
I think the paper will be acceptable for publication after inclusion of additional diagnostics 
concerning the degree to which EnKF brings useful information of the uncertainty on the state 
of the observed system. 

 

The paper is a study of non-gaussianity in ensembles produced by an Ensemble Kalman Filter 
implemented, in a perfect model setting, on the SPEEDY intermediate meteorological model. 
It is largely original, and presents results of interest, such as the fact that non-Gaussianity 
occurs mostly in the temperature and humidity fields, and results primarily from on-off 
switches in the parametrization of tropical convection. 

I have one major comment. The Ensemble Kalman Filter that is used has ensembles with 
dimension 10240. If one takes the trouble of determining ensembles with such a large 
dimension and uses the resources that are necessary for that, it is worth evaluating those 
ensembles by more than the RMS error in the ensemble means and the Gaussianity, or 
otherwise, of those ensembles. Although the word does not appear in the present paper, it is 
very generally accepted that assimilation can be stated as a problem in Bayesian estimation, 
viz., determine the probability distribution for the state of the observed system, conditioned by 
the available data. Standard Kalman Filter achieves exact Bayesianity in linear and additive 
Gaussian situations. I think the 10240-size ensembles obtained by the authors must also be 
assessed in that respect. To what extent can the ensembles be considered as defining the 
uncertainty on the state of the observed system ? The only result presented in the paper in that 
respect is that the spatial distributions of the RMSE in the ensemble mean and the ensemble 
spread are similar (top two panels of Fig. 7). I think more should be said. 

Evaluation of ensembles has been discussed at length, if not for ensemble assimilation, at 
least for ensemble prediction (see, e.g., Gneiting et al., 2007). It is not possible in general to 
objectively assess the Bayesian character of ensembles (although it could be, albeit at a very 
high computational cost, in the identical twin situation, considered by the authors, in which 
the probability distribution of the errors affecting the data is known). But it is possible to 
objectively assess, on a statistical basis, two properties of ensembles. Reliability (also called 
calibration) is statistical consistency between the predicted PDFs and the verifying 
observations (reliability implies, in particular, equality between ensemble spread and RMSE 
in the ensemble mean). Resolution (also called accuracy, or sharpness) is closeness between 
the predicted PDFs and the observations (the RMS error in the ensemble mean is one measure 
of resolution). Objective scores have been defined for evaluating the degree to which an 
ensemble estimation system possesses those two properties. Concerning reliability (in 
addition to RMS-spread consistency), the easy-to-obtain rank histogram (Hamill, 2001) gives 
a simple global visualisation of the degree to which it is achieved. And the Brier score (see, 
e.g., Candille and Talagrand, 2005), which decomposes into a reliability and a resolution 
components, can also easily be computed, as well as its generalization, the Continuous 
Ranked Probability Score (CRPS, Hersbach, 2000). I think it is necessary to compute at least 
some of those scores, and to check in particular if they take different values when computed 
over all ensembles, or over the non-Gaussian ones only. After all, if the latter have high 
reliability and resolution, that will mean that the Ensemble Kalman Filter, even if it does not 
necessarily achieve the (rather elusive) goal of Bayesianity, provides useful information on 
the uncertainty on the state of the observed system, even in non-Gaussian situations. 
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I have in addition a number of remarks and suggestions. I put them below in approximate 
order of decreasing importance for each of three items. 

 

I. Science 

1. The authors use different diagnostics for identifying non-Gaussianity, viz., skewness and 
kurtosis, Kullback-Leibler divergence, as well as the local outlier factor (LOD) for identifying 
outliers. Since they use ensembles with size 10240, a basic information would be the 
numerical values obtained for those diagnostics with a Gaussian ensemble with that size. For 
instance, what is the value of the quantity DKL (Eq. 3) for such an ensemble ? And how often 
(if ever) does one find outliers in Gaussian samples with the LOD method as it is 
implemented in the paper ?  The only information given for Gaussian ensembles consists of 
Eqs (10-13) together with the associated Fig. 15. That information should come with a more 
precise comparison of the values obtained for Gaussian samples with the values obtained for 
the EnKF ensembles.  

2. Ll. 293-294, The genesis of non-Gaussianity is explained by the convective instability. 
Evidence for that is presented in the paper concerning the tropics, but not the storm tracks. 
 
3. Ll. 311-312, In the extratropics, (the) non-Gaussianity is generally weak and seldom 
appears except in the storm tracks, for which there are two possible explanations. Well, I 
understand the text that follows as intended at explaining why non-Gaussianity occurs rarely 
in the extratropics, but not why it appears more frequently in the storm tracks. 

4. Maybe I miss something, but Figure 10, and the associated text, make no sense to me. In 
particular, how can non-Gaussianity be identified on the Figure ? 

5. Fig. 17. Concerning the SPEEDY and NICAM assimilations, a major difference is that 
NICAM assimilated real observations, so that model errors are present. That is to be 
mentioned. 

6. L. 355-356, The small cluster generated through physical processes has some physical 
significance. What is the evidence that the small cluster is generated through physical 
processes ? I would rather suggest The small cluster may be generated through physical 
processes, and have thus physical significance. 

7. Ll. 98-100, Using ±3σ and ±4σ thresholds, the outliers appear too frequently because 
100% and 65% of all grid points statistically have at least one outlier under the Gaussian 
PDF. That sentence is ambiguous (and seems in contradiction with the previous one). Do you 
mean that, among all grid points, there is always at least one that has a ±3σ outlier, and that 
there is a 65% probability that there is at least one that has a ±4σ outlier ? Or what ? And how 
many grid points do you consider (number of horizontal grid points x number of vertical 
levels x number of physical variables ?). Do you consider here only univariate PDFs, or also 
multivariate ones ? 

8. Ll. 211-212, The frequency of high KL divergence DKL for temperature corresponds to the 
time mean RMSE and DKL. Do you mean that the frequency of high KL divergence DKL for 
temperature is similar to that of the time mean of RMSE and DKL, or what ? And then the 
pattern correlation is 0.68. The pattern correlation between what and what exactly ? 

9. Ll. 312-314. The authors discuss here the impact of the density of observations on the 
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analysis. I mention for a possible future work that the density can be easily varied in the 
identical twin setting considered in the paper. 
 
10. From a strict mathematical point of view, and because of sampling effects, formulæ (1-2), 
as well as the formula for the standard deviation σ (l. 78), are incorrect. As is well known, the 
denominator in the formula for σ should be N -1 instead of N. The appropriate formulæ for 
skewness and kurtosis are more complicated, especially if one takes into account the fact that 
the denominator σ in (1-2) is obtained from the same sample as the numerators. In view of the 
large dimension of the samples used here (10240), the error must be negligible. But have you 
used codes that take sampling errors into account ? I suggest you mention briefly that 
question. And what is the exact connection between formulæ (1-2) and (10-13) ? And 
speaking of Eq. (12), if there is an a priori known bias in the sample kurtosis, why is not that 
bias subtracted in the first place ? 

11. Ll. 281-283, With increasing the ensemble size up to 10240, the LOFs of the small cluster 
and main cluster show almost the same value (Fig. 5b). Contrary to what you seem to say 
here, Figures 5b and 16c are distinctly different. The small clusters have distinctly different 
values of LOP. That may be explained by the smaller sample in Fig. 16c (1280) than in Fig. 
5b (10240), but the difference must be mentioned. 

12. L. 145. It could be useful to say that the ensemble perturbations are the deviations from 
the mean of the ensemble. 

13. The authors describe in detail the local outlier factor (LOP) method (ll. 102- 125), and 
demonstrate it on a two-dimensional example (Fig. 3). My understanding is that it was also 
used in two dimensions for the diagnostics that follow (e.g. Fig.6). That does not seem to be 
said explicitly. 

14. Ll. 84-85, … two PDFs which are normalized by standard deviation … Normalization is 
actually not necessary for the general definition of the Kullback-Leibler divergence (that point 
actually does not matter here since the two PDFs that are to be compared have the same 
standard deviation, but what is written here may mislead an uniformed reader). 

15. Fig. 11. At what time (06 or 12 UTC) is dθ’e evaluated ? (12 UTC, from what I 
understand, but say it explicitly). And change left side to right side in l. 498 of the caption. 

16. L. 338, The number of outliers is basically one. By which criterion for ‘outlyingness’  ? 
LOF > 8, as indicated on l. 200 ? Fig. 6b does not show that there is usually one outlier. Or do 
you mean that (again by that particular, largely arbitrary, criterion), you observe only one 
outlier much more frequently than several. Although that statement is in my mind of minor 
interest, be more explicit, and do not wait for the conclusion to mention it. 
 

2. Editing 

17. Ll. 332-333 … one of three horizontal wind components … What do you mean? See also 
ll. 525-526. 

18. Ll. 106-107. I would suggest to put parentheses … number of objects (except for the 
object p itself) within … 
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19. L. 241, The more outside members … The formulation is awkward. I suggest The 
members having the largest (smallest) temperature values at 1200 UTC correspond to very 
large (very small) values of stability (dark red and blue points respectively) 

20. L. 278, as in Fig. 5b. Do you mean you took the same grid point as in Fig. 5b ? 

21. Ll. 263-264, 10240 members (see Fig. 4) 

22. Caption of Fig. 9, As in Fig. 8, 

 

3. English 

23. L. 264, to discuss → to identify 

24. L. 280, … are divided into outliers.	
  → … are identified as outliers. 

25. L. 21, the localization impact → the impact of localization  
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