are intro-

duced to translate the semi-Lagrangian procedure Eq. (41)

into a discrete scheme from which the modified equation is 75

deduced.

In the case where the discretization satisfies the CFL con-

dition |u(x)|δx < δt
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

δt < δx/Max
x

|u(x)| and for linear in-

terpolation, it is straightforward to write the semi-Lagrangian

procedure Eq. (41) into a discrete scheme (see Appendix D 80

for the details) which is stated as follows:

{
cq+1
i
−cq

i

δt =−ui
cq
i
−cq

i−1

δx , for ui > 0
cq+1
i
−cq

i

δt =−ui
cq
i+1−c

q
i

δx , for ui < 0
(42)

which give rise to the Euler-upwind/downwind schemes.

Then following the same derivation as previously presented

in Section 3.2, the modified equation resulting from the

scheme Eq. (42) is given as the PDE verified by a smooth5

solution C of Eq. (42). From the derivation detailed in Ap-

pendix D, the modified equations is

∂tC +U∂xC = κSL∂2
xC, (43a)

where

U = u− δt

2
∂tu+

δt

2
u∂xu (43b)10

and

κSL =
|u|
2

(δx− |u|δt) (43c)

are both functions of t and x.

Hence, since this corresponds mainly to the modified

equation Eq. (38) encountered for the Euler-upwind scheme15

Eq. (37), the parametric predictability-error covariance is

also given by Eq. (40), replacing κ by its SL counterpart

value κSL.
✿

Note that the derivation leading to the Euler-upwind and

Euler-downwind schemes is due to the choice of the lin-20

ear interpolation. The bridge between the SL and the Euler-

up/down-wind procedures is not a novelty. The derivation has

been carried out since it offers an insight into how to build a
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modified equation for the SL scheme, and also for the self

consistency of the presentation. In the general situation, the25

modified equation for the SL scheme is hard to obtain, if at

all possible, and it is not the idea to claim the procedure as

universal. But it provides a new insight into the model-error

covariance matrix for the SL scheme, which is one of the

main goals of the present contribution.30

The next section presents the numerical experiments car-

ried out to assess the ability of the PKF to characterize the

model-error covariance matrix.

4 Numerical validation

4.1 Setting and illustration 35

In this experimental test bed, the domain is assumed to be

the one dimensional segment [0,D) with periodic boundary

conditions, where D = 1. The domain is discretized into a

regular grid of n= 241 points xi = iδx for i ∈ [0,240] and

δx=D/n≈ 4.110−3. 40

The wind field u for the one-dimensional transport

Eq. (30) is set as the stationary field

u(x) = 0.4+
0.6

2

(
1+ cos

(
2π

D
(x−D/4)

))
, (44)

showed in Fig. 2-(a), which appears as a jet with the entrance

(exit) at x= 0.75D (x= 0.25D): the flow accelerates (decel- 45

erates) until x= 0.25D (x= 0.75D).
✿✿✿✿✿

Latter,
✿✿✿

the
✿✿✿

lead
✿✿✿✿✿

time
✿

is

✿✿✿✿✿✿✿

T = 2.0.

In order to verify the CFL condition, the time step for the

numerical simulation is set to δt= 0.002 leading to a CFL

value of 0.48< 1. The magnitude of the numerical diffusion 50

κ, Eq. (38c), associated with this setting is shown in Fig. 2-

(b), normalized by the diffusion coefficient κe = δx2/δt.
For the numerical experiment, the initial state for c is set

to

c(0,x) = exp

(
− 1

2(0.15D)2
sin
(π
2
(x−D/2)

)2)
(45) 55

while the initial analysis-error covariance ma-

trix is set as the homogeneous Gaussian co-

variance matrix P
f
t=0(x,y) = e

−
(x−y)2

2l2
h where

lh = 0.05≈ 12δx
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

P
f
t=0(x,y) = e

−
d(x,y)2

2l2
h

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

with

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

lh = 0.05D ≈ 12δx,
✿✿✿✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

d(x,y) = D
π |sin π

D (x− y)| 60

✿

is
✿✿✿✿

the
✿✿✿✿✿✿✿✿

chordal
✿✿✿✿✿✿✿

distance
✿✿✿✿✿✿✿✿

between
✿✿✿✿

the
✿✿✿✿✿

two
✿✿✿✿✿✿✿✿✿✿✿

geographical

✿✿✿✿✿✿✿

positions
✿✿

x
✿✿✿✿

and
✿✿

y
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pannekoucke et al., 2018a, see Eq.(30)).

The analysis-error standard-deviation is set to the homoge-

neous value 1.0.

For numerical validation, since no simple analytical solu- 65

tion of the partial differential equation Eq. (30) exists, this

dynamics is integrated considering a fourth order Runge-

Kutta time scheme applied on the finite difference discretiza-

tion

∂tci =−ui
ci+1 − ci−1

2δx
, (46) 70

where the spatial derivative is approximated by a centered

second order scheme. This constitutes the higher resolution

version
✿✿✿

high
✿✿✿✿✿✿

order
✿✿✿✿✿✿✿✿✿✿✿

discretization
✿

N̂ of the model
✿✿✿✿✿

nature

N and ,
✿✿✿

as introduced in Section 2.1
✿✿✿

2.2: N̂ is assumed to

better reproduce the nature N . In order to compute the

true covariance dynamics, a very large ensemble of forecast,5

integrated with N̂ , has been considered with Ne = 6400
forecasts. This large size limits the sampling noise to a

relative error of 1/
√
6400≈ 1.25%

✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿

model
✿✿✿

M.

Figure 3 shows the trajectory computed from the nature

approximated by N̂ and the nature N
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model
✿✿✿

M.10

Since the transport equation conserves the value of the field

c, the extremal values of c do not change along the integra-

tion and the wind u > 0 causes the initial structure to move

to the right. While the field is conserved, it is also deformed

by the wind. For the particular choice of the initial condi-15

tion made here, the signal is of larger (smaller) scale in the

region x ∈ [0,0.5] ( x ∈ [0.5,1]) than its initial shape. Panel

(a) shows that the nature approximation N̂ is able to repro-

duce the conservation of c as well as the stretching of the

signal along the time axis. Hence, the nature approximation 20

N̂ is good enough to capture the main features of the na-

ture dynamics, which justifies the use of this approximation

in place of the true dynamics in the following. At the oppo-

site, the model N
✿✿

M
✿

fails to maintain the magnitudes of the

extrema (panel (b)), in accordance with the modified equa- 25

tion Eq. (38a) of the Euler-upwind Eq. (37) which presents a

non-physical diffusion process resulting from the numerical

discretization. Note that the coefficient of the numerical dif-

fusion is heterogeneous over the domain with a typical value

of thereabout 0.1κe (see Fig. 2-(b)). This heterogeneity is 30

due to the scale variation of the signal, stretched by the wind

shear: when the signal is of smaller (larger) scale than its

initial shape, the second order derivative is larger (smaller),

which leads to an intensification (reduction) in the numerical

diffusion term in Eq. (38a). 35

Having validated the two numerical models
✿✿̂

N
✿✿✿

and
✿✿✿

M, it

is now possible to look at the covariance dynamics and how

the model-error covariance error can be estimated from the

PKF prediction.

4.2 Assessment of the PKF in predicting the

forecast-error and the predicability-error5

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error covariance dynamics
✿✿

of
✿✿✿

the

✿✿✿✿✿✿

nature
✿✿✿

and
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model

The PKF forecast-error
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿

covariance ma-

trix dynamics for the transport equation Eq. (30) is given

by the system Eq. (36). The PKF predictability-error covari-10

ance matrix dynamics resulting from the Euler-upwind in-

tegration Eq. (37) is given by Eq. (40). Both systems are
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Figure 2. (a) Wind field specified for the nature dynamics and the one seen in the discretized model from Eq. (38b). Panel (b) represents the

numerical diffusion coefficient due to the discretization Eq. (38c),
✿✿✿✿✿✿✿✿✿

normalized
✿✿

by
✿✿✿✿✿✿✿✿✿✿

κe = δx2/δt.

Figure 3. Nature (a) and
✿✿✿✿✿✿✿

numerical
✿

model (b) runs for times from t= 0 to t= T and represented each 0.2T
✿✿✿✿

0.1T .

numerically integrated by considering respectively an ex-

plicit RK4 time scheme for the nature and an Euler time

scheme for the Euler-upwind scheme. The time step used15

for the integration is δt= 0.002. The forecast-error and the

predictability-error variance field
✿✿✿✿✿

fields are shown in Fig. 4.

The forecast-error (predictability-error ) correlation length-

scale field
✿✿✿✿

fields, defined from the one-dimensional diffusion

field by Lf =
√
2νf , (

✿✿✿✿

fields
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿

L̃p =
√
2ν̃p

✿✿✿✿✿✿✿

(nature)
✿✿✿✿

and
✿

,20

Lp =
√
2νp ), is

✿✿✿✿✿✿✿✿✿

(numerical
✿✿✿✿✿✿✿

model),
✿✿✿

are shown in Fig. 5. The

variance and the length-scale, are shown for the PKF and the

✿✿

an
✿

ensemble estimation, the latter being only computed for

the validation of the PKF (the ensembles are not needed nei-

ther used for the computation of the PKF systems).25

✿✿

To
✿✿✿

do
✿✿✿✿

so,
✿✿✿

an
✿✿✿✿✿✿✿✿

ensemble
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿

Ne = 6400
✿✿✿✿✿✿✿✿

analysis
✿✿✿✿✿

errors

✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿✿✿✿

generated,
✿✿✿✿✿✿✿✿✿✿✿✿✿

(εa0,k)k∈[1,Ne], ✿✿✿✿✿

where
✿✿✿✿✿

each
✿✿✿✿✿✿✿

member
✿✿

is

✿✿✿✿✿✿✿✿

computed
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

εa0,k = (Pf
t=0)

1/2ζk
✿✿✿✿✿

with
✿✿

ζk
✿✿

a
✿✿✿✿✿✿✿

sample
✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿

Gaussian
✿✿✿✿✿✿✿

random
✿✿✿✿✿✿

vector
✿✿✿

of
✿✿✿✿

zero
✿✿✿✿✿

mean
✿✿✿✿

and
✿✿✿

of
✿✿✿✿✿✿✿✿✿

covariance

✿✿✿✿✿

matrix
✿✿✿✿

the
✿✿✿✿✿✿✿

identity
✿✿✿✿✿✿

matrix
✿✿✿

I.
✿✿✿✿✿

This
✿✿✿✿✿

large
✿✿✿✿

size
✿✿✿✿✿✿

limits
✿✿✿

the30

✿✿✿✿✿✿✿

sampling
✿✿✿✿✿

noise
✿✿

to
✿

a
✿✿✿✿✿✿✿

relative
✿✿✿✿

error
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

1/
√
Ne ≈ 1.25%.

✿

✿✿✿✿✿✿✿

Because
✿✿✿

the
✿✿✿✿✿✿✿✿

dynamics
✿✿✿

are
✿✿✿✿✿

linear,
✿✿✿

the
✿✿✿

TL
✿✿✿✿✿✿

nature
✿✿✿

and
✿✿✿✿✿

model

✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

independent
✿✿

of
✿✿✿✿

any
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿

state,
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿

is

✿✿✿✿✿✿✿✿

computed
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿

forecasts,
✿✿✿

by
✿✿

the
✿✿✿✿

high
✿✿✿✿✿

order
✿✿✿✿✿✿✿✿✿✿✿

discretization

✿✿

of
✿✿✿

the
✿✿✿✿✿✿

nature
✿✿✿̂

N
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿

M,
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble
✿✿

of35

✿✿✿✿✿✿

analysis
✿✿✿✿✿✿

errors
✿✿✿✿✿

(εa0,k).✿
The forecast-error covariance dynamics

4.2.1
✿✿✿✿✿✿✿✿✿

Validation
✿✿

of
✿✿✿

the
✿✿✿✿✿

PKF
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

nature

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿✿

dynamics
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

nature

is first considered. Since the variance of the nature Eq. (36a)40

is conserved, it results that with the choice of an initial ho-

mogeneous variance, the trend is null and the variance field

is the stationary homogeneous field 1.0. This theoretical re-

sult is well reproduced in Fig. 4-(a) from the PKF integra-

tion while the ensemble estimation, Fig. 4-(c) also shows 45

this stationary but to within the sampling noise. The length-

scale (Fig. 5-(a)) shows a periodic evolution where, start-

ing from the homogeneous field of Lh
✿✿✿✿

value
✿✿

lh, the length-

scale first increases (decreases) in the entrance (exit) of

the jet, then these evolutions are attenuated then compen- 50

sated with the transport. Then ensemble estimation Fig. 5-(c)

presents the same variations (again to within the sampling

noise), which validates the PKF dynamics for the nature.

✿✿

As
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

consequence,
✿✿✿

the
✿✿✿✿

PKF
✿✿✿✿✿✿✿✿✿

dynamics Eq. (36)
✿✿✿

can
✿✿

be
✿✿✿✿

used

✿✿

to
✿✿✿✿✿✿✿✿✿

understand
✿✿✿

the
✿✿✿✿✿✿✿✿

dynamics
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

uncertainty.
✿✿✿

In
✿✿✿✿✿✿✿✿

particular, 55
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Figure 4. Forecast-error
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Predictability-error variance field, V f (t,x)
✿✿✿✿✿✿

Ṽ p(t,x), for the nature Eq. (30), computed from the PKF Eq. (36) (panel

a), and predicatbility-error
✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿

variance field, V p(t,x), for the numerical model resulting from the finite difference & Euler

discretization Eq. (37), computed from the PKF Eq. (40) (panel b). Panels (c) and (d) are the ensemble estimation for panels (a) and (b),

where the nature dynamics is approximated by Eq. (46) dynamics in panel (c) (6400 members are used here). Fields are represented for times

from t= 0 to t= T and represented each 0.2T
✿✿✿✿

0.1T .

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿✿

field
✿✿

at
✿✿✿✿✿✿✿✿

t= 0.1T
✿✿✿

is
✿✿✿✿

well
✿✿✿✿✿✿✿✿

explained
✿✿✿

by
✿✿✿

the

✿✿✿✿✿✿✿✿✿

source/sink
✿✿✿✿✿

term
✿✿✿✿✿✿✿✿

2(∂xu)ν̃
p
✿✿

in
✿

Eq. (36b)
✿✿✿✿✿

whose
✿✿✿✿✿✿✿✿✿

magnitude,

✿✿✿

that
✿✿✿

lies
✿✿✿✿✿

from
✿✿✿✿✿✿✿

−0.004
✿✿

to
✿✿✿✿✿✿

0.004,
✿✿✿✿✿✿✿

implies
✿

a
✿✿✿✿✿

rapid
✿✿✿✿✿✿✿✿✿

emergence

✿✿

of
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

heterogeneity
✿✿✿✿✿✿

leading
✿✿

to
✿✿✿✿✿

large
✿✿✿✿✿✿

(small)
✿✿✿✿✿✿✿✿✿✿✿

length-scales
✿✿✿

for

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

x ∈ [0,0.25D]∪ [0.75D,D]
✿✿✿✿

(for
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

x ∈ [0.25D,0.75D])
✿✿✿✿✿

where 60

✿✿✿✿✿✿✿

∂xu > 0
✿✿✿✿✿✿✿✿✿

(∂xu < 0);
✿✿✿✿

and
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

transport
✿✿✿✿

term
✿✿✿✿✿✿✿

u∂xν̃
p

✿✿✿

that

✿✿✿✿

shifts
✿✿✿✿

the
✿✿✿✿✿

fields
✿✿✿

to
✿✿✿✿

the
✿✿✿✿✿

right.
✿✿✿✿✿

Note
✿✿✿✿✿

that,
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿

introducing

✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿✿

operator
✿✿✿✿✿✿

defined
✿✿✿✿

for
✿✿✿

any
✿✿✿✿✿✿✿✿

function
✿✿

f
✿✿

by

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

〈f〉(t) = 1
D

∫
f(t,x)dx

✿✿

as
✿✿✿✿✿✿✿✿✿

represented
✿✿

in
✿✿✿✿

Fig.
✿✿

6,
✿✿✿

the
✿✿✿✿✿✿✿

averaged

✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿✿✿✿

〈L̃p〉(t)
✿✿✿✿✿✿

ranges
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿

[12δx,17.5δx]
✿✿✿✿

(see
✿✿✿

Fig.
✿✿✿✿✿

6-(b)) 65

✿✿✿✿

while
✿✿✿

the
✿✿✿✿✿✿✿

〈Ṽ p〉(t)
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

constant
✿✿

1.
✿✿✿✿

(see
✿✿✿✿

Fig.
✿✿✿✿✿

6-(b)).
✿

4.2.2
✿✿✿✿✿✿✿✿✿

Validation
✿✿

of
✿✿✿

the
✿✿✿✿✿

PKF
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model

The predictability-error covariance dynamics
✿✿

for
✿✿✿✿

the

✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model
✿

is now discussed. For the Euler-upwind

scheme, the numerical diffusion resulting from the spatio- 70

temporal discretization in Eq. (38a) implies a damping of

the variance along the time axis (see Fig. 4-(b)). The at-

tenuation of the uncertainty governed by Eq. (40), leads

to a heterogeneous damping over the domain and appears

much stronger in the middle of the domain (x= 0.5) than 75

near the boundaries (x= 0 and x= 1), while transported by

the flow. The length-scale, Fig. 5-(b) increases by the dif-

fusion while the shear produces similar patterns as for the

forecast-error statistics. The ensemble estimation in Fig. 4-

(d) and Fig. 5-(d) shows the same signal as the PKF predic- 80

tion (within the sampling noise) which validates the system

Eq. (40).
✿✿

As
✿✿✿

for
✿✿

the
✿✿✿✿✿✿

nature,
✿✿

it
✿✿✿✿✿✿✿

appears
✿✿✿

that
✿✿✿

the
✿✿✿✿

PKF
✿✿✿✿✿✿✿✿

dynamics

✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model,
✿

Eq. (40)
✿

,
✿✿✿✿✿✿✿

explains
✿✿✿

the
✿✿✿✿✿✿✿✿

dynamics
✿✿

of

✿✿

the
✿✿✿✿✿✿✿✿✿✿

uncertainty.
✿✿✿

In
✿✿✿✿✿✿✿✿

particular,
✿✿✿✿✿✿

again,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿✿

field
✿✿

at

✿✿✿✿✿✿✿

t= 0.1T
✿✿

is
✿✿✿✿✿

well
✿✿✿✿✿✿✿✿

explained
✿✿✿

by
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

source/sink
✿✿✿✿✿

strain
✿✿✿✿

term

✿✿✿✿✿✿✿✿

2(∂xu)ν̃
p
✿✿

in
✿

Eq. (40b)
✿✿✿

and
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

transport
✿✿✿✿✿

term
✿✿✿✿✿✿

u∂xν̃
p,

✿✿✿

but
✿✿✿

this
✿✿✿✿✿

time,
✿✿✿✿✿✿✿✿✿

compared
✿✿✿✿✿

with
✿

Eq. (36b),
✿✿✿✿

the
✿✿✿✿✿✿

source
✿✿✿✿

term

✿✿

2κ
✿✿

in
✿

Eq. (40b)
✿✿✿✿✿✿

implies
✿✿✿

an
✿✿✿✿✿✿✿

increase
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿

Lp.5

✿✿✿✿

Note
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

influence
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

remaining
✿✿✿✿✿

terms
✿✿

in
✿

Eq. (40b)

✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿

neglected
✿✿✿

at
✿✿✿

the
✿✿✿✿✿✿

prime
✿✿✿✿✿✿✿

instants
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dynamics:

✿✿✿

this
✿✿

is
✿✿✿✿✿✿✿✿

because
✿✿

at
✿✿✿✿✿✿

t= 0,
✿✿✿✿

V p
✿✿✿✿

and
✿✿✿

νp
✿✿✿

are
✿✿✿✿✿✿✿✿

constant
✿✿✿✿✿

fields

✿✿✿✿✿✿✿✿✿✿✿✿

(V p(t= 0) = 1
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

νp(t= 0) = l2h/2).
✿✿✿✿✿✿✿✿✿

Compared
✿✿✿✿

with
✿✿✿

the

✿✿✿✿✿

nature,
✿✿✿✿

the
✿✿✿✿✿✿✿✿

behavior
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿✿

variance
✿✿

of10

✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿

presents
✿✿✿✿✿

some
✿✿✿✿✿✿✿✿✿✿

source/sink
✿✿✿✿✿

terms
✿✿✿✿

(rhs

✿✿

of Eq. (40a)
✿

)
✿✿✿

that
✿✿✿✿✿✿✿

explain
✿✿✿

the
✿✿✿✿✿✿✿✿✿

emergence
✿✿

of
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

heterogeneity

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

variance
✿✿✿✿✿

field.
✿✿✿

In
✿✿✿✿✿✿✿✿

particular,
✿✿✿✿

the
✿✿✿✿

term
✿✿✿✿✿✿✿

− κ
νpV

p
✿✿✿✿✿

being

✿✿✿✿✿✿

strictly
✿✿✿✿✿✿✿✿

negative,
✿✿

it
✿✿

is
✿✿✿✿✿✿✿✿✿✿

responsible
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

damping
✿✿✿

of
✿✿✿

the
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Figure 5. The length-scale counterpart of Fig. 4 representing the forecast-error (the predicatbility-error)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error length-scale field

Lf

✿✿✿✿

fields
✿✿

L̃p

✿

(
✿✿✿✿✿✿

nature)
✿✿✿

and Lp

✿✿✿✿✿✿✿✿

(numerical
✿✿✿✿✿

model) in panels (a,c) (in panels (b-d)). The length-scale is
✿✿✿✿✿✿✿✿✿

length-scales
✿✿✿

are
✿

diagnosed from the

diffusion coefficient νf (νp) as Lf =
√
2νf (Lp =

√
2νp)

✿✿✿✿✿✿✿✿

coefficients
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿

formula
✿✿✿✿✿✿✿✿

L=
√
2ν and normalized by the grid spacing δx.

Top panels are computed from the PKF while the bottom panels are estimated from the same large ensemble of forecasts as considered in

Fig. 4. Fields are represented for times from t= 0 to t= T and represented each 0.2T
✿✿✿

0.1T
✿

Figure 6.
✿✿✿✿

Time
✿✿✿✿✿✿✿

evolution
✿✿

of
✿✿✿

the
✿✿✿✿✿

spatial
✿✿✿✿✿✿

average
✿✿✿✿

over
✿✿

the
✿✿✿✿✿✿

domain
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿

variance
✿✿✿

(a)
✿✿✿

and
✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿

(b),
✿✿✿✿✿✿✿✿

computed
✿✿✿✿

from

✿✿

the
✿✿✿✿

PKF
✿✿✿

for
✿✿

the
✿✿✿✿✿

nature
✿✿✿✿✿

(blue)
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿

model
✿✿✿✿✿✿✿

(orange).
✿✿✿

The
✿✿✿✿✿✿✿✿

analytical
✿✿✿

PKF
✿✿✿✿✿✿✿✿✿✿✿✿

approximation Eq. (48)
✿✿

for
✿✿

the
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿

model
✿✿

is
✿✿

in

✿✿✿✿

green.
✿✿✿✿

The
✿✿✿✿✿

model
✿✿✿✿

error
✿✿✿✿✿✿

variance
✿

(Eq. (29a)
✿

)
✿✿✿

and
✿✿✿✿✿✿✿✿✿

length-scale
✿

(Eq. (49))
✿✿✿

are
✿✿✿✿

also
✿✿✿✿✿✿✿✿

represented
✿✿✿

(in
✿✿✿✿✿

dashed
✿✿✿✿✿

lines)
✿✿

for
✿✿✿

the
✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

averaged
✿✿

of
✿✿✿

the

✿✿✿

PKF
✿✿✿✿✿

results
✿✿✿✿✿✿

shown
✿

in
✿✿✿✿

Fig.
✿

7
✿✿✿

(a)
✿✿✿

and
✿✿

(b)
✿✿✿✿✿

(red),
✿✿✿

and
✿✿

the
✿✿✿✿✿✿✿✿

analytical
✿✿✿✿✿✿✿✿✿✿✿

approximation
✿✿✿✿✿✿

(purple).
✿

✿✿✿✿✿✿✿

variance
✿

;
✿✿

it
✿✿

is
✿✿✿✿

also
✿✿✿✿✿✿✿✿✿✿

responsible
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

heterogeneity
✿✿

at
✿✿✿

the15

✿✿✿✿✿

prime
✿✿✿✿✿✿✿

instants:
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿

Lp
✿✿✿✿✿

being
✿✿✿✿✿✿✿✿✿✿✿✿

heterogeneous,
✿✿✿

the

✿✿✿✿✿✿✿

damping
✿✿✿✿

will
✿✿✿

be
✿✿✿✿✿

more
✿✿✿✿✿

(less)
✿✿✿✿✿✿

intense
✿✿✿

in
✿✿✿

the
✿✿✿✿✿

areas
✿✿

of
✿✿✿✿✿

small

✿✿✿✿✿

(large)
✿✿✿✿✿✿✿✿✿✿✿✿

length-scales
✿✿✿✿

(see
✿✿✿✿

Fig.
✿✿✿✿✿

4-(b)
✿✿✿✿✿✿

versus
✿✿✿✿

Fig.
✿✿✿✿✿

5-(b)
✿✿✿

for

✿✿✿✿✿✿✿✿

t= 0.1T ).
✿✿✿

In
✿✿✿✿✿

terms
✿✿

of
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

average,
✿✿✿✿

with
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

assumption

✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿

variations
✿✿✿✿✿✿

around
✿✿✿✿

each
✿✿✿✿✿✿✿✿

averaged
✿✿✿✿

field
✿✿✿

are
✿✿✿✿✿✿

smalls
✿✿

so 20
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✿✿✿

that
✿✿✿

for
✿✿✿

any
✿✿✿✿✿

fields
✿✿

f
✿✿✿

and
✿✿

g
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

approximation
✿✿✿✿✿✿✿✿✿✿✿✿

〈fg〉 ≈ 〈f〉〈g〉
✿✿✿✿✿✿

applies,
✿✿✿✿

then
✿✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿

averaged
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿

dynamics
✿

Eq. (40)

✿✿✿✿✿

writes

∂t〈V p〉
✿✿✿✿✿

=
✿

− 〈κ〉
〈νp〉 〈V 〉,

✿✿✿✿✿✿✿✿✿

(47a)

∂t〈νp〉
✿✿✿✿✿

=
✿

2〈κ〉,
✿✿✿✿

(47b) 25

✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿

property
✿✿✿✿

that
✿✿

for
✿✿✿✿

any
✿✿✿✿✿✿✿

function
✿

f
✿✿✿✿

and
✿✿✿✿✿✿

integer
✿✿✿✿✿

k > 0,

✿✿✿✿✿✿✿✿

〈∂k
xf〉= 0

✿✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿✿✿

eliminate
✿✿

all
✿✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿

terms.

Eq. (47)
✿✿

can
✿✿✿

be
✿✿✿✿✿✿

solved
✿✿✿✿✿✿✿✿✿✿

analytically,
✿✿✿

ad
✿✿✿

its
✿✿✿✿✿✿✿✿

solutions
✿✿✿✿✿

writes

〈V p〉(t)
✿✿✿✿✿✿

=
✿

〈V p〉(0)
( 〈νp〉(0)
〈νp〉(0)+ 2〈κ〉t

)1/2

,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(48a)

〈νp〉(t)
✿✿✿✿✿

=
✿

〈νp〉(0)+ 2〈κ〉t.
✿✿✿✿✿✿✿✿✿✿✿✿✿

(48b)

✿✿✿

The
✿✿✿✿✿✿✿✿

analytical
✿✿✿✿✿✿✿

solution
✿

Eq. (48)
✿✿✿✿✿✿✿✿✿✿

successfully
✿✿✿✿✿✿✿✿✿

reproduces
✿✿✿

the

✿✿✿✿

time
✿✿✿✿✿✿✿✿

evolution
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿

statistics
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

present
✿✿✿✿✿✿✿✿✿✿

experiment.

✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

length-scale, Eq. (48b)
✿✿✿✿✿✿✿✿

reproduces
✿✿✿

the
✿✿✿✿✿✿✿✿

increase
✿✿✿

(see 5

✿✿✿

Fig.
✿✿✿✿✿✿

6-(b)),
✿✿✿✿✿

with
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

underestimation
✿✿✿✿✿✿✿

because
✿✿✿✿

this
✿✿✿✿✿✿✿

solution

✿✿✿✿✿✿

doesn’t
✿✿✿✿✿✿✿

account
✿✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

oscillation
✿✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

strain
✿✿✿✿

term

✿✿✿

that
✿✿✿

has
✿✿✿✿✿

been
✿✿✿✿✿✿✿✿

neglected
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿✿

dynamics
✿

Eq. (47b)
✿

.
✿✿✿

For
✿✿✿

the

✿✿✿✿✿✿✿

variance,
✿

Eq. (48a)
✿✿✿✿✿✿✿

explains
✿✿

a
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿

decrease
✿✿

at
✿✿✿

the
✿✿✿✿✿

prime

✿✿✿✿✿✿

instant,
✿✿✿✿✿✿✿

followed
✿✿✿

by
✿✿

an
✿✿✿✿✿✿✿✿✿✿

attenuation
✿✿

in
✿✿✿✿✿

t−1/2
✿✿✿

(see
✿✿✿✿

Fig.
✿✿✿✿✿✿

6-(a)).

4.2.3
✿✿✿✿✿✿✿✿✿✿✿

Intermediate
✿✿✿✿✿

result5

As a conclusion of this section, the PKF is
✿✿✿✿✿✿

appears
✿

able

to predict the variance and the legnth-scale feature of the

forecast-error
✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿✿✿✿✿

features
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predicability-error

covariance dynamics of the nature dynamics Eq. (30) and of

the predictability-error covariance dynamics resulting from10

✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model,
✿✿✿

that
✿✿✿✿✿✿✿✿✿✿

corresponds
✿✿

to
✿

the discretization of the

true dynamics given by Eq. (37). These results are now con-

sidered to provide an estimation of the model-error covari-

ances.

4.3 Model-error covariance diagnosis from the PKF15

prediction

Model-error length-scale: (a) under decorrelation of errors as

computed from the PKF for the nature and the Euler-upwind

scheme, (b) diagnosed from the ensemble of differences

εmk = X f
k −X p

k . Fields are represented for times from20

t= 0.2T to t= T , each 0.2T (for t= 0 the model error is

null)

As discussed in Section 2.1,
✿✿✿✿✿

From
✿✿✿

the
✿✿✿✿✿✿✿

previous
✿✿✿✿✿✿✿

section,

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Euler-upwind
✿✿✿✿✿✿✿✿✿✿✿✿

discretization
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

advection Eq. (30)

✿✿✿✿

leads
✿✿

to
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿

heterogeneous
✿✿✿✿✿✿✿✿✿

dissipative
✿✿✿✿

term,
✿✿✿✿✿✿

which
✿✿✿✿✿

affects
✿✿✿

the25

✿✿✿✿✿✿✿✿

dynamics
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿

by
✿✿✿✿✿✿✿

damping

✿✿

the
✿✿✿✿✿✿✿✿

variance
✿✿✿✿✿

while
✿✿✿✿✿✿✿✿✿

increasing
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿✿✿✿

length-scale.

✿✿✿✿✿

When
✿✿✿✿

the
✿✿✿✿

bias
✿✿✿✿

due
✿✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿

is
✿✿✿✿✿✿

lower
✿✿✿✿

than

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿✿

variance
✿✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿

nature
✿✿✿✿

and
✿✿✿✿

that

✿✿

the
✿✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

dissipative,
✿✿✿✿

then
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

modelling30

Eq. (21)
✿

of
✿✿

the model-error covariance matrix can be

estimated from the difference between the forecast-error

and
✿✿✿✿✿✿✿✿✿

introduced,
✿✿✿✿

that
✿✿✿

is
✿✿

a
✿✿✿✿✿

flow
✿✿✿✿✿✿✿✿✿

dependent
✿✿✿✿✿✿✿✿✿

modelling
✿✿✿

of

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿

plus
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

climatological
✿✿✿✿✿✿✿

residual.

✿✿✿✿

This
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿

situation
✿✿✿✿✿✿✿✿✿✿

encountered
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

present
✿✿✿✿✿✿✿✿

numerical35

✿✿✿✿✿✿

setting: the predictability-error covariance matrix, , when the

analysis error and the model error are decorrelated. This

latter assumption is quite restrictive since in real applications

such a correlation certainly exists, leading to the much more

complex relationship . The question is to know if it is40

possible to capture some information about the model-error

covariance from the approximation
✿✿✿✿✿✿✿

variance
✿✿

of
✿✿✿

the
✿✿✿✿✿

nature
✿✿

is

✿

1
✿✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿

larger
✿✿✿✿✿

than
✿✿✿

the
✿✿✿✿

bias
✿✿✿✿✿

(that
✿✿

is
✿✿

at
✿✿✿✿✿

most
✿✿✿

0.2
✿✿✿✿✿

when

✿✿✿✿✿✿✿✿✿

comparing
✿✿✿

the
✿✿✿✿✿✿

nature
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿

evolution

✿✿

in
✿✿✿✿

Fig.
✿✿✿

3),
✿✿✿✿✿✿

while
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿✿

variance
✿✿✿

of
✿✿✿

the 45

✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿

model
✿✿✿✿✿✿✿

rapidly
✿✿✿✿

fails
✿✿✿✿

with
✿✿

at
✿✿

its
✿✿✿✿✿

worst
✿

a
✿✿✿✿✿✿✿✿

reduction
✿✿

of

✿✿✿✿

60%
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿

variance
✿✿✿

of
✿✿

the
✿✿✿✿✿✿

nature
✿✿✿

(see
✿✿✿

the

✿✿✿✿✿✿✿✿

reduction
✿✿

at
✿✿✿✿✿✿✿✿

x= 0.6D
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿

comparing
✿✿✿✿✿

panels
✿✿✿

(a)
✿✿✿

and
✿✿✿

(b)
✿✿

in

✿✿✿

Fig.
✿✿✿

4).
✿✿

It
✿✿✿✿✿

results
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

flow-dependent
✿✿✿✿✿✿✿✿

modelling
✿

Eq. (21)

✿✿✿

may
✿✿✿✿✿

apply
✿✿✿✿

here. 50

In order to tackle this issue, the computation of Pm
t is

first made from , considering the PKF estimation of the

forecast-error covariance P
f
t and of the predictability-error

covariance P
p
t , following . Then this estimation of Pm

t,

is compared to the direct ensemble estimation of the
✿✿✿✿

focus 55

✿✿

on
✿✿✿

the
✿✿✿✿

flow
✿✿✿✿✿✿✿✿✿

dependent
✿✿✿✿

part
✿✿✿

of Eq. (21)
✿

,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

approximation

Eq. (27)
✿

is
✿✿✿✿✿✿✿✿✿✿✿

considered.
✿✿✿✿✿✿

Here,
✿✿✿✿

Pm
✿✿✿

is
✿✿✿✿✿✿✿✿✿

computed
✿✿✿✿✿

from

✿✿

the
✿✿✿✿✿✿✿✿✿✿

parametric
✿✿✿✿✿✿✿✿✿

approach
✿✿✿✿✿✿✿✿✿

discussed
✿✿

in
✿✿✿✿✿✿✿

Section
✿✿✿✿✿

2.4,
✿✿✿✿

with

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

parameters
✿

Eq. (29)
✿

,
✿✿✿✿✿✿

where
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error

✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿

statistics
✿✿✿✿

are
✿✿✿✿✿✿✿✿✿

computed
✿✿✿✿✿

from
✿

Eq. (36)
✿✿

for
✿✿✿

the 60

✿✿✿✿✿

nature
✿✿✿✿

and Eq. (40)
✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿

model.
✿✿✿✿

Note
✿✿✿✿

that
✿✿

in

✿✿✿

this
✿✿✿

1D
✿✿✿✿✿✿✿

domain
✿✿✿✿✿✿✿✿✿

situation,
✿

Eq. (29b)
✿

is
✿✿✿✿✿✿✿✿✿

equivalent
✿✿✿

to
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

computation
✿✿

of
✿✿✿

the
✿✿✿✿

local
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿✿✿✿

length-scales
✿✿

by
✿

Lm(t,x) =

√
V m

Ṽ p/(L̃p)2 −V p/(Lp)2
.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(49)

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿

flow-dependent
✿

model-error covariance computed from 65

the model error computation εmk = X f
k −X p

k , which is

made possible here since the nature is known (to within

the approximation of N by N̂ ). The comparison of both

estimates
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿

are
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿

Fig.
✿✿

7,
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿

variance

✿✿

in
✿✿✿✿

panel
✿✿✿

(a)
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿

in
✿✿✿✿

panel
✿✿✿✿

(b). 70

✿✿

At
✿✿✿✿

the
✿✿✿✿✿✿

initial
✿✿✿✿✿

time,
✿✿✿

as
✿✿✿✿✿

there
✿✿✿

is
✿✿✿

no
✿✿✿✿✿✿✿✿✿✿✿✿

model-error,
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿

variance
✿✿✿

is
✿✿✿✿✿

zero.
✿✿✿✿

But
✿✿✿✿✿

then,
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

model-error

✿✿✿✿✿✿✿

variance
✿✿✿✿✿✿

should
✿✿✿✿✿✿✿✿

increase
✿✿✿✿✿✿✿

linearly
✿✿✿✿✿✿✿✿

because,
✿✿✿

the
✿✿✿✿✿

sink
✿✿✿✿

term

✿✿✿✿✿

κ
νpV

p
✿✿✿✿

that
✿✿

is
✿✿✿✿

the
✿✿✿✿

only
✿✿✿✿✿✿✿✿

non-zero
✿✿✿✿✿

right
✿✿✿✿✿

hand
✿✿✿✿

side
✿✿✿✿✿

term
✿✿

in

Eq. (36a)
✿✿✿

and
✿

Eq. (40a)
✿✿✿

(see
✿✿✿✿

also
✿✿✿

the
✿✿✿✿✿✿✿✿

spatially
✿✿✿✿✿✿✿✿

averaged 75

✿✿✿✿✿✿✿✿

dynamics Eq. (47a)
✿

)
✿✿

is
✿

a
✿✿✿✿✿✿

source
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿

variance
✿✿

at

✿✿

the
✿✿✿✿✿✿

initial
✿✿✿✿

time,
✿✿

so
✿✿✿✿

that
✿✿✿

for
✿✿✿✿✿

small
✿

t,
✿✿✿

the
✿✿✿✿✿

order
✿✿

of
✿✿✿✿✿✿✿✿✿

magnitude
✿✿

of
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Figure 7.
✿✿✿✿✿✿✿✿✿✿✿

Flow-dependent
✿

Model-error variance: (a) computed under decorrelation assumption
✿✿✿✿✿✿✿✿

covariance,
✿✿✿✿✿✿✿

modelled
✿✿✿✿

from
✿

Eq. (21) as the

difference between the variance
✿✿✿✿✿✿✿✿✿✿✿✿✿

Pm =Πm +Q,
✿✿✿

and computed from the PKF
✿✿

for
✿✿✿

the
✿✿✿✿✿

nature
✿

and shown in Fig. 4
✿✿

the
✿✿✿✿✿✿✿✿✿✿

Euler-upwind
✿✿✿✿✿✿✿

scheme.

✿✿✿

The
✿✿✿✿✿✿

variance
✿

(a) and
✿✿

the
✿✿✿✿✿✿✿✿✿

length-scale (b
✿✿✿✿✿✿✿✿

normalized
✿✿

by
✿✿✿

dx) ; (b) diagnosed from ensemble of differences εmk = X f

k −X p

k . Fields are repre-

sented for times from t= 0.2T
✿✿✿✿✿✿✿

t= 0.1T to t= T and represented
✿

at
✿

each 0.2T
✿✿✿

0.1T
✿

(for t= 0 the model error is null).
✿✿✿✿✿✿✿✿✿

Comparison
✿✿✿✿

with

✿✿

the
✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿

estimation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

variance
✿✿✿

(c)
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

length-scale
✿✿

(d)
✿✿

of
✿✿✿✿✿

Pma, Eq. (53)
✿

.

✿✿✿

V m
✿✿

is
✿✿✿✿✿

given
✿✿

by
✿

〈V m〉(t)∼ t
〈κ〉

〈νp〉(0) 〈V
p〉(0),

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(50)

✿✿✿✿✿

which
✿✿✿✿✿✿

relates
✿✿✿

the
✿✿✿✿✿✿✿

increase
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿

error
✿✿✿✿✿✿✿

variance
✿✿

to
✿✿✿

the 80

✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿

diffusion.
✿✿✿✿✿

Note
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿

diffusion
✿✿

is
✿✿✿

not

✿✿

the
✿✿✿✿✿

only
✿✿✿✿✿✿✿

process
✿✿✿

that
✿✿✿✿✿✿✿

induces
✿✿

a
✿✿✿✿✿✿

model
✿✿✿✿

error
✿

e.g.
✿✿

the
✿✿✿✿✿

phase

✿✿✿✿

shift
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correction
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿

velocity
✿✿✿✿✿✿

δt
2 u∂xu

✿✿

in Eq. (38b)
✿✿

is
✿✿✿

also
✿✿

a
✿✿✿✿✿✿

source
✿✿✿✿

term
✿✿✿✿✿

while
✿

it
✿✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿✿

removed

✿✿✿✿

from
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿

averaging
✿✿✿✿

here.
✿✿✿✿✿✿✿

Hence,
✿

Eq. (50)
✿✿✿✿✿✿✿

provides
✿✿✿

the5

✿✿✿✿

order
✿✿✿

of
✿✿✿✿✿✿✿✿✿

magnitude
✿

of the model-error covariance is made

by looking at
✿✿✿✿✿✿

variance
✿✿✿

at
✿✿✿✿

time
✿✿✿✿✿✿✿✿

t= 0.1T :
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿✿

considering

✿✿

the
✿✿✿✿✿✿

initial
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

νp(t= 0) = l2h/2 ✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿

V p(t= 0) = 1,

✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

order
✿✿✿

of
✿✿✿✿✿✿✿✿✿

magnitude
✿✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿

diffusion
✿✿✿✿✿✿✿✿✿

coefficient

✿✿✿✿✿✿✿✿✿✿✿✿✿

〈κ〉 ∼ 0.1δx2/δt
✿✿✿✿

(see
✿✿✿✿

Fig.
✿✿✿✿✿✿

2-(b)),
✿✿✿✿

then
✿✿✿

the
✿✿✿✿✿✿

typical
✿✿✿✿✿✿

values
✿✿

of10

the model-error variance and length-scale fields.

Figure ?? shows
✿✿✿✿✿✿✿✿

computed
✿✿✿✿✿✿

from
✿✿

Eq. (50)
✿

is

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

〈V m〉(0.1T )∼ 0.12.
✿✿✿✿✿

This
✿✿✿

is
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

accordance
✿✿✿✿✿

with
✿✿✿✿

the

✿✿✿✿✿

typical
✿✿✿✿✿✿

values
✿✿✿✿✿✿✿✿✿

observed
✿✿

in
✿✿✿✿

Fig.
✿✿✿✿✿

7-(a),
✿✿✿✿

for
✿✿✿✿

that
✿✿✿✿✿

time.
✿✿✿✿

Note

✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

heterogeneity
✿✿

of the model-error variance field V m
t15

approximated by the computation along the simulation as the

difference V f
t −V p

t (panel
✿

is
✿✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

heterogeneity
✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿

diffusion
✿✿✿✿

field
✿✿✿

νp
✿✿

as
✿✿✿✿✿✿✿✿

discussed
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

previous
✿✿✿✿✿✿✿

section
✿✿✿✿✿

4.2.2.

✿✿✿✿✿

Then,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿

variance
✿✿✿✿✿✿✿✿

continues
✿✿✿

to
✿✿✿✿✿

grow,
✿✿✿✿

with

✿

a
✿✿✿✿✿

peak
✿✿

of
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿

that
✿✿✿✿✿✿✿

evolves
✿✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

flow.
✿✿✿

In
✿✿✿

this 20

✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿✿✿✿

experiment,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

magnitude
✿✿✿

of
✿✿✿✿

the
✿✿✿✿

Ṽ p
✿✿✿✿✿

being

✿✿✿✿✿✿✿

constant
✿✿✿

and
✿✿✿✿✿✿

equals
✿✿

to
✿✿✿

1.,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

magnitude
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

model-error

✿✿✿✿✿✿✿

variance
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

V m = Ṽ p −V p,
✿✿✿✿✿

shown
✿✿

in
✿✿✿✿

Fig.
✿✿✿

6-(a), and estimated

from the ensemble of model error εmk = X f
k −X p

k (panel

b)– this estimation being the approximation of the true 25

model-error statistics. Both estimates of the
✿✿✿✿✿✿

evolves
✿✿✿✿

from

Eq. (48a)
✿✿

as

〈V m〉(t)∼ 1−
(

l2h
l2h +4〈κ〉t

)1/2

,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(51)

✿✿✿✿

when
✿✿✿✿✿✿✿

using
✿✿✿✿

the
✿✿✿✿✿✿✿

initial
✿✿✿✿✿✿✿✿

values
✿✿✿✿✿✿✿✿✿✿✿✿✿

〈νp〉(0) = 1
2 l

2
h✿✿✿✿✿

and

✿✿✿✿✿✿✿✿✿✿✿✿

〈V p〉(0) = 1.0.
✿✿✿✿✿

Note
✿✿✿

that
✿

Eq. (51)
✿✿✿✿✿✿✿✿✿✿✿

asymptotically
✿✿✿✿✿✿✿

behaves
✿✿

as 30

✿✿✿✿✿✿✿✿✿✿✿✿

1− 1
2

(
t
τ

)−1/2
✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

τ =
l2h
〈κ〉 ≈ 1.3T

✿

is
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

half-magnitude

✿✿✿✿

time,
✿✿✿✿

that
✿✿✿

is
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿

accordance
✿✿✿✿✿

with
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

simulation
✿✿✿✿✿

since

✿✿✿✿✿✿✿✿✿✿✿✿✿

〈V m〉(T )∼ 0.5
✿✿

at
✿✿✿

the
✿✿✿

end
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

simulation.
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✿✿✿

The
✿

model-error variance predict a variance bump that

increases and translates over time. The location of the

bump predicted from the PKF estimation (panel a) is in5

accordance with the true statistics (panel
✿✿✿✿✿✿✿✿✿✿

length-scale,
✿✿✿✿✿

given

✿✿

by Eq. (49)
✿

,
✿

is
✿✿✿✿✿

more
✿✿✿✿✿✿✿

difficult
✿✿

to
✿✿✿✿✿✿✿

interpret
✿✿✿✿

(Fig.
✿✿✿

7-(b)
✿

)
✿✿✿✿✿✿

because

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

oscillation
✿✿✿

due
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿✿

domain.
✿✿✿✿✿✿✿✿

However,
✿✿✿

the

✿✿✿✿✿✿✿

evolution
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

average
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿✿✿

fields

✿✿✿

(red
✿✿✿✿✿✿✿

dashed
✿✿✿✿

line
✿✿

in
✿✿✿✿

Fig.
✿✿✿✿✿✿

6-(b))
✿✿✿✿✿✿

shows
✿✿✿

an
✿✿✿✿✿✿✿

increase
✿✿✿

of
✿✿✿

the10

✿✿✿✿✿✿✿

averaged
✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

time,
✿✿✿

that
✿✿

is
✿✿

in
✿✿✿✿✿✿✿✿✿

accordance
✿✿✿

the

✿✿✿✿

order
✿✿

of
✿✿✿✿✿✿✿✿✿

magnitude
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿✿

length-scale
✿

Eq. (49)

✿✿✿✿✿✿✿✿

computed
✿✿✿✿

from
✿✿✿✿

the
✿✿✿✿✿✿✿✿

analytical
✿✿✿✿✿✿✿✿✿✿✿✿✿

approximations
✿

Eq. (48)
✿✿✿

and

Eq. (51),
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿

〈Ṽ p〉(t) = 1
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

〈L̃p〉(t)∼ lh
✿✿✿✿✿✿

(purple
✿✿✿✿✿✿

dashed

✿✿✿

line
✿✿

in
✿✿✿✿

Fig.
✿✿✿✿✿

6-(b))15

✿✿✿✿

Note
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿

is
✿✿✿✿✿

much
✿✿✿✿✿✿✿

smaller,

✿✿✿

but
✿✿✿

not
✿✿✿✿✿✿

null,
✿✿✿✿

that
✿✿✿✿

will
✿✿✿✿✿✿✿✿

balance
✿✿✿✿

the
✿✿✿✿✿

large
✿✿✿✿✿✿✿✿✿✿✿

length-scale

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿

matrix
✿✿✿✿

Pp.
✿✿✿✿✿✿

Hence,

✿✿

as
✿✿✿✿✿✿✿✿

expected,
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿

modeled
✿✿✿

by
✿

Eq. (21)
✿

is
✿✿

a

✿✿✿✿✿✿✿✿✿✿✿✿

heterogeneous
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿

that
✿✿✿✿✿✿✿✿

depends
✿✿

on
✿✿✿

the
✿✿✿✿✿

state
✿✿✿

and
✿✿✿

the20

✿✿✿✿

time:
✿✿

it
✿✿

is
✿✿✿✿

flow
✿✿✿✿✿✿✿✿✿

dependent.

✿

It
✿✿✿

is
✿✿✿✿✿✿✿✿✿

interesting
✿✿

to
✿✿✿✿✿✿✿✿

compare
✿✿✿✿✿✿

Πm
q+1✿✿✿✿

with
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

covariance

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

unbiased
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

εma
q+1 = (N−M)εaq ✿✿✿✿

that
✿✿✿✿✿✿✿

appears
✿✿

in

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

decomposition
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

error
✿✿✿✿

(see
✿

Eq. (A3)
✿

in

✿✿✿✿✿✿✿✿

Appendix
✿✿

A)
✿

25

εfq+1 = εpq+1 + εma
q+1 + εmq+1(X a

q ).
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(52)

✿✿✿✿✿✿

Indeed,
✿✿

if
✿✿✿✿

the
✿✿✿✿✿

errors
✿✿✿

in
✿✿✿

the
✿✿✿✿✿

right
✿✿✿✿✿

hand
✿✿✿✿✿

side
✿✿

of
✿

Eq. (52)

✿✿✿✿

were
✿✿✿✿✿✿✿✿✿✿✿

decorrelated
✿✿✿✿✿

(that
✿✿

is
✿✿✿✿

not)
✿✿✿✿✿✿

then,
✿✿✿✿✿

Πm
q+1✿✿✿

in
✿

Eq. (17)

✿✿✿✿✿

would
✿✿✿✿✿

have
✿✿✿✿✿✿

been
✿✿✿✿✿✿✿✿

replaced
✿✿✿

by
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Pma = E
[
εma
q+1(ε

ma
q+1)

T
]
✿✿✿✿✿✿

given
✿✿✿✿

by
✿✿✿✿✿

(see
✿✿

Eq. (A5)
✿

in30

✿✿✿✿✿✿✿✿

Appendix
✿✿✿

A):
✿

Pma
q+1 =Πm

q+1 +
[(
MPa

qD
T
)
+
(
MPa

qD
T
)T ]

.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(53)

✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿

D=M−N. But the magnitude of the variance differs:

under the analysis-error/
✿✿

In
✿✿✿✿✿✿✿

practice,
✿✿✿✿✿

Pma
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿

estimated35

✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble
✿✿

of
✿✿✿✿✿

6400
✿✿✿✿✿✿

errors
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

εma
q,k = N̂εa0,k −Mεa0,k

✿✿✿✿✿

where
✿✿✿✿✿

εa0,k ✿✿

is
✿✿✿✿✿

one
✿✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿

errors
✿✿✿✿✿✿✿

detailed
✿✿✿

in

✿✿✿✿✿✿

Section
✿✿✿✿

4.2,
✿✿✿✿

and
✿✿✿✿✿

where
✿✿✿̂

N
✿✿

is
✿✿✿

the
✿✿✿✿

TL
✿✿✿✿✿✿✿✿

dynamics
✿✿✿✿✿✿✿✿✿

associated

✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

high
✿✿✿✿✿

order
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿✿✿✿✿✿

approximation
✿✿✿̂

N
✿✿✿

of
✿✿✿

N .

✿✿✿✿✿✿✿

Because
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿

present
✿✿✿✿✿✿✿✿✿✿

experiment
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dynamics
✿✿✿

of
✿✿✿

the40

✿✿✿✿✿

nature
✿✿✿✿

and
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿

are
✿✿✿✿✿✿

linear,
✿✿✿✿

εma
q,k✿✿

is
✿✿✿✿✿✿✿✿✿

computed
✿✿✿✿

here

✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

εma
q,k = N̂ (εa0,k)−M(εa0,k).✿✿✿✿

The
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿✿✿✿

variance
✿✿✿

and

✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿✿✿

fields
✿✿

of
✿✿✿✿✿

Pma
✿✿✿

are
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿

Fig.
✿

7
✿✿✿

(c)
✿✿✿✿

and
✿✿✿

(d).

✿✿✿✿✿✿✿✿

Compared
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

PKF
✿✿✿✿✿✿✿✿

modelling
✿✿✿✿✿✿

(panel
✿

a
✿✿✿✿

and
✿✿

b),
✿✿✿

the
✿✿✿✿

time

✿✿✿✿✿✿✿

evolution
✿✿✿✿✿✿

shows
✿

a
✿✿✿✿✿✿

similar
✿✿✿✿✿✿✿✿

behavior,
✿✿✿

but
✿✿✿

the
✿✿✿✿✿✿✿✿

variance
✿✿

of
✿✿✿✿

Pma
45

✿

is
✿✿✿✿✿✿✿

smaller,
✿✿

as
✿✿✿✿✿

well
✿✿

as
✿✿

its
✿✿✿✿✿✿✿✿✿✿✿

length-scale.
✿✿

In
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿

simulation,
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

contribution
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

terms
✿✿

in
✿✿✿

D,
✿

Eq. (53),
✿✿✿

is
✿✿

to
✿✿✿✿✿✿

reduce
✿✿✿

the

✿✿✿✿✿✿✿

variance
✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿✿

maximum
✿✿

of
✿✿✿

0.4
✿✿

at
✿✿✿

the
✿✿✿

end
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

simulation.

✿✿✿✿✿✿✿✿

However,
✿✿

the
✿✿✿✿✿✿✿✿✿

minimum
✿✿

of
✿✿✿✿✿✿✿

variance
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

predictability
✿✿✿✿

error

✿

is
✿✿✿✿

also
✿✿✿✿✿✿

nearly
✿✿✿

0.4.
✿✿✿✿✿

Thus
✿✿

if
✿✿✿✿

Pma
✿✿✿✿✿

were
✿✿✿✿✿✿✿✿✿

considered
✿✿

in
✿✿✿✿✿

place
✿✿

of 50

✿✿✿✿

Πm,
✿✿✿✿

then
✿

a
✿✿✿✿✿✿✿

residual
✿✿✿✿✿✿✿✿

variance
✿✿

of
✿✿✿✿✿

order
✿✿✿

0.2
✿✿✿✿✿✿

would
✿✿

be
✿✿✿✿✿✿

needed

✿

(e.g.
✿✿

in
✿✿✿

Q)
✿✿

so
✿✿

to
✿✿✿✿✿

obtain
✿✿

a
✿✿✿✿✿✿✿✿✿

magnitude
✿✿

of
✿✿✿✿✿✿✿

forecast
✿✿✿✿

error
✿✿✿✿✿✿

similar

✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

predictability
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

nature.

✿✿✿✿✿✿

Hence,
✿✿✿

the
✿✿✿✿✿✿

present
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿✿✿

experiment
✿✿✿✿✿✿✿✿✿

illustrated
✿✿✿

and

✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

flow-dependent
✿✿✿✿

part
✿✿

of
✿✿✿✿

the
✿

model-error 55

decorrelation assumption, the variance averaged over the

domain (panel a ) increases much faster than for the true

✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿

Pm,
✿✿✿✿✿✿✿✿✿

modeled
✿✿✿

by
✿

Eq. (21)
✿

,
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

situation

✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿

error
✿✿✿

is
✿✿✿✿✿✿

related
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

discretization
✿✿

of

✿✿

the
✿✿✿✿✿✿✿✿✿

advection
✿✿✿✿

by
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿✿

heterogeneous
✿✿✿✿✿

wind,
✿✿✿✿✿✿✿

leading
✿✿✿

to
✿✿

a 60

✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿

model
✿✿✿✿

that
✿✿

is
✿✿✿✿

more
✿✿✿✿✿✿✿

diffusive
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿

nature.
✿✿

In
✿✿✿

this

✿✿✿✿✿✿✿✿✿

experiment,
✿✿

a
✿✿✿✿✿

linear
✿✿✿✿✿✿✿

increase
✿✿

in
✿✿✿✿

time,
✿✿✿✿✿✿✿

followed
✿✿✿

by
✿

a
✿✿✿✿✿✿✿✿

saturation

✿✿

in
✿✿✿✿✿

t−1/2
✿✿✿

has
✿✿✿✿✿

been
✿✿✿✿✿

found
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

order
✿✿✿

of
✿✿✿✿✿✿✿✿✿

magnitude
✿✿

of
✿✿✿

the

model-error variance(panel b
✿

.
✿✿✿✿

The
✿✿✿✿✿✿✿

residual
✿✿✿✿✿✿✿✿✿✿✿✿

climatological

✿✿✿✿✿✿✿✿✿

covariance,
✿✿✿

Q
✿✿

in
✿

Eq. (21)
✿

,
✿✿✿✿

has
✿✿✿

yet
✿✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿

estimated
✿✿✿✿

(not 65

✿✿✿✿✿✿✿✿✿

considered
✿✿✿✿

here).

5
✿✿✿✿✿✿✿✿✿

Discussion

✿✿✿✿✿

Before
✿✿✿

to
✿✿✿✿✿✿✿✿

conclude,
✿✿✿

we
✿✿✿✿

end
✿✿✿✿

this
✿✿✿✿

work
✿✿✿

by
✿✿✿✿✿✿✿✿✿

addressing
✿✿✿✿✿

some

✿✿✿✿✿✿

general
✿✿✿✿✿✿

points
✿✿✿✿✿

about
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

flow-dependent
✿✿✿✿✿✿

model
✿✿✿✿✿✿

which
✿✿✿

has

✿✿✿✿

been
✿✿✿✿✿✿✿✿✿

introduced
✿✿✿✿

here.
✿

70

✿✿✿

The
✿✿✿✿✿✿✿✿✿

originality
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

present
✿✿✿✿✿✿✿✿✿✿

contribution
✿✿

is
✿✿✿✿✿✿✿

twofold.
✿✿✿✿

First,

✿✿

we
✿✿✿✿✿

have
✿✿✿✿✿✿✿✿✿

formulated
✿

a
✿✿✿✿✿✿✿✿✿

theoretical
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding

✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

introduced
✿✿

a

✿✿✿✿✿✿✿✿

modelling
✿✿✿✿

for
✿✿✿

its
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

flow-dependent
✿✿✿✿✿

part,
✿

Eq. (21).
✿✿✿✿✿

This

✿✿✿✿✿✿✿

provides
✿✿

a
✿✿✿✿✿✿✿✿✿✿

theoretical
✿✿✿✿✿✿✿✿✿✿

framework
✿✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

correction
✿✿✿

of 75

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿✿✿

introduced
✿✿✿

in
✿✿✿✿✿✿✿✿

M2000s.
✿✿✿✿✿✿

Then,
✿✿✿

we

✿✿✿✿

have
✿✿✿✿✿✿✿

provided
✿✿✿✿✿✿✿✿✿✿

theoretical
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

quantitative
✿✿✿✿✿✿

results
✿✿✿✿✿

about
✿✿✿

the

✿✿✿✿✿✿✿

diffusive
✿✿✿✿✿

effect
✿✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

discretization
✿✿✿

that
✿✿✿✿

can
✿✿✿✿✿

leads
✿✿

to
✿

a

✿✿✿

loss
✿✿

of
✿✿✿✿✿✿✿✿

variance
✿✿

as
✿✿✿✿✿✿✿✿

observed
✿✿

in
✿✿✿✿✿✿✿✿

M2000s:
✿✿✿

this
✿✿✿

has
✿✿✿✿✿

been
✿✿✿✿

done

✿✿

by
✿✿✿✿✿✿✿✿✿

combining
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

formalism
✿✿

of
✿✿✿

the
✿✿✿✿✿

PKF
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

modified 80

✿✿✿✿✿✿✿

equation.
✿✿✿✿

The
✿✿✿✿✿✿✿

interest
✿✿✿

for
✿✿✿

this
✿✿✿✿✿✿✿✿✿

modelling
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

model-error

✿✿✿✿✿✿✿✿✿

covariance
✿✿

is
✿✿✿✿✿✿✿✿

supported
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿

results
✿✿

of
✿✿✿✿✿✿✿

M2000s
✿✿✿✿

who
✿✿✿✿

have

✿✿✿✿✿✿✿

observed
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿

improvement
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

quality
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿

in

✿✿✿✿

their
✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

system
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

stratospheric
✿✿✿✿✿✿✿✿✿✿✿

observations.

The length-scale diagnosis, shown in Figure ??, illustrates

a similar behaviour. At t= 0, the length-scale is not

determined since the
✿✿✿✿✿✿✿✿✿✿✿✿✿

flow-dependent
✿✿✿✿✿✿✿✿✿✿

component
✿✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿✿

introduced
✿✿✿✿

here
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿

computed
✿✿

in5

✿✿✿✿✿✿✿

practice,
✿✿✿✿✿✿✿

because
✿

it
✿✿✿✿✿

relies
✿✿✿✿

on:
✿✿

(1)
✿✿✿

the
✿✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿✿

uncertainty
✿✿

as

✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿

by
✿✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿✿

state
✿✿✿✿

and
✿✿

its
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

covariance

✿✿✿

that
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿

estimated
✿✿✿

in
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation;
✿✿✿✿

and
✿✿✿

(2)
✿✿✿

the
✿✿✿✿

time

✿✿✿✿✿✿✿

evolution
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

analysis-error
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿

by
✿✿✿

the
✿✿✿✿✿✿

nature
✿✿✿

and

✿✿

by
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model
✿✿✿✿

that
✿✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿

computed
✿✿✿✿✿

from
✿✿✿

an10

✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿

method
✿✿

or
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿

PKF
✿✿✿✿✿✿✿✿

approach.
✿

✿✿✿✿

Note
✿✿✿✿

that,
✿✿

if
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

between
✿✿

a
✿✿✿✿

low
✿✿✿✿

and
✿✿

a
✿✿✿✿

high

✿✿✿✿✿✿✿✿

resolution
✿✿✿✿✿✿✿

forecast
✿✿

is
✿✿✿✿

often
✿✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿

compute
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

model-error

✿

at
✿✿✿

a
✿✿✿✿✿

given
✿✿✿✿✿

time,
✿✿✿✿

this
✿✿✿✿✿

does
✿✿✿✿

not
✿✿✿✿

tell
✿✿✿✿✿✿✿✿

anything
✿✿✿✿✿✿

about
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿✿✿✿

covariances
✿✿

at
✿✿✿✿

that
✿✿✿✿✿

time.
✿✿✿

At
✿✿✿✿✿

most,
✿✿✿

the
✿✿✿✿✿✿

model15

✿✿✿✿✿

errors
✿✿✿✿✿✿✿✿

collected
✿✿✿✿

for
✿✿

a
✿✿✿✿✿

large
✿✿✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿✿

dates,
✿✿✿✿

and
✿✿✿

for

✿✿

the
✿✿✿✿✿✿

same
✿✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

time,
✿✿✿✿

can
✿✿✿

be
✿✿✿✿✿

used
✿✿✿

to
✿✿✿✿✿✿✿✿✿

compute
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿

climatological
✿✿✿✿

bias
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

climatological model-error co-

variancematrix is null for both simulations, so t= 0.2T
is represented in replacement. The .

✿✿✿

To
✿✿✿✿✿✿✿

capture
✿✿✿✿

the
✿✿✿✿

error20
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✿✿

of
✿✿✿

the
✿✿✿✿

day
✿✿✿✿✿✿✿✿✿

following
✿

Eq. (21),
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

computation
✿✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿

matrices
✿

is
✿✿✿✿✿✿✿

needed.
✿

✿✿✿✿✿✿

Hence,
✿✿✿

the
✿✿✿✿✿✿✿

employ
✿✿✿

of
✿✿✿✿

the
✿✿✿✿✿

PKF
✿✿

is
✿✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿

because

Eq. (21)
✿✿✿✿✿

needs
✿✿

to
✿✿✿✿✿✿✿✿

estimate
✿✿✿

not
✿✿✿✿

only
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error

✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿

matrix
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model,
✿✿✿

but
✿✿✿✿

also
✿✿✿

the
✿✿✿

one25

✿✿

of
✿✿✿

the
✿✿✿✿✿✿

nature.
✿✿

If
✿✿

an
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿

estimation
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

latter
✿✿✿✿✿

matrix

✿

is
✿✿✿✿✿✿✿✿

possible
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

research e.g.
✿✿

by
✿✿✿✿✿✿✿✿✿

computing
✿✿✿

an
✿✿✿✿✿✿✿✿

ensemble

✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

high-resolution
✿✿✿✿✿✿✿

forecast
✿✿✿✿

with
✿✿✿̂

N
✿✿

in
✿✿✿✿✿

place
✿✿

of
✿✿✿

the
✿✿✿✿✿

nature
✿✿✿

N ,

✿

it
✿✿

is
✿✿✿

too
✿✿✿✿✿✿

costly
✿✿✿

for
✿✿✿

real
✿✿✿✿

time
✿✿✿✿✿✿✿✿✿✿✿

applications.
✿✿

It
✿✿✿✿✿✿

results
✿✿✿✿

that
✿

it
✿✿

is

✿✿✿✿✿✿

difficult
✿✿✿

to
✿✿✿

use Eq. (21)
✿

in
✿✿✿

an
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿

method.
✿✿✿✿✿✿✿✿✿

Compared30

✿✿✿✿

with
✿✿

an
✿✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿

method,
✿✿✿✿

the
✿✿✿✿✿

PKF
✿✿✿✿✿✿✿

remains
✿✿

to
✿✿✿✿✿✿✿✿

compute

✿✿

the
✿✿✿✿✿✿✿✿✿

evolution
✿✿✿

of
✿

a
✿✿✿✿✿✿✿✿

reduced
✿✿✿

set
✿✿✿

of
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿✿✿

parameters,

✿✿

by
✿✿✿✿✿✿✿✿✿✿

computing
✿✿✿✿✿✿✿✿

equations
✿✿✿✿✿✿✿

similar
✿✿✿

to
✿✿✿

the
✿✿✿✿

one
✿✿✿✿✿✿✿✿✿✿✿

encountered

✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

geosciences.
✿✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿

passive
✿✿✿✿✿✿

tracer
✿✿✿

in
✿✿✿✿

1D,
✿✿✿✿

the
✿✿✿✿

PKF

✿✿✿✿✿✿✿✿

dynamics
✿✿✿✿✿✿✿

consists
✿✿

in
✿✿✿✿✿

three
✿✿✿✿✿✿✿✿✿

equations:
✿✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

transport
✿✿

of35

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

concentration,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dynamics
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

variance
✿✿✿✿

and
✿✿✿

the

✿✿✿✿✿✿✿✿

dynamics
✿✿

of
✿✿✿

the
✿✿✿✿

local
✿✿✿✿✿✿✿✿✿

anisotropy
✿✿✿✿

(here
✿✿

a
✿✿✿✿✿✿✿

diffusion
✿✿✿✿✿✿✿✿✿

coefficient,

✿✿✿✿✿

related
✿✿✿

to
✿✿

the
✿✿✿✿✿✿✿✿✿✿

correlation length-scaletranslates with the flow

and increases or decreases due to
✿

).
✿✿✿✿

So,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical

✿✿✿

cost
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

PKF
✿✿✿✿✿✿

(three
✿✿✿✿✿✿✿✿✿

equations)
✿✿✿

for
✿

the velocity shear40

along the domain. Despite their similarities, the decorrelation

assumption (panel a ) produces larger length-scales than for

the real model-error length-scale statistics, estimated from

the ensemble of simulations (panel b
✿✿✿✿✿

tracer
✿✿✿✿

(one
✿✿✿✿✿✿✿✿

equation)

✿

is
✿✿✿✿✿✿✿

amount
✿✿✿✿✿

three
✿✿✿✿✿

times
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

computation
✿✿✿

of
✿

a
✿✿✿✿✿✿

single
✿✿✿✿✿✿✿

forecast, 45

✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

dozen
✿✿

of
✿✿✿✿✿✿✿✿

members
✿✿✿✿✿

often
✿✿✿✿

used
✿✿

in
✿✿✿✿✿✿✿✿

ensemble

✿✿✿✿✿✿✿

methods
✿✿✿✿✿

(from
✿✿✿✿✿✿

which
✿✿✿✿

the
✿✿✿✿✿✿✿✿

statistics
✿✿✿

are
✿✿✿✿✿✿✿✿✿

corrupted
✿✿✿

by
✿✿✿

the

✿✿✿✿✿✿✿

sampling
✿✿✿✿✿

noise).

In this simulation, the parametric Kalman filter appears as

a theoretical tool able to investigate the model-error statistics 50

by providing some estimation of the variance field and the

length-scale field
✿✿✿

For
✿✿✿✿

the
✿✿✿✿✿✿✿✿

dynamics
✿✿✿

of
✿✿

a
✿✿✿✿✿✿

tracer,
✿✿✿✿

the
✿✿✿✿

PKF

✿✿✿✿✿✿

applies
✿✿

in
✿✿✿

1D
✿✿

as
✿✿✿✿

well
✿✿✿

as
✿✿

in
✿✿✿

2D
✿✿✿✿

and
✿✿✿

3D
✿✿✿✿✿✿✿✿

domains,
✿✿✿✿✿

where
✿✿✿

the

✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿✿✿✿

equations
✿✿✿

are
✿✿✿✿

this
✿✿✿✿

time
✿✿

of
✿✿✿✿

five
✿✿

in
✿✿✿✿

2D,
✿✿✿✿

and
✿✿✿✿

eight

✿✿

in
✿✿✿

3D
✿✿✿

(the
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿

equation
✿✿✿

are
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

components
✿✿

of
✿✿✿

the 55

✿✿✿✿

local
✿✿✿✿✿✿✿✿✿

anisotropic
✿✿✿✿✿✿✿

tensor).
✿✿✿✿✿✿✿✿

However,
✿✿

in
✿✿✿✿✿✿✿

general,
✿✿✿

the
✿✿✿

use
✿✿

of
✿✿✿

the

✿✿✿✿

PKF
✿

is
✿✿✿✿✿✿

limited
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿

knowledge
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿✿✿✿✿

dynamics.

✿✿✿

The
✿✿✿✿✿✿✿✿✿

formalism
✿✿✿

of
✿✿✿

the
✿✿✿✿

PKF
✿✿✿

is
✿✿✿✿✿✿✿

adapted
✿✿✿

for
✿✿✿✿✿✿✿✿

dynamics
✿✿✿✿✿

given

✿✿

by
✿✿✿✿✿✿

partial
✿✿✿✿✿✿✿✿✿✿

differential
✿✿✿✿✿✿✿✿✿

equations,
✿✿

as
✿✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿✿✿

advection
✿✿✿

of
✿

a

✿✿✿✿✿

tracer,
✿✿✿

but
✿✿✿

the
✿✿✿✿✿✿

design
✿✿✿

of
✿

a
✿✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿

PKF
✿✿✿✿✿✿✿✿✿✿

formulation
✿✿

is 60

✿✿✿✿✿✿

needed
✿✿

so
✿✿

to
✿✿✿✿✿✿

address
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿✿✿

dynamics.
✿✿✿✿

Note
✿✿✿✿

that
✿✿

for
✿✿✿

the

✿✿✿✿✿

model
✿✿✿✿

error
✿✿

as
✿✿✿✿✿✿✿✿

presented
✿✿✿✿✿

here,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

knowledge
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

modified

✿✿✿✿✿✿✿

equation
✿✿

is
✿

a
✿✿✿✿✿✿✿✿✿✿

prerequisite
✿✿✿

that
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿

difficult
✿✿

to
✿✿✿✿✿✿✿✿

determine
✿✿

in

✿✿✿✿✿✿

general.
✿

✿✿✿✿✿

While
✿✿✿

the
✿✿✿✿

PKF
✿✿✿

is
✿✿✿✿✿✿✿

designed
✿✿✿✿✿

from
✿✿✿

the
✿✿✿

TL
✿✿✿✿✿✿✿✿✿✿✿✿✿

approximation, 65

✿

it
✿✿✿

is
✿✿

a
✿✿✿✿✿✿

second
✿✿✿✿✿✿

order
✿✿✿✿✿✿✿✿

Gaussian
✿✿✿✿✿

filter
✿✿✿✿

that
✿✿✿

is
✿✿

a
✿✿✿✿✿✿✿✿

particular

✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation
✿✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

nonlinear
✿✿✿✿✿✿✿✿✿✿✿✿✿

Kalman-like
✿✿✿✿✿✿✿

filters

✿✿✿✿✿✿✿✿✿✿✿

(Cohn, 1993):
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

non-linear
✿✿✿✿✿✿✿✿✿

dynamics,
✿✿✿

the
✿✿✿✿✿

PKF
✿✿✿✿✿✿✿

equation

✿✿

of
✿✿✿

the
✿✿✿✿✿

mean
✿✿✿✿✿

state
✿✿✿✿✿✿✿

depends
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

second
✿✿✿✿✿

order
✿✿✿✿✿✿✿✿

moments.

✿✿✿✿✿✿✿✿

However,
✿✿✿

for
✿✿✿✿✿✿✿✿

long-term
✿✿✿✿✿✿✿✿✿✿

predictions,
✿✿

or
✿✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿✿✿✿✿

magnitude 70

✿✿

of
✿✿✿

the
✿✿✿✿

error
✿✿

is
✿✿✿✿

too
✿✿✿✿✿

large,
✿✿✿

the
✿✿✿✿

PKF
✿✿✿✿✿✿

would
✿✿✿✿

fails
✿✿

to
✿✿✿✿✿✿✿

provide
✿✿

an

✿✿✿✿✿✿✿

accurate
✿✿✿✿✿✿✿✿

estimation
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿

matrices.

6 Conclusions

In this contribution, the part of the model-error covariance

due to the spatio-temporal discretization scheme is explored 75

by considering the parametric approximation for the Kalman

filter
✿✿✿✿✿✿

(PKF).
✿✿✿✿

The
✿✿✿✿

PKF
✿✿✿✿✿✿✿✿

approach
✿✿✿✿✿✿

applies
✿✿✿

for
✿

a
✿✿✿✿✿✿✿

system
✿✿✿✿✿

whose

✿✿✿✿✿✿✿✿

dynamics
✿✿

is
✿✿✿✿✿

given
✿✿✿

by
✿

a
✿✿✿

set
✿✿✿

of
✿✿✿✿✿

partial
✿✿✿✿✿✿✿✿✿✿

differential
✿✿✿✿✿✿✿✿

equations

✿✿✿✿✿✿

(PDEs). In the PKF formulation, covariances are approxi-

mated by covariance models which are characterized by a 80

set of parameters
✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿✿✿

parameters,
✿✿✿✿✿✿

whose
✿✿✿✿✿✿✿✿

dynamics
✿✿

is

✿✿✿✿✿✿✿

deduced
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

PDEs
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

system,
✿✿✿✿✿✿✿✿✿✿✿✿

supplemented
✿✿✿

by
✿✿

an

✿✿✿✿✿✿✿✿✿

appropriate
✿✿✿✿✿✿✿

closure
✿✿

if
✿✿✿✿✿✿✿✿

necessary. We focused on the class

of covariance model distinguished by the variance
✿✿✿✿✿✿✿

Variance

field and the local anisotropic tensors
✿✿✿✿✿

Local
✿✿✿✿✿✿✿✿✿✿

Anisotropic 85

✿✿✿✿✿✿

Tensors
✿

(VLATcov). Therefore, for VLATcov matrices, the

covariance dynamics is given by the dynamics of the vari-

ance and the local anisotropic tensors, whose dynamics are

deduced from the partial differential equations of the system.

Under the decorrelation assumption of the analysis error

and the model error,
✿✿

In
✿✿✿✿

the
✿✿✿✿

case
✿✿✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical5

✿✿✿✿✿

model
✿✿✿✿✿✿✿✿

presents
✿✿

a
✿✿✿✿✿✿✿✿✿✿

dissipation
✿✿✿✿

due
✿✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

discretization,

✿✿

or
✿✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿

model
✿✿

is
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿

dissipative
✿✿✿✿

than

✿✿

the
✿✿✿✿✿✿✿

nature,
✿✿✿✿

we
✿✿✿✿✿✿✿✿✿✿

introduced
✿✿

a
✿✿✿✿✿✿✿✿✿✿

modelling
✿✿✿

of
✿

the model-

error covariance
✿

,
✿✿✿✿✿

where
✿✿✿

its
✿✿✿✿✿✿✿✿✿✿✿✿✿

flow-dependent
✿✿✿✿

part
✿

is approx-

imated as the difference between the parametric approx-10

imation of the forecast-error and the predictability-error

covariance matrices
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿

of

✿✿

the
✿✿✿✿✿✿✿

nature
✿✿✿✿

and
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿

model,
✿✿✿✿

plus
✿✿

a
✿✿✿✿✿✿✿

residual

✿✿✿✿✿✿✿✿✿✿✿

climatological
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿

matrix.
✿✿✿✿✿

This
✿✿✿✿✿✿✿✿✿

modelling
✿✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿✿

flow-dependent
✿✿✿✿

part
✿✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿✿

computed
✿✿✿

in
✿✿✿✿

real
✿✿✿✿✿✿✿✿✿

application15

✿✿✿✿✿✿

because
✿✿

it
✿✿✿✿✿✿

relies
✿✿✿

on
✿✿✿✿✿✿✿✿

quantities
✿✿✿✿

that
✿✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿✿

estimated:
✿✿✿

the

✿✿✿✿✿✿

analysis
✿✿✿✿✿

state
✿✿✿✿

and
✿✿✿

its
✿✿✿✿✿✿✿✿✿✿✿✿

analysis-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿✿

(or

✿✿✿✿

some
✿✿✿

of
✿✿✿

its
✿✿✿✿✿✿✿✿✿✿✿✿✿

characteristics). For a dynamics given by a

partial differential equation, the parametric forecast-error

covariance matrix
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿

of20

✿✿

the
✿✿✿✿✿✿

nature
✿

is deduced from the evolution equation while

the predictability error covariance matrix
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error

✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿

matrix
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model is computed from

the modified evolution, i.e. the partial differential equation

✿✿✿✿✿✿✿✿

equations that best fits the numerical solution.25

The ability of the parametric approach to characterize part

of the model-error covariance dynamics has been illustrated

in a numerical test bed in 1D. We have considered the trans-

port of a scalar by a heterogeneous velocity field. In this case,

the parametric dynamics of the foreacast
✿✿✿✿✿✿✿

forecast error shows30

that the variance is conserved along the flow, while the local

anisotropic tensor is transported by the flow and deformed by

the gradient of the velocity.

For this transport dynamics, two numerical schemes have

been considered: an Euler-upwind scheme and a semi-35

Lagrangian scheme in the case of a linear interpolation. The

modified equations of both schemes make appear an addi-

tional heterogeneous dissipation and a perturbation of the ve-

locity, whose characteristics depend on the spatio-temporal

discretisation
✿✿✿✿✿✿✿✿✿✿✿

discretization
✿

(dt,dx), the trend and the shear40
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of the flow. Because of the numerical diffusion, the variance

of the predictability error is not conserved and a coupling

with the anisotropy appears. This effect has been noted as

well in 3D global transport models (Ménard et al., 2020)

where the loss of error variance is stronger for short corre- 45

lation length-scales.

An ensemble of forecasts has been introduced, taken as

the reference, to compare the true covariance evolution with

the parametric approximation. The numerical experiment

shows the ability of the parametric dynamics to reproduce 50

the forecast-error and the predictability-error covariance dy-

namics. For
✿✿✿✿✿

Then,
✿✿✿

the
✿✿✿✿✿✿✿✿

modelling
✿✿✿

of
✿✿✿

the
✿✿✿✿

flow
✿✿✿✿✿✿✿✿✿

dependent
✿✿✿

part

✿✿

of the model-error covariance , the difference between the

forecast-error and the predictability-error covariances was

not able to perfectly recover
✿✿✿✿✿

matrix
✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿✿✿✿

computed
✿✿✿

and 55

✿✿✿✿✿✿✿✿

discussed.
✿✿✿

In
✿✿✿✿✿✿✿✿✿

particular,
✿✿✿

we
✿✿✿✿✿✿✿✿✿

discussed
✿✿✿✿

the
✿✿✿✿✿✿

growth
✿✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿

variance
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

understanding
✿✿

of
✿✿✿✿

the
✿✿✿✿

PKF

✿✿✿✿✿✿✿✿

dynamics,
✿✿✿✿✿✿✿✿

showing
✿

a
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿

increase
✿✿

in
✿✿✿✿

time
✿✿✿✿✿✿✿✿

followed
✿✿✿

by
✿

a

✿✿✿✿✿✿✿✿

saturation
✿✿

in
✿✿✿✿✿

t−1/2.
✿

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

flow-dependent
✿✿✿✿✿✿✿✿✿✿

formulation
✿✿✿✿✿✿

being
✿✿✿✿✿✿✿✿✿✿

introduced
✿✿✿

for 60

✿✿✿✿✿✿✿✿

modelling
✿✿✿

the
✿✿✿✿✿✿✿✿

situation
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model
✿✿

is
✿✿✿✿

more

✿✿✿✿✿✿✿✿

dissipative
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿

nature,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

model-error
✿✿✿✿✿✿✿

variance
✿✿✿✿✿✿✿

provided

✿✿

by
✿✿✿

the
✿✿✿✿✿

PKF
✿✿✿✿✿✿

should
✿✿✿

be
✿✿

a
✿✿✿✿✿

lower
✿✿✿✿✿✿

bound
✿✿

of
✿

the true model-

error covariance dynamics: this is due to the cross-correlation

between the predictability error and model error that is not 65

taken into account here. Nonetheless, the
✿✿✿✿✿✿✿✿

variance,
✿✿✿

that
✿✿✿✿

need

✿

a
✿✿✿✿✿✿✿

residual
✿✿✿✿✿✿✿✿✿✿✿✿

climatological
✿✿✿✿✿✿✿✿✿

covariance
✿✿

to
✿✿✿✿✿✿✿

account
✿✿

for
✿✿✿

the
✿✿✿✿✿

bias.

✿✿✿✿✿

While
✿✿✿✿✿

there
✿✿✿

is
✿✿✿

no
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿

experiment
✿✿✿✿✿

here,

✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿

contribution
✿✿✿✿✿✿✿✿

provides
✿✿

a
✿✿✿✿✿✿✿✿✿✿

theoretical
✿✿✿✿✿✿✿✿✿✿✿

background
✿✿✿

on

✿✿

the
✿✿

model-error variance and local anisotropy obtained 70

from the PKF shared some similarities with the ensemble

estimation, which indicates that the PKF approximation

can provide an estimation of some
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿

that
✿✿✿✿✿

sheds

✿✿✿✿

light
✿✿

on
✿✿

a
✿✿✿✿

study
✿✿✿✿✿✿✿✿✿

previously
✿✿✿✿✿

done
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ménard et al. (2000)
✿✿✿

and

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ménard and Chang (2000)
✿✿✿✿✿✿✿✿

(M2000s),
✿✿✿✿

who
✿✿✿✿✿

have
✿✿✿✿✿✿✿✿

observed
✿

a 75

✿✿✿

loss
✿✿✿

of
✿✿✿✿✿✿✿✿

variance
✿✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿

of
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

stratospheric

✿✿✿✿✿

tracer
✿✿✿

by
✿✿✿✿✿

using
✿✿

a
✿✿✿✿✿✿✿

Kalman
✿✿✿✿✿✿

filter:
✿✿✿

the
✿✿✿✿✿✿✿✿

variance
✿✿✿✿✿✿✿✿✿

forecasted

✿✿✿

was
✿✿✿✿✿✿

lower
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

theoretical
✿✿✿✿✿✿✿✿

variance
✿✿✿✿

that
✿✿

is
✿✿✿✿✿✿✿✿

supposed

✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿

conserved
✿✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿✿✿

advection
✿✿✿✿✿✿✿✿✿✿✿✿

(Cohn, 1993).
✿✿✿✿✿✿✿✿

Actually,

✿✿✿✿✿✿✿✿✿

interpreted
✿✿

as
✿✿✿

an
✿✿✿✿✿✿✿

account
✿✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿

error
✿✿✿✿

due
✿✿✿

to
✿✿✿

the 80

✿✿✿✿✿✿✿✿✿✿✿

discretization
✿✿✿✿✿✿✿

scheme,
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

correction
✿✿✿✿✿

made
✿✿✿

by
✿✿✿✿✿✿✿

M2000s
✿✿

is

✿✿✿✿✿✿

similar
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

modelling
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

flow-dependent
✿✿✿✿

part
✿✿

of
✿✿✿

the

model-error covariance characteristics
✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿✿

we

✿✿✿✿✿✿✿

proposed
✿✿✿✿✿

here.
✿✿✿

In
✿✿✿✿✿✿✿✿✿

particular,
✿✿✿✿✿✿✿✿

M2000s
✿✿✿✿

have
✿✿✿✿✿✿✿✿

observed
✿✿✿✿

that

✿✿

the
✿✿✿✿✿✿✿✿

Kalman
✿✿✿✿✿

filter,
✿✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿

corrected
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictability-error 85

✿✿✿✿✿✿✿✿✿

covariance,
✿✿✿✿✿✿✿

required
✿✿✿✿

less
✿✿✿✿✿✿

residual
✿✿✿✿✿✿✿✿✿✿✿✿

climatological
✿✿✿✿✿✿✿✿✿✿

model-error

✿✿✿

(see
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ménard et al. (2000)
✿

,
✿✿✿✿✿✿✿

Section
✿✿✿

5),
✿✿✿

and
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿

improvement

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

analysis-error
✿✿✿✿✿✿✿✿

statistics
✿✿✿✿

(see
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ménard et al. (2000),

✿✿✿

Fig.
✿✿✿✿✿

11),
✿✿✿✿

and
✿✿✿✿

thus
✿✿✿✿✿✿✿✿✿

indicating
✿✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿

modeling
✿✿✿

of
✿✿✿

the

✿✿✿✿✿

model
✿✿✿✿✿

error,
✿✿✿

as
✿✿✿✿✿✿✿✿

proposed
✿✿✿✿✿

here,
✿✿✿

is
✿✿

in
✿✿

a
✿✿✿✿✿✿

better
✿✿✿✿✿✿✿✿✿

agreement

✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

optimality
✿✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿

nature.
✿✿✿✿✿✿✿

Hence,
✿✿✿✿

the
✿✿✿✿✿✿✿

benefit
✿✿✿

of

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

flow-dependent
✿✿✿✿✿✿✿✿✿

modelling
✿✿✿✿✿✿✿✿✿

introduced
✿✿✿✿✿

here
✿✿✿✿✿✿✿

appears
✿✿

as

✿✿✿✿✿✿✿✿

supported
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

improvement
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿

observed
✿✿

by5

✿✿✿✿✿✿✿

M2000s
✿✿

in
✿✿✿✿

their
✿✿✿✿✿✿✿✿✿

experiment.

The methodology introduced here has shown the potential

of exploring the model-error covariance from the parametric

dynamics
✿✿

of
✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿

covariance. While the characterization of

the model-error covariance is a challenge, as in air quality10

forecasts (Emili et al., 2016), the parametric approach ap-

pears as a new theoretical tool to tackle this issue. In order

to represent the uncertainty of the small scales, it would be

interesting to combine the parametric approach with other

new methods e.g. the modelling under location uncertainty15

(Resseguier et al., 2017).

However, the parametric dynamics faces closure issues

that have to be adressed
✿✿✿✿✿✿✿✿

addressed
✿

depending on appli-

cations. Here, the investigation of diffusive model errors

has been made possible thanks to the Gaussian closure of20

P18. For other kind of numerical errors, an appropriate clo-

sure will have to be specified, either from theoretical clo-

sures or from the data as suggested by the data-driven and

physics-informed identification of uncertainty dynamics of ?

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Pannekoucke and Fablet (2020).25

Code availability. TEXT

Data availability. TEXT

Code and data availability. TEXT

Sample availability. TEXT

Video supplement. TEXT30

Appendix A:
✿✿✿✿✿✿✿✿✿✿

Expressions
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

error

✿✿✿

The
✿✿✿✿

aim
✿✿✿

of
✿✿✿

this
✿✿✿✿✿✿✿

section
✿✿

is
✿✿✿

to
✿✿✿✿✿✿✿

provide
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

demonstrations

✿✿

of
✿✿✿✿✿

some
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

decompositions
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿✿

error:
✿✿✿

the
✿✿✿✿✿

usual

✿✿✿✿✿✿✿✿✿

expression
✿✿

as
✿✿✿✿✿✿✿✿✿✿

encountered
✿✿

in
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation,
✿✿

an
✿✿✿✿✿✿✿✿✿

expression

✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿

error
✿✿✿

is
✿✿✿✿✿✿✿✿✿

considered
✿✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿✿

to
✿✿✿

the 35

✿✿✿✿✿✿

analysis
✿✿✿✿✿✿

state,
✿✿✿✿

and
✿✿✿

an
✿✿✿✿✿✿✿✿✿

expression
✿✿✿✿

that
✿✿✿✿✿✿

makes
✿✿✿✿✿✿✿

appear
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿

predictability
✿✿✿✿

error
✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

nature.
✿

A1
✿✿✿✿✿✿✿✿✿✿

Expression
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

error
✿✿✿

as
✿✿✿✿✿✿

usually

✿✿✿✿✿✿✿✿✿✿✿

encountered
✿✿

in
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilation

✿✿✿

The
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

error
✿✿

is
✿✿✿✿✿✿✿

defined
✿✿

in
✿

Eq. (9)
✿

,
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿✿

difference 40

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

εfq+1 =Mtq+1←tq (X a
q )−X t

q+1.
✿✿✿✿✿✿✿

Thanks
✿✿

to Eq. (4)
✿

,
✿✿✿

the
✿✿✿

true

✿✿✿✿

state
✿✿

at
✿✿✿✿

time
✿✿✿✿

tq+1
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿

replaced
✿✿

so
✿✿✿✿

that

εfq+1 =Mtq+1←tq (X a
q )−Mtq+1←tq (X t

q )+ εmq+1(X t
q ),

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(A1)
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✿✿✿

that
✿✿✿✿✿✿

makes
✿✿✿✿✿✿✿

appear
✿✿✿

the
✿✿✿✿✿✿✿

model
✿✿✿✿✿

error
✿✿✿✿✿✿✿

defined
✿✿✿

by
✿

Eq. (5)

✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

εmq+1 =Mtq+1←tq −Ntq+1←tq .
✿✿✿✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿✿✿

with

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Mtq+1←tq (X t
q ) =Mtq+1←tq (X a

q − εaq )✿✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿

expands

✿✿

for
✿✿✿✿✿

small
✿✿✿✿✿✿✿

analysis
✿✿✿✿

error
✿✿✿

as

Mtq+1←tq (X t
q ) =Mtq+1←tq (X a

q )−Mεaq ,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

✿✿✿

(M
✿✿✿✿✿✿✿

denotes
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

propagator
✿✿✿

of
✿✿✿✿

the
✿✿✿

TL
✿✿✿✿✿✿

model
✿✿✿✿✿✿

along
✿✿✿

the

✿✿✿✿✿✿

analysis
✿✿✿✿✿

state
✿✿✿✿✿✿✿✿✿

trajectory,
✿✿✿✿

see
✿✿✿✿✿✿✿

Section
✿✿✿✿

2.1
✿✿✿

for
✿✿✿✿✿✿✿

details)
✿✿✿

the

✿✿✿✿✿✿

forecast
✿✿✿✿✿

error Eq. (A1)
✿✿✿✿✿✿✿

becomes

εfq+1 =Mεaq + εmq+1(X t
q ),

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

✿✿✿

that
✿✿

is
✿✿✿✿✿✿

written
✿✿

as
✿

εfq+1 = εpq+1 + εmq+1(X t
q ),

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(A2) 45

✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿✿✿

εpq+1 =Mεaq✿✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

predictability
✿✿✿✿✿✿

error,
✿

Eq. (12),

✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿

model.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

expression
✿

Eq. (A2)
✿

is
✿✿✿

the

✿✿✿✿✿✿✿✿✿

expression
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

error
✿✿✿✿✿✿✿

usually
✿✿✿✿✿✿✿✿✿

introduced
✿✿

in
✿✿✿✿

data

✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Daley, 1992, see Eq. (2.8)).
✿✿✿✿✿

Note
✿✿✿✿

that
✿✿✿

in
✿✿✿

this

✿✿✿✿✿✿✿✿✿

expression,
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿

error
✿✿

is
✿✿✿✿✿✿✿✿

evaluated
✿✿

at
✿✿✿

the
✿✿✿✿

true
✿✿✿✿

state
✿✿✿

X t
q 50

✿✿✿✿

while
✿✿

it
✿✿

is
✿✿✿✿✿

never
✿✿✿✿✿✿

known
✿✿✿

in
✿✿✿✿✿✿✿

practice.
✿✿

It
✿✿✿✿✿✿

would
✿✿

be
✿✿✿✿✿✿✿✿✿

interesting

✿✿

to
✿✿✿✿✿✿✿

consider
✿✿

an
✿✿✿✿✿✿✿✿✿

expression
✿✿✿✿

with
✿✿✿✿✿✿

known
✿✿✿✿✿✿✿✿

quantities
✿

e.g.
✿✿✿

with
✿✿✿

the

✿✿✿✿✿✿

analysis
✿✿✿✿✿

state
✿

;
✿✿✿

this
✿✿

is
✿✿✿✿

now
✿✿✿✿✿✿✿

detailed
✿✿

in
✿✿✿

the
✿✿✿✿

next
✿✿✿✿✿✿✿✿✿

subsection.

A2
✿✿✿✿✿✿✿✿✿✿

Expression
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿✿

considering
✿✿✿

the

✿✿✿✿✿

model
✿✿✿✿✿

error
✿✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

analysis
✿✿✿✿

state 55

✿✿✿

The
✿✿✿✿✿✿✿

forecast
✿✿✿✿

error
✿

Eq. (A2)
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿

obtained
✿✿✿

by
✿✿✿✿✿✿✿

rewriting
✿✿✿

the

✿✿✿✿✿

model
✿✿✿✿

error
✿✿✿✿✿

term
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

εmq+1(X t
q ) = εmq+1(X a

q − εaq ).✿✿✿✿✿✿

Hence,
✿✿✿

the

✿✿✿✿✿

taylor
✿✿✿✿✿✿✿✿

expansion
✿✿✿

of
✿✿✿✿

εmq+1✿✿✿✿

with
✿✿✿✿✿✿✿

respect
✿✿

to
✿✿✿

X a
q ✿✿✿

for
✿✿✿✿✿

small
✿✿✿✿

error

✿✿✿

and
✿✿✿✿

lead
✿✿✿✿

time,
✿✿✿✿✿

leads
✿✿

to

εmq+1(X t
q ) = εmq+1(X a

q )− dεmq+1,Xa
q
εaq ,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

✿✿✿✿✿

where
✿✿✿✿✿

dεm
✿✿✿✿✿✿✿

denotes
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

differential
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿

error

✿✿✿✿✿✿✿✿✿✿✿

εm =M−N
✿✿

(Eq. (5))
✿✿✿✿✿✿

which
✿✿✿✿✿

exists
✿✿✿✿✿✿

when
✿✿✿

M
✿✿✿

and
✿✿✿

N
✿✿✿

are

✿✿✿✿

both
✿✿✿✿✿✿✿✿✿✿✿

differentiable,
✿✿✿

so
✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

dεm = dM− dN .
✿

It
✿✿✿✿✿✿

results
✿✿✿✿

that

εmq+1(X t
q ) = εmq+1(X a

q )− (M−N)εaq ,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

✿✿✿✿✿

where
✿✿✿

N
✿✿

is
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

propagator
✿✿✿

of
✿✿✿✿

the
✿✿✿

TL
✿✿✿✿✿✿

nature
✿✿✿✿✿✿

along
✿✿✿

the

✿✿✿✿✿✿

analysis
✿✿✿✿✿

state
✿✿✿✿✿✿✿✿

trajectory
✿✿✿✿

(see
✿✿✿✿✿✿✿

Section
✿✿✿

2.1
✿✿✿

for
✿✿✿✿✿✿✿

details).
✿✿✿✿✿

Then,

✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

error Eq. (A2)
✿✿✿✿✿✿

expands
✿✿

as
✿

εfq+1 = εpq+1 + εma
q+1 + εmq+1(X a

q ),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(A3)

✿✿✿✿✿

where
✿✿✿✿

εma
q+1✿✿

is
✿✿✿✿✿✿

defined
✿✿✿

by

εma
q+1 = (N−M)εaq .

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(A4)5

✿✿✿✿

Note
✿✿✿

that
✿✿✿✿✿

εma
q+1 ✿

is
✿✿✿✿✿✿✿✿

unbiased
✿✿

(at
✿✿✿✿✿

least
✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿✿

error

✿

is
✿✿✿✿✿✿✿✿✿

unbiased) i.e.
✿✿✿✿✿✿✿✿✿✿✿

E
[
εma
q+1

]
= 0,

✿✿

so
✿✿✿✿

that
✿✿

is
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿

is

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Pma
q+1 = E

[
εma
q+1(ε

ma
q+1)

T
]
✿✿✿✿✿

which
✿✿✿✿✿✿✿

expands
✿✿

as
✿

Pma
q+1 =NPa

qN
T +MPa

qM
T

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

10

−
[(
MPa

qN
T
)
+
(
NPa

qM
T
)T ]

.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

✿✿✿✿✿✿✿✿

Replacing
✿✿✿

the
✿✿✿

TL
✿✿✿✿✿

model
✿✿✿

M
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿

N=M−D,
✿✿✿✿✿

leads
✿✿

to

Pma
q+1 =Πm

q+1 +
[(
MPa

qD
T
)
+
(
MPa

qD
T
)T ]

.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(A5)

✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Πm
q+1 =NPa

qN
T −MPa

qM
T
✿✿✿✿

(see
✿

Eq. (18)
✿

).
✿

15

✿✿

As
✿✿✿✿

εma
q+1✿✿✿✿✿✿✿✿

contains
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

predictability
✿✿✿✿✿

error,
✿

a
✿✿✿✿

final
✿✿✿✿✿✿✿✿✿

expression

✿✿

of
✿✿✿

the
✿✿✿✿✿✿

forecast
✿✿✿✿✿

error
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿

obtained
✿✿

as
✿✿✿✿✿✿

shown
✿✿✿✿

now.

A3
✿✿✿✿✿✿✿✿✿✿

Expression
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿

formulated
✿✿✿

in
✿✿✿✿

term

✿✿

of
✿✿✿✿✿✿

nature
✿✿✿✿✿✿✿✿✿✿✿✿

predictability

✿✿✿✿✿✿✿✿✿✿

Considering
✿✿✿

the
✿✿✿✿✿✿✿✿

definition
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

predictability
✿✿✿✿

error Eq. (12),20

✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

error Eq. (A3)
✿✿✿✿✿✿

rewrites
✿✿

as
✿

εfq+1 =Nεaq + εmq+1(X a
q ),

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(A6)

✿✿✿✿✿

which
✿✿✿✿✿✿

makes
✿✿✿✿✿✿

appear
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

predictability
✿✿✿✿✿

error
✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to

✿✿

the
✿✿✿✿✿✿

nature,
✿✿✿✿✿✿✿✿✿✿✿

ε̃pq+1 =Nεaq .
✿

✿✿✿✿

Note
✿✿✿✿✿

that
✿✿

Eq. (A6)
✿✿✿

can
✿✿✿✿

be
✿✿✿✿✿✿✿✿✿

obtained
✿✿✿✿✿✿✿✿

directly 25

✿✿✿✿

from
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

definition
✿✿✿

of
✿✿✿✿✿

the
✿✿✿✿✿✿✿✿

forecast
✿✿✿✿✿✿

error
✿

Eq. (9)

✿✿

as
✿✿✿✿✿✿✿✿✿

follows.
✿✿✿✿✿✿

By
✿✿✿✿✿✿✿✿✿✿✿

replacing
✿✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

by

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Mtq+1←tq (X a
q ) =Ntq+1←tq (X a

q )+ εmq+1(X a
q ),

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

forecast
✿✿✿✿✿✿✿✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿

first
✿✿✿✿✿✿✿✿✿✿✿

writes

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

εfq+1 =Ntq+1←tq (X a
q )−Ntq+1←tq (X t

q )+ εmq+1(X a
q ), 30

✿✿✿✿✿

where
✿✿✿✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

definition
✿✿✿✿✿✿

of
✿✿✿✿✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

nature

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

X t
q+1 =Ntq+1←tq (X t

q ) ✿✿✿✿

has
✿✿✿✿✿

been
✿✿✿✿✿✿

used.
✿✿✿✿✿✿

Then,
✿✿✿✿✿✿✿✿

rewriting

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ntq+1←tq (X t
q ) =Ntq+1←tq (X a

q − εaq ),✿✿✿✿✿✿✿✿✿

whose
✿✿✿✿✿✿✿✿

Taylor

✿✿✿✿✿✿✿✿

expansion
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ntq+1←tq (X t
q ) =Ntq+1←tq (X a

q )−Nεaq✿✿✿✿✿

leads

✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

error Eq. (A6)
✿

. 35

Appendix B: Approximation of the model-error metric

tensor field

Here, we consider the particular case where the model-error

covariance model is approximated under the white noise

assumption as
✿

as
✿

Eq. (27) i.e.

Pm≈Πm
✿✿✿✿✿

=Pf P̃p −Pp.,

✿✿✿✿✿✿✿✿

assuming
✿✿✿

this
✿✿✿✿✿✿

matrix
✿

is
✿✿

a
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix. The local metric

tensor can be diagnosed from the Taylor expansion of the

model-error correlation function 40

ρm(x,x+ δx) =
1√

Pm(x,x)Pm(x+ δx,x+ δx)
(
Pf P̃p(x,x+ δx)−Pp(x,x+ δx)

)
. (B1)
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Under an assumption of local homogeneity of

the variance, Pm(x,x)≈Pm(x+ δx,x+ δx), 45

Pf (x,x)≈Pf (x+ δx,x+ δx)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

P̃p(x,x)≈ P̃p(x+ δx,x+ δx),
and Pp(x,x)≈Pp(x+ δx,x+ δx), which leads to the

expansion

ρm(x,x+δx)≈ Pf (x,x)

Pm(x,x)

P̃p(x,x)

Pm(x,x)
✿✿✿✿✿✿✿✿

(
1− 1

2
||δx||2

g
f
x
g̃
p
x
✿

)
− 50

Pp(x,x)

Pm(x,x)

(
1− 1

2
||δx||2

g
p
x

)
. (B2)

Since, ||δx||2
gx

= δxTgxδx, the correlation is expanded as

ρm(x,x+ δx)≈ 1−
1

2
δxT

[
1

Pm(x,x)

(
Pf P̃p(x,x)gg̃x

f p −Pp(x,x)gp
x

)]
δx.

(B3)

After identification with the expected form of the expansion

ρm(x,x+ δx)≈ 1− 1

2
||δx||2

gm
x

, (B4)5

it follows that

gm
x
=

1

V f (x)−V p(x)

1

Ṽ p(x)−V p(x)
✿✿✿✿✿✿✿✿✿✿✿✿✿

(
V f Ṽ p(x)gg̃x

f p −V p(x)gp
x

)
,

(B5)

where the variance are denoted by Pf (x,x) = V f (x)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

P̃p(x,x) = Ṽ p(x)
✿

and Pp(x,x) = V p(x).

Appendix C: Computation of the modified equation for10

Euler scheme

The modified partial differential equation associated with the

numerical scheme Eq. (37) is the partial differential equa-

tion of a smooth function C, solution of the scheme, so that

C(qδt, iδx) = Cq
i i.e.15

Cq+1
i −Cq

i

δt
=−ui

Cq
i −Cq

i−1

δx
, (C1)

for which the Taylor formula in time and space at order

O(δt2, δx2) is

∂tC +
δt

2
∂2
tC + O(δt2) =20

−u

(
∂xC − δx

2
∂2
xC +O(δx2)

)
(C2)

The second order time derivation
✿✿✿✿✿✿✿✿

derivative
✿

can be replaced

from the equation Eq. (C2) itself, at an appropriate order.

Due to the δt, an expansion at order O(δt) only requires to

express the second order derivative at the lead order, that is25

from

∂tC =−u∂xC +O(δt,δx). (C3)

Then, from the time derivation
✿✿✿✿✿✿✿

derivative, the second order

derivative can be replaced by

∂2
tC = ∂t (−u∂xC)+O(δt,δx),30

= −∂tu∂xC −u∂2
xtC +O(δt,δx),

then
✿✿✿✿✿✿✿✿✿✿✿

consequently, the second order derivative ∂2
xtC can be

deduced from spatial derivation
✿✿✿✿✿✿✿✿

derivative
✿

of Eq. (C3), and

writes

∂2
xtC = −∂x(u∂xC)+O(δt,δx), 35

= −∂xu∂xC+−
✿

u∂2
xC +O(δt,δx).

It results that Eq. (C2) writes

∂tC +
δt

2

[
−∂tu∂xC −u

(
−∂xu∂xC+−

✿

u∂2
xC

)]
=

−u

(
∂xC − δx

2
∂2
xC

)
+O(δt2, δx2) 40

then
✿✿

so
✿✿✿

that
✿

∂tC +U∂xC = κ∂2
xC +O(δt2, δx2), (C4)

where U = u− δt
2 ∂tu+

δt
2 u∂xu and κ= u

2 (δx−uδt) are two

functions of t and x.

Appendix D: Computation of the modified equation for 45

Semi-Lagrangian scheme

The aims of this section is twofold, the first goal is to obtain

a discrete scheme from the semi-Lagrangian procedure, then

to deduce the modified equation of the discrete scheme.

For the sake of simplicity, the linear advection dynamics 50

∂tc+u∂xc= 0 is first considered with a velocity u > 0.

From the characteristic curve resolution it follows that

c(tq+1,xi) = c(tq,x
∗
i ), where the originate point x∗i is as-

sumed in between points xi−1 and xi, which means that the

CFL constraint uδt < δx is verified. This originate point can 55

be approximated as x∗i = xi−uiδt, and if a linear interpola-

tion is considered for the computation of c(t,x∗i ), it follows

that

c(tq,x
∗
i ) = 60


1− x∗i −xi−1

xi −xki−1

x∗i −xi−1

xi −xi−1
✿✿✿✿✿✿✿✿


cqi−1 +

(
x∗i −xi−1

xi −xi−1

)
cqi

=
uiδt

δx
cqi−1 +

(
1− uiδt

δx

)
cqi , (D1)
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Hence, the numerical scheme writes

cq+1,i =
uiδt

δx
cq,i−1 +

(
1− uiδt

δx

)
cq,i. (D2)

The modified differential equation is obtained by replacing 65

c by a smooth function c̃, solution of the numerical scheme

Eq. (D2). The computation of the modified equation is simi-

lar to the Euler case detailed in Appendix C, leading to

∂tC +

(
u− δt

2
∂tu+

δt

2
u∂xu

)
∂xC =5

(
1

2
uδx− 1

2
u2δt

)
∂2
xC. (D3)

When u < 0, the differential equation writes

∂tC +

(
u− δt

2
∂tu+

δt

2
u∂xu

)
∂xC =

(
1

2
(−u)δx− 1

2
u2δt

)
∂2
xC (D4)10

Hence, in the general situation,

∂tC +

(
u− δt

2
∂tu+

δt

2
u∂xu

)
∂xC =

(
1

2
|u|δx− 1

2
u2δt

)
∂2
xC, (D5)

whatever the sign of the velocity u.15
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