
Reply to the first reviewer

The authors sincerely appreciate the first referee’s careful review of the manuscript. Taking into

account the comments from the two reviewers, we will substantially revise the manuscript to estab-

lish consistency with the modern view of intermittency. The authors’ responses to the reviewer’s

comments are as follows:

General remark It is a commonplace that the global ocean is much less well observed than the

atmosphere, a matter of central importance given the role of the oceans in the crucial topic of global

heating. It is perhaps for this reason that scaling approaches to the oceans have lagged behind those

in use for the atmosphere. Nevertheless, the current work is to be welcomed as being an important

new step.

Reply:

We appreciate the reviewer’s encouragement. We hope this study will serve as one of the important

steps in the intermittency study of oceanic turbulence.

1. In the atmosphere, things have advanced substantially since Kolmogorov dissipation accompa-

nied by Gaussian and log-normal distributions. In the spirit of trying to encourage the authors to

extend and expand their analysis, I suggest a few references herewith:

*S Lovejoy & D Schertzer, 2013, THE WEATHER AND CLIMATE: Emergent Laws and Multi-

fractal Cascades, CUP, ISBN 9781107018983

*A F Tuck, 2010, Quart. J. R. Meteorol. Soc., 136, 1125-1144. From molecules to meteorology

via turbulent scale invariance. Doi: 10.1002/qj.644

* SJ Hovde, AF Tuck, S Lovejoy, D Schertzer - International Journal of Remote Rensing, 32,

5891-5918, 2011. Vertical scaling of temperature, wind and humidity fluctuations: dropsondes from

13 km to the surface of the Pacific Ocean.

Reply:

We appreciate the reviewer for introducing the important references. The literature review was not

up to the required standard during the preparation of our paper. Following the reviewer’s advice, we

have studied several important papers and books on scaling laws and intermittency in meteorology

and other applications. As a result, we decided to extend our analysis to a general moment with

exponent q and interpret it in the multifractal framework as follows.

In fact, the scale dependence of log ǫr is just a special case of the scaling of the general q-th

moment of ǫr:

E [(ǫr)
q] ∝ r−K(q), (1)

where K(q) is the scaling exponent introduced in the Introduction. If we take the derivative with

respect to q and set q = 0, we get

E [log (ǫr)] ∝ −K ′(0) log r. (2)

For this reason, we perform the scaling analysis (1) of observational data with respect to various

moment exponents.
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The scalings for several moments are shown in Fig. 1. The observational curve of (q,K(q)) in

the range of 0 ≤ q ≤ 2 is shown in Fig. 2 in cyan. Two types of theoretical expression, log-normal

(K(q) = C1(q
2 − q), red) and log-stable (K(q) = C1

α−1(q
α − q), black) cascade models [e.g.,

Lovejoy and Schertzer, 2013], are tested. While there is some deviation from the log-normal model

with C1 = 0.316, the data are well fitted to the log-stable model with the multifractal index α = 1.59
and the codimension of the mean C1 = 0.357. These values are largely consistent with previous

results for the atmospheric dissipation fields [e.g., Chigirinskaya et al., 1994, Lazarev et al., 1994].

As our data have the sampling dimension Ds =
logNs

log (L/r) ≃
log 400

log (5000/5) = 0.867, the upper bound for

q is calculated to be qs = 2.95 (Fig. 3), which justifies the range 0 ≤ q ≤ 2.
From these results, we adopt a log-stable generator for the multiplicative cascade of turbulent

dissipation.
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Figure 1: Scale dependency of the moments: (log (r/r0),− logE [(ǫr/ǫr0)
q]). K(0.5) =

−0.103± 0.006, K(1.5) = 0.241± 0.036, K(2.0) = 0.616± 0.053.
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Figure 2: Moment scaling exponent K(q) for observational data (cyan), the best-fitting log-normal

model (C1 = 0.316, α = 2; red), and the best-fitting log-stable model (C1 = 0.357, α = 1.59;

black).
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Figure 3: Codimension c(γ) of singularities γ for the log-stable model (black) and for the log-normal

model (red). The sampling dimension Ds and the limitation for the moment exponent (the slope of

the navy line) are also shown.
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2. It may be that the oceanic dissipation can be calculated simply from the kinetic energy compo-

nents, but as a non-oceanographer I am bound to ask whether the effects of salinity, acidity and the

entropy of mixing have been properly accounted. The atmospheric experience suggests that dissipa-

tion must be treated explicitly, even though it is still not an automatic procedure.

Reply:

As the reviewer pointed out, the paper lacked an explanation regarding how the energy dissipa-

tion rate has been calculated from micro-scale temperature. We are going to include the following

description in the Method section.

Turbulent energy dissipation rates ǫ were estimated as follows. Micro-scale temperature fields

were observed using the fast-response Fasttip Probe model 07 (FP07) thermistors attached to frames

measuring conductivity, temperature, and depth (CTD) as common oceanographic observational plat-

forms. ǫ was derived by detecting the Batchelor wavenumber [Batchelor, 1959] with fitting [Ruddick

et al., 2000] theoretical spectrum [Kraichnan, 1968] to the observed temperature vertical gradient

spectra after correcting the spectra with a double-pole function and a 3-ms time-constant [Goto et al.,

2016]. Each data was evaluated for a depth interval of approximately 10 m with a half overlap, to

yield 5-dbar interval data. We herein include all data without any quality screening so as not to miss

the extreme values, which are important for the purpose of investigating intermittency.

3. Figures 4 and 6 give me pause before recommending this paper for publication. The Gaussian fit

in Figure 4 is telling in my opinion: to the left of the maximum, the fit near maximum slope is poor,

and the poor fit continues, with the opposite sense, into the tail, which is clearly longer and fatter than

its counterpart on the right hand side. Figure 6, in both halves, shows curves that are not sufficiently

linear to sustain claims of scaling.

Reply:

We appreciate the reviewer for letting us know of these crucial points. As pointed out by the reviewer,

indeed Fig. 4 is different from log-normal. We are going to treat it as a log-stable distribution in the

revised text as follows.

Regarding Fig. 4, a closer look at it reveals that the logarithmic values do not follow Gaussian

statistics. Although the poor fit for the small values (left-hand-side tail) may be partly caused by

the measuring errors, the fat tail should probably come from the non-Gaussian nature of the data.

The poor fit for the large values (right-hand-side tail) is even more problematic because it directly

affects the appearance frequency of extreme values. The asymmetry and the mismatched tail behavior

from Gaussian in the histogram thus suggest that the generator for multiplicative processes in this

dissipation field does not obey Gaussian statistics.

In the framework of multifractal cascade [e.g., Schertzer et al., 1995, Mandelbrot and Evertsz,

1996, Lovejoy and Schertzer, 2013], the generator should obey a left-sided stable distribution. As

energy dissipation appears as the exponential of the generator, the critical point in the comparison

between the statistical model and the observational data is the tail structure for the large values (right-

hand-side tail). Figure 4 is the histogram for observed data in the log–log scale with a Gaussian

distribution and a stable distribution for reference. The rare occurrence of singular events in the right-

hand-side tail is better expressed by the stable distribution (we will discuss the sample generation

procedure later). For this reason, we adopt a multiplicative cascade with a generator that obeys a

stable distribution.
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Figure 4: Distribution of observational data in log-log scale (cyan), the best-fitting Gaussian distri-

bution (red), and the statistics of samples generated from a log-stable multiplicative cascade (black).

Regarding Fig. 6, the insufficient linearity in the scaling curves should come from the logarithm

of ǫ as it tends to suffer from observational noise, as mentioned in the Appendix of the previous

manuscript. Rather than stick to a specific moment for scaling, a better way of performing the scaling

analysis would be extending it to the moment with an arbitrary degree, as written in the reply to

comment #1. We have investigated the scale dependency of the moments with exponent 0 ≤ q ≤ 2
(Fig 1). We think the linearity is acceptable for claiming scaling this time.
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Reply to the second reviewer

The authors sincerely appreciate the second referee’s careful review of the manuscript. Taking

into account the comments from the two reviewers, we will substantially revise the manuscript to

establish the consistency with the modern view of intermittency. The authors’ responses to the re-

viewer’s comments are as follows:

1. The authors seem to rediscover some well known results (scale dependence of the local average

of the energy dissipation in turbulence), and seem also to ignore the relevant literature, which is vast

and classical on this topic.

Reply:

As the reviewer pointed out, we did not review enough relevant literature. We are going to include

a review of the scaling study of turbulence and stress on the universal multifractal theory in the

Introduction as follows.

In fully developed turbulence, there exists the inertial subrange where the advective term is dom-

inant to the molecular viscosity term in the Navier–Stokes equation [e.g., Pope, 2000]. In the inertial

subrange, there is a cascade of energy from large to small [e.g., Richardson, 1922]. As the first quan-

titative theory on the energy cascade, Kolmogorov [1941] established a relationship that said velocity

fluctuations are locally isotropic and determined by the homogeneous energy dissipation rate:

E [|v(x+ ℓ)− v(x)|] ≈ ǫ1/3ℓ1/3. (1)

Soon after, it is criticized that energy dissipation rate is not homogeneous but shows significant ran-

dom fluctuations. To address this issue, he published a refined theory [Kolmogorov, 1962] that stated

that i) log ǫr, the logarithm of the spatially averaged energy dissipation rate over a scale r, obeys a

Gaussian distribution, and ii) its mean and variance are dependent on scale log L
r (L: the outer scale)

with the proportionality constants −µ1/2 and µ1, respectively. This implies that the multiplicative

cascade comprises underlying iid generators Γj , and log ǫr is expressed as a random walk with step

sizes Γj [e.g., Yaglom, 1966]:

log
ǫr
ǫL

=

n∑

j=1

log
ǫre(j−1)h

ǫrejh
≡

n∑

j=1

Γj . (2)

where h = 1
n log L

r is the resolution increment. Then, an application of the central limit theorem:

n∑

j=1

Γj +
µ1

2 h

(µ1nh)1/2
∼ N (0, 1), as n → ∞ (3)

implies that if Γj are iid random variables, each of which having mean −µ1h/2 and variance µ1h,

then log ǫr
ǫL

obeys N (−µ1

2 nh, µ1nh), which is consistent with the statement of Kolmogorov [1962].

Although this log-normal cascade well describes turbulence in an approximate sense, there are some

shortcomings at high-order moments and in the application of various fluid phenomena.

There have been several alternative theories for multiplicative cascades [e.g, Frisch, 1995]. Among

them, the universal multiplicative cascade model [e.g., Lovejoy and Schertzer, 2013] is the most
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promising theory that explains vast phenomena, including turbulence, other geophysical phenomena,

and several fractal-like appearances in natural and even man-made objects.

The basic mechanism of multifractality is encoded in the codimension setting: ǫr that has the

dominant contribution to a moment occupies a corresponding subdomain, whose size can vary ac-

cording to the moment exponent [Stanley and Meakin, 1988, Lovejoy and Schertzer, 2013]. Suppose

the q-th moment at scale r is described as

Zr(q) =
∑

ǫr

eF (ǫr); F (ǫr) = logn(ǫr) + q log ǫr, (4)

where n(ǫr) is the probability distribution of ǫr, and we avoid using integral formulation for readabil-

ity. We assume that the value is concentrated on the most dominant term at ǫ∗r:

Zr(q) ≈ eF (ǫ∗r). (5)

Define the singularity γ and its codimension c(γ) at that point as

ǫ∗r ≈

(
L

r

)γ

; n(ǫ∗r) ≈

(
L

r

)
−c(γ)

. (6)

The exponents γ and c(γ) indicate how extreme and how rare the value of ǫr that dominate the q-the

moment is, respectively. The right-hand-side tail of the probability distribution is thus determined by

the exponent c(γ), which can be different from a quadratic function if the generator obeys a stable

distribution with α < 2 [Eq. (1.2.11) of Samorodnitsky and Taqqu, 1994].

Substituting Eq. (5) into Eq. (4), we get

K(q) ≡
logZr(q)

log (L/r)
= max

γ
(γq − c(γ)) . (7)

From the extremum condition, we have

dc

dγ
= q;

dK

dq
= γ. (8)

Hence, K(q) and c(γ) are the Legendre transforms of each other:

c(γ) = max
q

(γq −K(q)) . (9)

A crucial point in universal multifractal is that the generator of the cascade obeys a stable distribu-

tion, which is a generalization of Gaussian distribution, and has the following characteristic function:

Γj ∼ Sα(σ, β, µ) ⇐⇒ E[eiθΓj ] = exp
{
−σα|θ|α

(
1− iβ(signθ) tan

πα

2

)
+ iµθ

}
, (10)

with 0 < α ≤ 2 and α 6= 1 [Definition 1.1.6 of Samorodnitsky and Taqqu, 1994].

Accordingly, the construction of random walk in the cascade is built on the basis of a generalized

version of central limit theorem: if Γj are iid random variables, each of which obeys Sα(σh
1/α, β, µh),

then as n → ∞ we have

n∑

j=1

Γj − µh

σ(nh)1/α
∼ Sα(1, β, 0);

n∑

j=1

Γj ∼ Sα(σ(nh)
1/α, β, µ(nh)), (11)
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where h = 1
n log L

r is the resolution increment.

If we set β = −1 and µ = −σ̂α
α ≡ −σα

(
cos π

2 (2− α)
)
−1

, then eΓj satisfies energy conserva-

tion and has finite moments [Proposition 1.2.12 of Samorodnitsky and Taqqu, 1994]:

E
[
eqΓj

]
= eK(q)h; E

[
eq

∑n
j=1 Γj

]
= eK(q)nh, (12)

where K(q) ≡ σ̂α
α(qα − q).

From the above, spatially averaged energy dissipation rate can be expressed as

ǫr = ǫ exp




n∑

j=1

Γj


, (13)

where Γj is the same as in Eq. (11), and ǫ is the energy input at the outer scale L, which is conserved

through the cascade in a probabilistic sense. At a fixed scale r, ǫr(x) in the space domain are not

independent but correlated [e.g., Schmitt, 2003]:

E[ǫr(x)ǫr(x+ ℓ)] ∝ ℓ−K(2), for ℓ > r. (14)

2. The manuscript lacks a clear structure; it lacks a review of the literature about intermittent

turbulence, and intermittent marine turbulence. The problem addressed is not well explained and

globally the whole object of the manuscript does not seem to be to be relevant. I do not suggest

to accept such manuscript. I do not recommend major changes: this manuscript must be totally

rewritten.

Reply:

Taking seriously into account the reviewer’s critical comment, we will entirely rewrite the manuscript

to present a meaningful result regarding the analysis of intermittency and the estimation of mean value

based on the multifractal framework. For reviewing the intermittency of turbulence, please refer to the

reply to comment #1. For the averaging method based on multifractal multiplicative cascade, please

refer to our reply to comment #6.

3. Equation 1: a general book on turbulence should be cited, such as e.g. Pope (2000). Text

between equation 1 and equation 3: the authors should indicate that the local energy dissipation in

turbulence is intermittent and that an expression such as equation 3 has been proposed by Kolmogorov

(1962) to deal with the scale dependence of the locally averaged energy dissipation. Kolmogorov

(1941) scaling law should be cited and the scale dependence of the statistics of the locally averaged

energy dissipation, given in the framework of multifractal cascade models in turbulence (a relevant

reference can be here Frisch 1995) should be provided. It is correct that a lognormal approximation

for the dissipation is often assumed, but it is also known that the turbulent dissipation is not strictly

lognormal. There are many references on such topic, some of them should be cited.

Reply:

A review on turbulence intermittency will be added to the manuscript. The relevant literature is cited

therein. Please see the reply to comment #1.
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4. The authors should discuss the inertial range in which there is a cascade from large to small

scales. The scale dependence of the statistics of the locally averaged energy dissipation should be

found in the inertial range. In the multifractal framework, which is widely used to describe and model

the intermittency of the dissipation, the scale dependence of the moments of the locally averaged

dissipation field has a theoretical expression which could be tested in the manuscript.

Reply:

The explanation for the cascade models in the inertial range will be added to the introduction. Please

refer to the reply to comment #1. Regarding the scale dependency of the moments, the following

explanation will be added.

In fact, the scale dependence of log ǫr is just a special case of the scaling of the general q-th

moment of ǫr:

E [(ǫr)
q] ∝ r−K(q), (15)

where K(q) is the scaling exponent introduced in the Introduction. If we take the derivative with

respect to q and set q = 0, we get

E [log (ǫr)] ∝ −K ′(0) log r. (16)

For this reason, we perform the scaling analysis (15) of observational data with respect to various

moment exponents.

The scalings for several moments are shown in Fig. 1. The observational curve of (q,K(q)) in

the range of 0 ≤ q ≤ 2 is shown in Fig. 2 in cyan. Two types of theoretical expression, log-normal

(K(q) = C1(q
2 − q), red) and log-stable (K(q) = C1

α−1(q
α − q), black) cascade models [e.g.,

Lovejoy and Schertzer, 2013], are tested. While there is some deviation from the log-normal model

with C1 = 0.316, the data are well fitted to the log-stable model with the multifractal index α = 1.59
and the codimension of the mean C1 = 0.357. These values are largely consistent with previous

results for the atmospheric dissipation fields [e.g., Chigirinskaya et al., 1994, Lazarev et al., 1994].

As our data have the sampling dimension Ds =
logNs

log (L/r) ≃
log 400

log (5000/5) = 0.867, the upper bound for

q is calculated to be qs = 2.95 (Fig. 3), which justifies the range 0 ≤ q ≤ 2.
From these results, we adopt a log-stable generator for the multiplicative cascade of turbulent

dissipation.
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Figure 1: Scale dependency of the moments: (log (r/r0),− logE [(ǫr/ǫr0)
q]). K(0.5) =

−0.103± 0.006, K(1.5) = 0.241± 0.036, K(2.0) = 0.616± 0.053.
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Figure 2: Moment scaling exponent K(q) for observational data (cyan), the best-fitting log-normal

model (C1 = 0.316, α = 2; red), and the best-fitting log-stable model (C1 = 0.357, α = 1.59;

black).

5



 0

 1

 2

 3

 4

 5

 0  1  2

d+Ds

ra
re

 e
v
e
n
ts

 c
(γ

)

extreme events γ

size limitation
lognormal
logstable

Figure 3: Codimension c(γ) of singularities γ for the log-stable model (black) and for the log-normal

model (red). The sampling dimension Ds and the limitation for the moment exponent (the slope of

the navy line) are also shown.

5. About the data analyzed: what is the quantity measured? The dissipation epsilon cannot be

directly measured. Sometimes epsilon is estimated from vertical profiles using some hypothetical

expression: this must be specified and the relevance of the formulae should be discussed. In the

inertial range, in the framework of multiplicative cascades models, the dissipation field has a scaling

power-law Fourier spectrum. This should be check using the data. The PDF given in Figure 4 is not

lognormal, very clearly. It is not symmetric; it has fat tails. A lognormal test can be applied to check

the quality of the lognormal fit of the PDF.

Reply:

As the reviewer pointed out, the paper lacked explanation regarding how the energy dissipation rate

has been calculated from micro-scale temperature. We will add the following description in the

Methods section. Please refer to the corresponding papers for the treatment of the spectrum.

Turbulent energy dissipation rates ǫ were estimated as follows. Micro-scale temperature fields

were observed using the fast-response Fasttip Probe model 07 (FP07) thermistors attached to frames

measuring conductivity, temperature, and depth (CTD) as common oceanographic observational plat-

forms. ǫ was derived by detecting the Batchelor wavenumber [Batchelor, 1959] with fitting [Ruddick

et al., 2000] theoretical spectrum [Kraichnan, 1968] to the observed temperature vertical gradient

spectra after correcting the spectra with a double-pole function and a 3-ms time-constant [Goto et al.,

2016]. Each data was evaluated for a depth interval of approximately 10 m with a half overlap, to

yield 5-dbar interval data. We herein include all data without any quality screening so as not to miss

the extreme values, which are important for the purpose of investigating intermittency.
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As pointed out by the reviewer, the PDF does not obey log-normal statistics. We are going to treat

it as a log-stable distribution in the revised manuscript as follows.

Regarding Fig. 4, a closer look at it reveals that the logarithmic values do not follow Gaussian

statistics. Although the poor fit for the small values (left-hand-side tail) may be partly caused by

the measuring errors, the fat tail should probably come from the non-Gaussian nature of the data.

The poor fit for the large values (right-hand-side tail) is even more problematic because it directly

affects the appearance frequency of extreme values. The asymmetry and the mismatched tail behavior

from Gaussian in the histogram thus suggest that the generator for multiplicative processes in this

dissipation field does not obey Gaussian statistics.

In the framework of multifractal cascade [e.g., Schertzer et al., 1995, Mandelbrot and Evertsz,

1996, Lovejoy and Schertzer, 2013], the generator should obey a left-sided stable distribution. As

energy dissipation appears as the exponential of the generator, the critical point in the comparison

between the statistical model and the observational data is the tail structure for the large values (right-

hand-side tail). Figure 4 is the histogram for observed data in the log–log scale with a Gaussian

distribution and a stable distribution for reference. The rare occurrence of singular events in the right-

hand-side tail is better expressed by the stable distribution (we will discuss the sample generation

procedure later). For this reason, we adopt a multiplicative cascade with a generator that obeys a

stable distribution.
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Figure 4: Distribution of observational data in log-log scale (cyan), the best-fitting Gaussian distri-

bution (red), and the statistics of samples generated from a log-stable multiplicative cascade (black).

6. The correct average of the dissipation field is the arithmetic average; other types of averages

-geometric or taking log- have no physical meaning. This questions the objective of the manuscript,

since the authors perform statistics on the log of epsilon, assuming Gaussianity of this quantity. Since
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this assumption is an approximation, what is the quality of the analysis done in this manuscript? The

authors should try to quantify this.

Reply:

As the reviewer pointed out, the arithmetic average is the primary object for characterizing the mean

state of the dissipation field. Meanwhile, oceanographers often use the logarithm of ǫ to visualize

the dissipation field and/or compare the field with parameterization schemes [e.g., Scheifele et al.,

2018, Whalen et al., 2015, Waterhouse et al., 2014, Cuypers et al., 2012, Gargett, 1999, Smyth et al.,

1997]. One reason is that the logarithmic field has a spatially correlated structure, whose shape is

relatively easy to recognize, whereas the original field has a highly intermittent structure. For such

practical purposes, we think that the logarithmic field is still of importance. We are going to revise

the manuscript regarding the averaging method as follows. This estimation is a simple application of

the cascade simulation and will help us avoid the misreading of the logarithmic fields.

To examine the statistical property of geometric averages, we have constructed a simulation

model for the multiplicative cascade following the procedure in Schmitt [2003]. It is based on a

generator that obeys a left-sided stable distribution Sα(σh
1/α,−1,−σ̂α

αh) with h ≡ log 2, σ̂α
α ≡

σα/ cos π
2 (2− α) = C1/(α− 1) [e.g., Samorodnitsky and Taqqu, 1994].

Consider a fixed horizontal position. The cascade simulation is performed for the variable Xi,j

with spatial index 1 ≤ i ≤ 2N , and scale index 0 ≤ j ≤ N , where N = log2
L
r .

1. For each spatial index i = 1, 2, · · · , 2N , set Xi,0 = 0.

2. For each scale index j = 1, · · · , N , repeat the following.

• For each spatial block k = 1, 2, · · · , 2j , do the following.

(a) Generate a random variable ξk,j that obeys Sα(1,−1, 0) [Misiorek and Weron, 2012].

(b) For each spatial index i = (k − 1) · 2N−j + 1, · · · , k · 2N−j , downscale X by

Xi,j = Xi,j−1 − σ̂α
αh+ σh

1
α ξk,j .

Using the simulated variable Xi,j , the energy dissipation rate at the horizontal position ~x and the

vertical position zi = irj at resolution rj = L/2j is written as

ǫrj (~x, zi) = ǫ(~x) exp (Xi,j), (17)

where ǫ(~x) denotes the energy input rate at the horizontal position.

What we want to estimate is the energy input rate ǫ(~x) at the horizontal position ~x of the profile

observation. Using the above model, here we calculate the following quantities by sampling the

realizations of the vertical profile.

The expected value for the geometric average for the neighboring m points starting from an outer

condition ǫ for the cascade is

ag(m) = E

[
exp

(
1

m

m∑

i=1

γi

)∣∣∣∣∣ǫ
]
. (18)

where γi ≡ log ǫi, and ǫi’s denote the energy dissipation rates for the observed length scale.
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As the ratio of the expected values for geometric average to arithmetic average Φ(m) ≡ ag(m)
ǫ is

independent of the initial condition ǫ, we can define an estimator for the average energy ǫ as

eg(m) =
1

Φ(m)
exp

(
1

m

m∑

i=1

γi

)
. (19)

The expected value of eg(m) is ǫ, which means it is an unbiased estimator for the outer condition.

The relative error η for the estimator eg(m) is

η(eg(m)) =

√
var
[

1
Φ(m) exp

(
1
m

∑m
i=1 γi

)∣∣∣ǫ
]

E

[
1

Φ(m) exp
(
1
m

∑m
i=1 γi

)∣∣∣ǫ
] =

√
var
[
exp

(
1
m

∑m
i=1 γi

)∣∣ǫ
]

E
[
exp

(
1
m

∑m
i=1 γi

)∣∣ǫ
] , (20)

while that for arithmetic average ea(m) ≡ 1
m

∑m
i=1 ǫi is

η(ea(m)) =

√
var
[
1
m

∑m
i=1 ǫi

∣∣ǫ
]

ǫ
. (21)

We calculate these quantities by using the the simulation model for the multiplicative cascade.

The result is shown in Fig. 5. It is obvious that the relative error for eg(m) is comparable to that

for ea(m). For this reason, we propose that geometric averages can also be used for estimating the

average energy ǫ, provided that it is properly scaled up by the factor 1/Φ(m).
The usage of Fig. 5 is as follows. For example, if you take the geometric average of 128–(512)

neighboring points, the population mean ǫ is expected to be 1/0.116 = 8.62 (1/0.0515 = 19.4) times

larger than the geometric average, black curve at x = 128 (512), but after rescaling the geometric

average should be almost as accurate estimation of ǫ as the arithmetic average, provided that the

multiplicative cascade model is accepted.
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Figure 5: The expected values of the arithmetic mean (red), which remains constant ǫ = 1, and of the

geometric mean (black) according to the number of neighboring points. The relative errors for both

are also shown (blue and magenta, respectively).

We think there is another way to estimate ǫ in the logarithmic space, which is data assimilation

using the cascade model and the observation. As a future direction for the research, we are going to

mention a procedure of data assimilation as follows.

We can also estimate the energy input rate ǫ by data assimilation into the energy cascade model.

We denote here the logarithm of the energy input rate as γ = log ǫ, the logarithm of the observed

energy dissipation rates as γj = log ǫj , j = 1, 2, · · · , 2n, and the logarithm of arithmetic average of

the observed energy dissipation rates as γ̂ = log
(

1
2n
∑2n

j=1 ǫj

)
. We also denote the generators (iid

stable random variables) of the n-step cascade model as

Γ = {Γij | i = 1, 2, · · · , n; j = 1, 2, · · · , 2i},

and its subset as

Γ′ = {Γij | i = 1, 2, · · · , n− 1; j = 1, 2, · · · , 2i}.

Using these generators we can calculate the model counterpart of γj as

γM
j = γ +

n∑

i=1

Γi,[(j−1)/2n−i]+1,

where [·] is Gauss’s symbol. The expected value of γ under the condition of γj’s is written using

Bayes’s rule as

E [γ|{γj}] =
∑

γ

γP (γ|{γj}) =
∑

γ

γ
P (γ, {γj})∑
γ P (γ, {γj})

=

∑
γ γP(γ)P ({γj |γ})∑
γ P(γ)P ({γj}|γ)

, (22)
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where P ({γj}|γ) = P (Γ′)
∏2n

j=1 P

(
γj − γ −

∑n−1
i=1 Γi,[(j−1)/2n−i]+1

)
.

Regarding P (γ) and P (Γ′), we can draw the samples of γ such that

γ̂ − γ ∼ Sα(σh
1/α,−1,−σ̂α

αh),

and that of Γ′ such that

Γij ∼ Sα(σh
1/α,−1,−σ̂α

αh), i = 1, 2, · · · , n− 1; j = 1, 2, · · · , 2i.

The probability density P

(
γj − γ −

∑n−1
i=1 Γi,[(j−1)/2n−i]+1

)
can be calculated by using an approx-

imation formula for the α-stable distribution.

We thus obtain the ensemble calculation formula for the expected value:

E [γ|{γj}] ;

∑ens
γ,Γ′ γ

∏2n

j=1 P

(
γj − γ −

∑n−1
i=1 Γi,[(j−1)/2n−i]+1

)

∑ens
γ,Γ′

∏2n

j=1 P

(
γj − γ −

∑n−1
i=1 Γi,[(j−1)/2n−i]+1

) , (23)

where
∑ens

denotes the sum over ensemble members. The variance is also calculated by using the

similar formula.

Note that a more sophisticated data assimilation method than a naive sampling method will be

needed when you treat the generator space with a large dimension size.
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