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Abstract. Complex networks have emerged as an essential approach of geoscience to generate novel insights into nature

of geophysical systems. To investigate the dynamic processes in the ionosphere, a directed complex network is constructed

based on the probabilistic graph by the Vertical Total Electron Content (VTEC) in 2012. The results of the power-law

hypothesis testing show that both the out-degree and in-degree distribution of the ionospheric network are not scale-free. Thus,

the distribution of the interactions in the ionosphere is homogenous. None of the geospatial positions plays an eminently5

important role in the propagation of the dynamic ionospheric processes. The spatial analysis of the ionospheric network

shows that the inter-connections principally exist between the neighbors in geographical space, indicating that the propagation

of the dynamic processes primarily depends on the geospatial distance in the ionosphere. Moreover, the joint distribution of

the edge distances shows that the dynamic processes travel further along the longitude than along the latitude. The analysis

of small-world-ness indicates that the ionospheric network possesses the small-world property, which can make the ionosphere10

stable and efficient in the propagation of the dynamic processes. The fractal analysis shows that the ionospheric network is

not self-similar in the current temporal and spatial resolution, indicating the complexity of the spatial variation for a long

time in the ionosphere.

Copyright statement. All authors have approved the manuscript for submission. The content of the manuscript has not been published or

submitted elsewhere.15

1 Introduction

Including large numbers of irregularities with different sizes and affected by various factors (like, solar irradiation,

geomagnetic field, gravity wave and tidal wave (Kelly, 2009)), the ionosphere performs as a complex system about

the spatial and temporal variation. Complex network is an efficient tool to study the characteristics of complex systems,

containing a large number of interacting parts. Its application spans in various scientific fields (Zerenner et al., 2014), such as20

Biology (e.g., protein interaction networks), Information Technology (e.g., World Wide Web) and Social Sciences (e.g., social

networks (Wang et al., 2016a, b)). The application of complex network theory to ionosphere science is still a young field,

since few researches reported. The network theory was discussed by Podolská K. et al. by two abstracts in the 2010 and

2012 EGU General Assembly Conference (Podolská et al., 2010, 2012). The prior abstract wanted to examine the influence
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of geomagnetic disturbances and solar activity on thermal plasma parameters. The other one attempted to find out time shifts

between fundamental ionospheric parameters. Therefore, none of them tried to describe the global ionosphere based on the

complex network.

In modern statistical mechanics of geophysics, especially seismological science, the idea of complex networks is receiving

significant attention. Baiesi and Paczuski (2005) constructed directed networks of earthquakes by placing a link between pairs5

of events that were strongly correlated. Their results showed that the network was scale-free and highly clustered. Abe and

Suzuki (2006) constructed growing random networks by adding an edge between two successive earthquakes and found that

these earthquake networks were scale-free and small-world. The constructions of the above two networks were based on

the expert judgment to add an edge and ignored the uncertainty in the system. Jiménez et al. (2008) divided the Southern

California region into cells of 0.1◦ and calculated the correlation of activities in them to create networks, which showed the10

small-world features. Suteanu (2014) proposed a network-based method for the assessment of earthquakes’ relationships in

space-time-magnitude patterns and further applied the results for the study of temporal changes in volcanic seismicity patterns.

Those two networks were built based on correlation, which was a linear measurement of the interactions in the objective

system.

Another geophysical application of complex networks is on climate science (Nocke et al., 2015). Peron et al. (2014)15

also built the temperature network by correlation and regarded the global grid points as nodes. They showed that the

network characteristics of the North American region marked the differences between the eastern and western regions.

Such differences can be viewed as a reflection of the presence of a large network community on the west side of the

continent. To depict the nonlinearity and uncertainty in the climate, information theory is introduced to construct the

complex network of climate. Donges et al. (2009a, b) used complex networks to uncover a backbone structure carrying20

matter and energy in the global surface air temperature field. They used mutual information (MI) to construct the

network which was undirected, because the mutual information was symmetric to measure the dynamical similarity of

surface air temperature between regions. Hlinka et al. (2013) investigated the reliability of directed climate networks

being built by conditional mutual information (CMI), using the dimensionality-reduced surface air temperature data.

Compared with MI, CMI is asymmetric and able to build directed networks for the global surface air temperature.25

However, both MI and CMI are standard bivariate methods, which only describe the interactions between two spatial

points without considering the influences of the others. So is the correlation. Probabilistic graph is an efficient method

to describe the nonlinear interactions within the system from the holistic perspective (Koller and Friedman, 2009). Fur-

thermore, similar to the seismology and climate science, the ionosphere is also distributed geographically. It is often

concerned with spatial interactions and flows. These researches propose a possibility that approaches from the perspective30

of complex networks may also shed new light on ionospheric features. In this article, the probabilistic graph is employed to

model the dynamic processes within the ionosphere and build the ionospheric complex network.

Within the global ionosphere, there are interactions among the variations over different positions. Moreover, vari-

ations over one position may cause variations over other positions. The motivation of the current study is to explore

the causal interactions between the VTEC over different GIM cells within the global ionosphere based on the directed35
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complex network. Hence, we can have a deep understanding of the dynamic processes within the ionosphere. Mean-

while, based on the causal relationship in the ionosphere, we can make a more precise prediction of the VTEC utilizing

the observations obtained at the connected GIM cells in the network. Accurate prediction of the VTEC is valuable to

improve the performance of GPS and ionospheric radio propagation. We interpret the dynamic ionospheric processes as

the information flow in the directed network and explore the ionospheric characteristics on a global scale. The VTEC dataset5

supplied by the Centre for Orbit Determination in Europe (CODE) in 2012 is selected.

The article is organized as follows. The data and method description are provided in Section 2. Furthermore, the results about

the patterns of the ionospheric interactions are presented in Section 3. The scale-free topology of the ionospheric network

is checked by conducting power-law hypothesis testing. The distribution of the edge distances is calculated to analyze

the propagation of the dynamic processes in the ionosphere. The small-world structure of the ionospheric network is10

explored to examine the stability of the ionosphere. The self-similar structure in the ionosphere is investigated through

fractal analysis. Section 4 discusses the summaries and conclusions.

2 Description of Data and Methods

2.1 VTEC Data Source

As a critical physical quantity of the ionosphere, VTEC carries abundant information about the variations of the ionosphere15

(Ercha et al., 2015). The International Global Navigation Satellite System Service (IGS) supplies global VTEC data with 2-

hours’ time resolution. The dataset is determined from more than 200 IGS stations within a global scale (Wei et al., 2009).

CODE, as one of the analysis centers of IGS, has estimated VTEC from the dual-frequency code and phase data of GPS since

April 1998 (Guo et al., 2015). In the current research, VTEC data is derived from CODE (ftp://ftp.unibe.ch/aiub/CODE) in the

form of Global Ionospheric Map (GIM). The GIM ranges from −180◦ to 180◦ along the longitude and from −87.5◦ to 87.5◦20

along the latitude. The negative values stand for the south latitude and west longitude. The size of an elementary GIM cell is

5◦ along the longitude and 2.5◦ along the latitude. Each GIM cell is defined as a variable, which is a node in the ionospheric

network. The VTEC data over the GIM cell is its observation. For the decrease of the computation by reducing the variables’

quantity, the size of the GIM cells has been doubled. So the latitude and longitude sizes of GIM cells become 5◦ and 10◦. The

number of variables (GIM cells) is 36× 36, which is 1296, because 180◦ and −180◦ are the same for longitude. In this paper,25

we select the data in 2012.

2.2 Mapping the data to a complex network

As a complex system, the ionosphere is usually characterized by the presence of multiple interrelated aspects, which are

spatially distributed. Affected by various factors, the ionosphere also involves a significant amount of uncertainty. Moreover,

our observations are always noisy; even those observed aspects are often measured with some error. Thus, probability needs to30

be used to represent such random property. Furthermore, the probabilistic graph can efficiently describe the nonlinearity
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within the system from the holistic perspective (Koller and Friedman, 2009). As a result, the probabilistic graph is selected

to model the interrelation and uncertainty in the ionosphere. We describe the GIM data as the realization of a multivariate

probabilistic graph on the global spatial grid.

Probabilistic graphs use a graph-based representation as the basis for compactly encoding a complex probabilistic distri-

bution over a high-dimensional space (Koller and Friedman, 2009). The probabilistic graph is a useful way of visualizing5

interactions between multiple variables. Therefore, in addition to inference, probabilistic graphs can also be used to discover

the knowledge within the dataset. As a kind of complex networks, probabilistic graphs are constructed to represent a joint dis-

tribution by making conditional independence (CI) assumptions. The nodes in the networks represent variables, and the edges

represent CI assumptions (Murphy, 2012). The absence of an edge between two nodes implies that the corresponding variables

are conditionally independent given all other nodes. Based on the probability theory, we say variables X and Y are CI iff the10

conditional joint distribution can be written as a product of conditional marginal:

X ⊥ Y |Z⇐⇒ p(X,Y |Z) = p(X|Z)p(Y |Z) (1)

In our backgrounds, X and Y are the two given GIM cells and Z represents the GIM cells except X and Y . Thus,

the analysis is performed from the holistic perspective. As suggested in the Ref. (Zerenner et al., 2014), directed complex

network can offer additional knowledge, like the distinction between child and parent nodes. Thus, we construct the ionospheric15

networks that only include directed edges between GIM cells. Suppose two GIM cells are not directly connected (conditional

independent) within the ionospheric network, there should be no interactions between these cells after eliminating all of the

existing edges. The directed edges here represent the causal interactions. In other words, after the variations of VTEC

over a certain GIM cell, there are some related variations appearing over other GIM cells. As following, the construction

of the directed ionospheric network (also known as Bayesian probabilistic graph or Bayesian network) is introduced to describe20

the dynamic processes in the global ionosphere. Dynamic processes are constituted by a series of causal interactions

among the GIM cells. Conditional independence tests involving sets of variables can be used to determine the existence and

direction of edges (Ebert-Uphoff and Deng, 2012).

The cells in the GIMs are defined as the variables distributed throughout the globe. As the nodes on the network, the

variables are separated by their own geospatial locations. The VTEC of each variable are arranged in the form of a time25

series with the 2-hours’ time resolution. Thus, for the year 2012, the length of the observations is 4392 (12/day×366day).

We employ structure learning algorithm for Bayesian network as a basis for the construction of the ionospheric net-

works. In our background, the measurements of the 1296 variables are all continuous. To build the directed network, we

should determine the existence and directions of edges between any two variables from the holistic perspective instead of

just considering the two ones. The Fast Greedy Equivalence Search (FGS) algorithm developed by Joseph Ramsey et al.30

(Ramsey et al., 2017) works well for large numbers of continuous variables to build Bayesian networks. This algorithm

utilizes the strategy that, edges are iteratively added starting with an empty network according to maximal increases in

BIC score (Schwarz, 1978). Here, the variables’ distributions are assumed to be Gaussian. We use the implementation

of the FGS algorithm in the TETRAD package (Version 5.3.0-2, available at http://www.phil.cmu.edu/projects/tetrad/)
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Figure 1. The directed complex network of the ionosphere (part). The network is developed from the VTEC dataset by the FGS algorithm.

The nodes indicate the GIM cells, while the directed edges represent causal interactions between cells.

and make the penalty discount is 10. TETRAD possesses a convenient user interface to enter preknowledge. As the iono-

spheric network includes 1296 nodes and 10,985 directed edges in the globe, it is hard to fully present such a complex

network. Here, we exhibit part of the ionospheric network. The result is shown in Figure 1.

3 Results and Discussion

3.1 Degree distribution of the ionospheric network5

To explore the influence of the VTEC’s variation over a certain GIM cell, the degree of complex network is employed.

As one of the most critical parameters to depict the nodes in a complex network, the degree is the number of edges the node

possesses. Concerning ionospheric networks, the degree of a cell can be selected to quantify how many GIM cells display

a causal interaction with that given cell in the globe. In other words, cells with large degree can influence large numbers

of GIM cells. In the complex network, hubs refer to the nodes with large numbers of links that significantly exceed10

the average. Hubs have a significant effect on the system, which is described by the network. The emergence of hubs

results from the scale-free property of networks (Barabási and Albert, 1999). Hence, to study the hub positions where

the dynamic ionospheric processes mainly originate or converge, we have to check the scale-free topology about the

degree distribution of the ionospheric network. The degree distribution is the probability distribution of these degrees

over the whole network. For the directed ionospheric network, the degree distribution is divided into two different kinds, the15
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Figure 2. The degree distributions of the ionospheric network. (a) is the out-degree distribution; (b) is the in-degree distribution. The red

curves delineate the distribution fitting.

out-degree distribution (the distribution of outgoing edges) and the in-degree distribution (the distribution of incoming edges).

The degree distributions of the ionospheric network are shown in Figure 2.

It has been reported that real complex networks often exhibit scale-free properties (Barabási and Albert, 1999). This means

their degree distribution follows a power law, at least asymptotically. That is, the number of links of a given node exhibits

a power law distribution P (k)∼ k−γ , where k is the number of links. P (k) can be calculated by the statistical frequency5

and γ is a parameter whose value is typically in the range, 2< γ < 3. From the distributions shown in Figure 2, it is hard

to determine whether the observed degree is drawn from a power-law distribution or not. Clauset et al. (2009) presented

a principled statistical framework for discerning power-law behavior in empirical data. As the method shown in the Ref.

(Clauset et al., 2009), we have tested the power-law hypothesis quantitatively. Both the results of the out-degree and in-

degree distribution reject the hypothesis, indicating that the ionospheric network is not scale-free. Thus, most GIM10

cells approximately have the same number of edges, indicating the network of the global ionosphere is homogeneous. For

the dynamic processes in the ionosphere, there is no unique spatial position acting as the sources or sinks. This property

is completely different from that of the geomagnetic field. In other words, there are no visible ’hub’ GIM cells for the

ionospheric variations. Moreover, from the curves of distribution fitting shown in Figure 2, we can find that both the

distributions are more likely Poisson, just like the network of climate (Tsonis et al., 2007).15
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Figure 3. The joint distribution of the directed edge distances in the global ionospheric network. (a) is the distribution of edges against the

latitudinal and longitudinal distances; (b) is the distribution of edges against their latitudinal distances; (c) is the distribution of edges against

their longitudinal distances. The red curves delineate the distribution fitting.

3.2 Joint distribution of the edge distances

The propagation of the dynamic processes is related to the transmission of energy or particles in the ionosphere. To

analyze such transport property, the distribution of the edge distances is calculated. The edge distance is defined by

the geographical distance between the origin and destination of an edge. The height of the VTEC supplied by CODE is

H = 450km. As the measurements are on the earth which can be regarded as a sphere, the distances between any two5

positions can be calculated by the arc lengths on the sphere d=Rθ, where R=R0 +H , R0 is the earth radius and θ is

the corresponding central angle. Compared with the undirected probabilistic graphs, the directed ones can provide additional

knowledge about the causal interactions within the ionosphere. To study the directional characteristics of the propagation

of the dynamic ionospheric processes, the edge distances are mapped to the latitude and longitude directions.

The latitudinal distances are calculated, by dlat = (lat2− lat1)R, where lat1 and lat2 are the latitudes of the origin10

and destination of the given edge. Meanwhile, the longitudinal distances are calculated, by dlon = (lon2−lon1)R′, where

lon1 and lon2 are the longitudes of the origin and destination of the given edge. As the radii of different latitudinal circles

are different, the radius of an equivalent latitudinal circle is calculated by the average of the radii of the two latitude

circles where the origin and destination of the given edge are located on, i.e.,R′ = 1
2 [cos(lat1)+cos(lat2)]R. The positive

signs of the distances represent the directions of edges and can be either eastward or northward. The result is shown in15

Figure 3.

As is shown in Figure 3 (a), the edges are mainly distributed around the origin of the coordinate system. Thus, the GIM cells

are mostly connected with their spatial neighbors. The local connections indicate that, in the ionosphere, the propagation of
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the dynamic processes is primarily affected by the geospatial distance and almost satisfies the proximity principle in space.

Furthermore, from the approximate symmetry along the Xlabel in Figure 3 (b) and (c), we can discover that it is almost the

same for the westward and eastward propagation of the dynamic processes, also for the southward and northward. From Figure

3 (b) and (c), we can find that the number of edges decreases as the increase of the absolute value of latitudinal and longitudinal

distance. This phenomenon also reveals that the local interactions account for a considerable proportion in the ionospheric5

network. The proximal propagation may be due to the diffusion effects of charged particles in the ionosphere. Besides,

comparing the standard deviations of the edges’ longitudinal and latitudinal distances, which are 0.53 and 0.28, the results

show that the distribution curve along the latitude direction is steeper than that along longitude one. Therefore, the rate

of decrease along the latitude is larger than that along the longitude. Accordingly, the dynamic processes are propagated

more efficiently along the longitude than along the latitude. Such phenomenon may relate to the north-south currents10

or geomagnetic field in the ionosphere. Moreover, the ionospheric network is not entirely connected locally. Long-range

edges emerge both along the latitude and longitude. The long-range propagation may be caused by the geomagnetic field

or other global factors. Thus, the ionospheric network possesses a primarily ordered structure with some exceptional long-

range connections.

3.3 Small-world structure of the ionospheric network15

The small-world structure can make the system be more stable to react to the abrupt variations (Tsonis et al., 2007).

Therefore, we explore the small-world structure of the ionospheric network to examine the stability of the ionosphere

which is regarded as a dynamical system. Lying between the completely random and completely regular network, the small-

world network is a type of graph in which any given node is likely to reach every other node by a small number of steps

compared with the total number of network nodes (Gallos et al., 2007). The ’six degrees of separation’ in social networks is20

one of the most famous examples. Watts and Strogatz (1998) found that some networks can be highly clustered, like regular

lattices, yet have small characteristic path lengths, like random graphs. To investigate the small-world structure of the iono-

spheric network, the original network has to be reduced to an undirected graph (Abe and Suzuki, 2006, 2009). Furthermore, to

mathematically describe the small-world property, two critical parameters are often selected, which are the average clustering

coefficient C and the average shortest path length L. Their definitions are shown in Equation (2), (3) and (4).25

Ci =
2∆i

ki(ki− 1)
, (2)

C =
1

N

N∑
i=1

Ci, (3)

L=
2

N(N − 1)

∑
i≥j

dij . (4)30
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Figure 4. The test of the small-world structure in the ionospheric network. (a) shows the 150 results of σ; (b) shows the frequency of the

results of σ; (c) shows the 150 results of C/Cr; (d) is the frequency of the results of C/Cr .

Here, Ci is the local clustering coefficient of node i. ki is the degree of node i and ∆i denotes the number of edges between

the neighbors of node i with node i itself being excluded. The global clustering coefficient C is defined as the average of all

local clustering coefficients Ci. N is the number of nodes and dij denotes the length of the shortest path between the nodes

i and j. dij is calculated by Dijkstra algorithm (Newman, 2010). Thus, C describes the local connections in the ionospheric

networks, while L characterizes a network’s connectivity structure globally (Zerenner et al., 2014).5

To quantitatively define a small-world network, values for the network properties must be compared with those values

acquired from the equivalent random networks, which have the same degree with the given network on average. A measurement

of ’small-world-ness’ is proposed as follows (Humphries and Gurney, 2008; Humphries et al., 2011):

σ =
C/Cr
L/Lr

. (5)

Here, C and L are the average clustering coefficient and the average shortest path length of the given network, while Cr and10

Lr are those of the equivalent random network. If the given network fulfills the conditions, σ > 1 and C/Cr > 1, it meets the

small-world criteria. To reduce the impact of randomness, the results shown in Figure 4 are calculated by 150 random networks.

From Figure 4 (a) and (c), we can find that the results all satisfy σ > 1 and C/Cr > 1. Shown in Figure 4 (b) and (d),

the frequencies are approximately Gaussian, and the standard deviations are 0.028 and 0.035. Such small standard deviations
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indicate the results are close to the real values (the averages) 6.64 and 8.08. Therefore, the ionospheric network behaves as

a small-world graph. The propagation of the dynamic processes in the ionosphere presents small-world property. Just

as the small-world property in the atmosphere (Donges et al., 2009b), such ionospheric property also results from the

teleconnections beyond the geospatial distance in the ionospheric network. Such teleconnections play an important role in

stabilizing the ionosphere system and make the dynamic ionospheric processes transferred efficiently (Donges et al., 2009b;5

Tsonis et al., 2007). If a disturbance is generated somewhere in the ionosphere, the small-world structure of the ionospheric

network allows the ionosphere to react quickly and coherently to those variations. This propagation mechanism of the dy-

namic process can diffuse local variations thereby reducing the possibility of prolonged local anomalies and providing more

stability for the global ionosphere. Thus, chances of major ionospheric shifts are reduced.

3.4 Fractal nature within the ionospheric network10

The spatial prediction, especially regional prediction, depends heavily on the self-similarity in the ionosphere. Thus,

we investigate the self-similar structure in the ionosphere through fractal analysis, which can also provide a deeper

understanding of the ionospheric network. Song et al. (2005) applied the Box-covering algorithm to demonstrate the exis-

tence of fractality in many real networks. By the regular fractal analysis, the fractal dimension can be calculated through the

Box-covering algorithm. The relation between the boxes’ minimum number (NB(lB)) needed to cover the network and the15

box’s size(lB) obeys the power law as follows:

NB(lB)∼ l−dBB . (6)

If Equation (6) is satisfied by the given network, then lgNB(lB)∼−dB lg lB . Thus, the fractal dimension dB can be obtained

by dB =− limlB→0
lgNB(lB)

lg lB
. In the practical application, dB is usually obtained by the negative of the slope of the line fitted

by lgNB(lB) against lg lB (Molontay, 2015).20

The ultimate goal of Box-covering algorithms is to locate the optimum solution, i.e., to identify the NB(lB) value for any

given box size lB . Song et al. (2007) demonstrated that this problem could be mapped to the graph coloring problem, which was

known to belong to the family of NP-hard problems. To solve the problem efficiently, the greedy coloring algorithm is utilized.

As the Ref. (Song et al., 2005) suggested, the greedy coloring algorithm can both reveal the self-similar structure and determine

the fractal dimension. However, a dual network should be constructed beforehand by the application of a renormalization25

procedure which coarsely grains the ionospheric network into boxes containing nodes within a given size lB (Song et al.,

2007). In the greedy coloring algorithm, boxes are treated as the nodes of the dual network. Node coloring is a well-known

procedure, where colors are assigned to each node of a network. Accordingly, the minimum number of boxes NB(lB) is equal

to the minimum required number of colors. The details of the algorithm are shown in the Ref. (Song et al., 2007). Because the

results of the greedy coloring algorithm depend on the original coloring sequence, we randomly reshuffle the original coloring30

sequence and apply the greedy coloring algorithm for 10,000 times to investigate the quality of the algorithm. The results are

shown in Figure 5.
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Figure 5. The results of 10,000 times of greedy coloring algorithm implementation for the ionospheric network. (a) shows the probability

distribution P (NB) of the minimum box number of NB against different box sizes lB ; (b) shows the 10,000 results of NB against different

lB on the log-log scale and the corresponding Least Square fitting; (c) shows the 10,000 results of lg(NB) against different lB and the

corresponding Least Square fitting.

Here, lB ranges from 1 to lmaxB , which is the maximum distance in the ionospheric network plus 1. Based on the Box-

covering algorithm, the distance l between the GIM cells in the same box should fulfill l < lB . Therefore, when lB is 1 and

lmaxB , the minimum number of boxesNB is the number of GIM cells and 1, as is shown in Figure 5 (b) and (c) where lmaxB = 8.

Shown in Figure 5 (a), the distribution curves for all box sizes lB are narrow Gaussian distributions, indicating that almost

every implementation of the algorithm yields a solution close to the optimal. Accordingly, we can use the mean to stand for the5

optimal value when we use Least Square fitting to measure the fractal dimension dB . Figure 5 (b) is log-log plot, and (c) is

semi-log plot for Y-axis. Comparing those two subfigures, it is obvious that the relationship between N(lB) and lB follows

N(lB)∼ 10−lB rather than N(lB)∼ l−dBB .

Therefore, in the current temporal and spatial resolution, the ionospheric network does not possess self-similar structure,

indicating the complexity of the ionospheric spatial variation for a long time. Construction of the long-term geospatial model10

of the ionosphere is still a challenging work. We believe that because of the non-fractal property, the predictability of the

ionosphere for one year should decrease. Spatial characteristics within the ionosphere differ complexly and dramatically

with the variation of regions for one year. Such complex spatial variations in the current resolution may disrupt the

similarity in the ionosphere. To further investigate the self-similarity within the ionosphere, the time window and space
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resolution of the ionospheric observations should be considered. In our background, the self-similarity in the ionosphere

may be detected by the observations of high temporal and spatial resolution.

4 Conclusions

The ionosphere can be regarded as a spatially extended complex system. Therefore, the complex network is used to analyze the

dynamic processes in the global ionosphere based on the VTEC from IGS. As a Bayesian probabilistic graph, the ionospheric5

network is constructed based on the conditional independence theory by FGS algorithm. The edges of the network represent the

causal relationships between any two GIM cells from the holistic perspective. We have analyzed the structure of the directed

ionospheric network. The results of the power-law hypothesis test show that both the out-degree and in-degree distribution of

the ionospheric network are not scale-free. The ionospheric network is homogenous. None of the geospatial positions plays

an eminently important role in the propagation of dynamic ionospheric processes. Based on the latitudinal and longitudinal10

distances between the beginnings and ends of the edges, the joint distribution is analyzed to explore the propagation of

the dynamic processes in the ionosphere. The results show the edges principally exist between the neighbors in geographic

space, indicating that the propagation of the dynamic processes mainly satisfies the proximity principle in the ionosphere.

Moreover, the joint distribution of the edge distances shows that the dynamic processes travel more efficiently along the

longitude than along the latitude. Also, the small-world structure is studied to examine the stability of the ionosphere. The15

small-world-ness is found to be larger than 1. Meanwhile, the clustering coefficient is larger than those of the classical random

networks. Thus, the ionospheric network possesses small-world property, which makes the ionosphere stable and efficient in

the propagation of the dynamic processes. Also, the analysis of the self-similar structure shows the ionospheric network is

not fractal in the current resolution, indicating the complexity of the spatial variation for a long time in the ionosphere. In

general, the complex network provides a peculiar perspective on the ionosphere research. Depending on the choice of nodes,20

edges and methods, ionospheric networks may take different forms to study different properties of the ionosphere.
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