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Abstract This study is focused on multistable slip of earthquakes based on a 12 

one-degree-of-freedom slider-slider model in the presence of thermal-pressurized 13 

slip-weakening friction and viscosity by using the normalized equation of motion of 14 

the model. The major model parameters are the normalized characteristic 15 

displacement, Uc, of the friction law and the normalized viscosity coeficient, η, 16 

between the slider and background plate. Analytic results at small slip suggest that 17 

there is a solution regime for η and γ (=1/Uc) to make the slider slip steadily. 18 

Numerical simulations exhibit that the time variation in normalized velocity, V/Vmax 19 

(Vmax is the maximum velocity), obviously depends on Uc and η. The effect on the 20 

amplitude is stronger due to η than due to Uc. In the phase portrait of V/Vmax versus 21 

the normalized displacement, U/Umax (Umax is the maximum displacement), there are 22 

two fixed points. The one at large V/Vmax and large U/Umax is not an attractor; while 23 

that at small V/Vmax and small U/Umax can be an attractor for some values of η and Uc. 24 

When Uc<0.55, unstable slip does not exist. When Uc≥0.55, Uc and η divide the 25 

solution domain into three regimes: stable, intermittent, and unstable (or chaotic) 26 

regimes. For a certain Uc, the three regimes are controlled by a lower bound, ηl, and 27 

an upper bound, ηu, of η. The values of η l, ηu, and ηu-ηl all decrease with increasing 28 

Uc, thus suggesting that it is easier to yield unstable slip for larger Uc than for smaller 29 

Uc or for larger η than for smaller η. When Uc<1, the Fourier spectra calculated from 30 

simulation velocity waveforms exhibit several peaks, thus suggesting the existence of 31 

nonlinear behavior of the system. When Uc>1, the related Fourier spectra show only 32 

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2017-17, 2017
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 25 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



 2 

one peak, thus suggesting linear behavior of the system. 33 

 34 

Key Words: Multistable slip, one-degree-of-freedom spring-slider model, 35 

displacement, velocity, thermal-pressurized slip-weakening friction, viscosity 36 

 37 

1. Introduction 38 

The earthquake ruptures consist of three steps: nucleation, dynamical 39 

propagation, and arrest. Due to the lack of a comprehensive model, a set of equations 40 

to completely describe fault dynamics has not yet been established, because 41 

earthquake ruptures are very complicated. Nevertheless, some models, for instance 42 

the crack model and dynamical lattice model, have been developed to approach fault 43 

dynamics. Several factors will control earthquake ruptures (see Wang, 2016b; and 44 

cited references herein), including at least brittle-ductile fracture rheology, normal 45 

stress, re-distribution of stresses after fracture, fault geometry, friction, seismic 46 

coupling, pore fluid pressure, elastohydromechanic lubrication, thermal effect, 47 

thermal pressurization, and metamorphic dehydration. A general review can be seen in 48 

Bizzarri (2009). Among the factors, friction and viscosity are two important ones in 49 

controlling faulting.  50 

Burridge and Knopoff (1967) proposed a one-dimensional spring-slider model 51 

(abbreviated as the 1-D BK model henceforth) to approach fault dynamics. Wang 52 

(2000, 2012) extended this model to a two-dimensional version. The two models and 53 

their modified versions have been long and widely applied to simulate the occurrences 54 

of earthquakes (see Wang, 2008, 2012; and cited references therein). In the followings, 55 

the one-, two-, three-, few-, and many-body models are used to represent the one-, 56 

two-, three-, few-, and many-degree-of-freedom spring-slider models, respectively. 57 

The few-body models have been long and widely used to approach faults (Turcotte, 58 

1992) 59 

Since the commonly-used friction laws are nonlinear, the dynamical model itself 60 

could behave nonlinearly. A nonlinear dynamical system can exhibit chaotic 61 

behaviour under some conditions (Thompson and Stewart, 1986; Turcotte, 1992). 62 

This means that the system is highly sensitive to initial conditions (SIC) and thus a 63 

small difference in initial conditions, including those caused by rounding errors in 64 

numerical computation, yields widely diverging outcomes. This indicates that 65 

long-term prediction is impossible in general, even though the system is deterministic, 66 
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meaning that its future behavior is fully determined by their initial conditions, without 67 

random elements. This behavior is known as (deterministic) chaos (Lorenz, 1963). 68 

An interesting question is: Can a simple few-body model with total symmetry 69 

make significant predictions for fault behavior? Gu et al. (1984) first found some 70 

chaotically bounded oscillations based on a one-body model with rate- and state- 71 

dependent friction. Perez Pascual and Lomnitz-Adler (1988) studied the chaotic 72 

motions of coupled relaxation oscillators. Related studies have been made based on 73 

different spring-slider models: (1) a one-body model with rate- and state-dependent 74 

friction (e.g., Gu et al., 1984; Belardinelli and Belardinelli, 1996; Ryabov and Ito, 75 

2001; Erickson et al., 2008, 2011; Kostić et al., 2013); (2) a one-body model with 76 

velocity-weakening friction (e.g., Brun and Gomez, 1994); (3) a one-body model with 77 

slip-weakening friction (e.g., Wang, 2016a,b); (4) a two-slider model with simple 78 

static/dynamic friction (e.g., Nussbaum and Ruina, 1987; Huang and Turcotte, 1990); 79 

(5) a two-body model with velocity-dependent friction (e.g., Huang and Turcotte, 80 

1992; de Sousa Vieira, 1999; Galvanetto, 2002); (6) a two-body model with rate- and 81 

state-dependent friction (e.g., Abe and Kato, 2013); (7) a two-body model with 82 

velocity-weakening friction (Brun and Gomez, 1994); (8) a two-body model with 83 

slip-weakening friction (e.g., Wang, 2017); (9) many-body model with velocity- 84 

weakening friction (e.g., Carlson and Langer, 1989; Wang, 1995, 1996); and (10) 85 

one-body quasi-static model with rate- and state-dependent friction (e.g., Shkoller and 86 

Minster, 1997). Results suggest that predictions for fault behaviour are questionable 87 

due to the possible presence of chaotic slip. 88 

The frictional effect on earthquake ruptures has been widely studied as 89 

mentioned above. However, the studies of viscous effect on earthquake ruptures are 90 

rare. The viscous effect mentioned in Rice et al. (2001) was just an implicit factor 91 

which is included in the evolution effect of friction law. In this work, I will investigate 92 

the effects of thermal pressurized slip-weakening friction and viscosity on earthquake 93 

ruptures and the generation of unstable (or chaotic) slip based on a one-body model. 94 

 95 

2. MODEL 96 

2.1 One-body Model 97 

Fig. 1 shows the one-body model whose equation of motion is: 98 

 99 

md2u/dt2=-K(u-uo)-F(u,v)-Φ(v),                            (1) 100 
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 101 

where m is the mass of the slider, u and v (=du/dt) are, respectively, the displacement 102 

and velocity of the slider, uo is the equilibrium location of the slider, K is the spring 103 

constant, F is the frictional force between the slider and the background and a 104 

function of u or v, and Φ is the viscous force between the slider and the background 105 

and a function of v. The slider is pulled by a driving force FD due to the moving plate 106 

with a constant driving velocity, vp, through a leaf spring of strength, K. Hence, the 107 

driving force is FD=Kvpt and thus uo=vpt. When FD is slightly larger than the static 108 

frictional force, Fo, friction changes from static friction strength to dynamic one and 109 

thus the slider moves.  110 

2.2 Viscosity 111 

Jeffreys (1942) first emphasized the importance of viscosity on faulting. 112 

Frictional melts in faults depend on temperature, pressure, water content, and etc. 113 

(Turcotte and Schubert, 1982) and can yield viscosity on the fault plane (Byerlee, 114 

1968). Rice et al. (2001) discussed that rate- and state-dependent friction in thermally 115 

activated processes allows creep slippage at asperity contacts on the fault plane. 116 

Scholz (1990) suggested that the friction melts would present significant viscous 117 

resistance to shear and thus inhibit continued slip. However, Spray (1993, 1995, 2005) 118 

stressed that the frictional melts possessing low viscosity could generate a sufficient 119 

melt volume to reduce the effective normal stress and thus act as fault lubricants 120 

during co-seismic slip. His results show that viscosity remarkably decreases with 121 

increasing temperature. For example, Wang (2011) assumed that quartz plasticity 122 

could be formed in the fault zone when T>300 oC after faulting and it would lubricate 123 

the fault plane at higher T and yield viscous stresses to resist slip at lower T. From 124 

numerical simulations, Wang (2007, 2016b, 2017) stressed the viscous effect on 125 

faulting. Noted that several researchers (Knopoff et al., 1973; Cohen, 1979; Xu and 126 

Knopoff, 1994; Knopoff and Ni, 2001; Dragoni and Santini, 2015) took viscosity as a 127 

factor in causing seismic radiation to reduce energy during faulting.  128 

The viscosity coefficient, υ, of rocks is mainly controlled by temperature, T. An 129 

increase in T will yield partial melting of rocks and thus the viscosity coefficient, υ, 130 

first is increased, then reaches the largest value at a particular T, and finally decreases 131 

with increasing T The relation between υ and T can be described by the following 132 

equation (e.g., Turcotte and Schubert, 1982): υ=υoexp[(Eo+pVa/RT)] where υo is the 133 
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largest viscosity at low ambient T of an area, Eo is the activation energy per mole, p is 134 

the pressure, Va is the activation volume per mole, and R is the universal gas constant 135 

(Eo/R≈3×104 K). Obviously, υ decreases with increasing T. This is particularly 136 

remarkable in regions of high confining pressure. On the other hand, Diniega et al. 137 

(2013) assume that υ exponentially depends on temperature: υ~eβ(1-T*), where β is a 138 

constant and T*= (T-TC)/(TH-TC) is a dimensionless temperature within a 139 

temperature range of TC to TH. The value of υ increases with T* when T*<1 and 140 

decreases with increasing T* when T*>1. Wang (2011) inferred that in the major slip 141 

zone<0.01 m of the 1999 Ms7.6 Chi-Chi, Taiwan, earthquake, T(t) in the fault zone at 142 

a depth of 1111 m increased from ambient temperature Ta≈45 oC at t=0 s to peak 143 

temperature Tpeak=1135.1 oC at t=~2.5 s. T(t) began to decrease after t=2.5 s and 144 

dropped to 160 oC at t=195 s. This yields a change of viscosity in the fault zone. 145 

The description about the physical models of viscosity can be found in several 146 

articles (Jaeger and Cook, 1977; Cohen, 1979; Hudson, 1980; Wang, 2016b). A brief 147 

description is given below. For many deformed materials, there are elastic and viscous 148 

components. The viscous component can be modeled as a dashpot such that the 149 

stress–strain rate relationship is: σ=υ(dε/dt) where σ and ε are the stress and the strain, 150 

respectively. Two simple models (shown in Fig. 2) commonly used to describe the 151 

viscous materials are the Maxwell model and the Kelvin-Voigt model (or the Voigt 152 

model). The first one can be represented by a purely viscous damper (denoted by "D") 153 

and a purely elastic spring (denoted by "S") connected in series,. Its constitution 154 

equation is: dε/dt=dεD/dt+dεS/dt=σ/υ+E-1dσ/dt where E is the elastic modulus and 155 

σ=Eε. The constitutive relation of the second model is: σ(t)=Eε(t)+υdε(t)/dt.  156 

For the Maxwell model, the strain will increase, without a upper limit, with time; 157 

while the Kelvin-Voigt model the strain will increases, with a upper limit, with time. 158 

Wang (2016b) assumed that the latter is more appropriate than the former to be 159 

applied to the seismological problems as suggested by Hudson (1980). Hence, the 160 

Kelvin-Voigt model is taken in this study. To simplify the problem, only a constant 161 

viscosity is considered below. The viscous stress at the slider is represented by -υv.  162 

However, it is not easy to directly implement viscosity in a dynamical system as 163 

used in this study. Wang (2016b) represented the viscosity coefficient in an alternative 164 

way. Viscosity leads to the damping of oscillations of a body in viscous fluids. The 165 

damping coefficient, η, depends on the viscosity coefficient, υ, and the linear 166 
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dimension, R, of the body in a viscous fluid. According to Stokes’ law, the η of a 167 

sphere of radius R in a viscous fluid of υ is η=6πRυ (cf. Kittel et al., 1968). In order 168 

to simplify the problem, the damping coefficient is taken in this study. Hence, the 169 

viscous force is Φ=ηv. Noted that the unit of η is N(m/s)-1. 170 

2.3 Friction caused by thermal pressurization 171 

Numerous factors can affect friction (see Wang, 2009, 2016b; and cited 172 

references herein). When fluids are present and temperature changes in faults, thermal 173 

pressurization will yield resistance on the fault plane and thus play a significant role 174 

on earthquake rupture (Sibson, 1973; Lachenbruch, 1980; Chester and Higgs, 1992; 175 

Fialko, 2004; Fialko and Khzan, 2005; Bizzari and Cocco, 2006a,b; Rice, 2006; Wang, 176 

2000, 2006, 2009, 2011, 2013, 2016b, 017; Bizzarri, 2010; Bizzarri, 2011a,b). 177 

Rice (2006) proposed two end-members models for thermal pressurization: the 178 

adiabatic-undrained-deformation (AUD) model and slip-on-a-plane (SOP) model. He 179 

also obtained the shear stress-slip functions caused by the two models. The first model 180 

corresponds to a homogeneous simple shear strain ε at a constant normal stress σn on 181 

a spatial scale of the sheared layer that is broad enough to effectively preclude heat or 182 

fluid transfer. The second model shows that all sliding is on the plane with τ(0)= 183 

f(σn-po) where po is the pore fluid pressure on the sliding plane (y=0). For this second 184 

model, heat is transferred outwards from the fault plane. Although the stress τsop(u) 185 

also shows slip-weakening (Wang, 2009), the SOP model is not appropriate in this 186 

study because of the request of a constant velocity for this model. 187 

The shear stress-slip functions, τ(u), caused by the AUD model is: 188 

 189 

τaud(u)= f(σn-po)exp(-u/uc).                                    (3) 190 

 191 

The parameters uc is the characteristic displacements associated with the thickness 192 

and some physical properties of fault zone. The stress τaud(u) displays exponentially 193 

with u and thus exhibits slip-weakening friction. Based on the AUD model, Wang 194 

(2009) proposed a simplified slip-weakening friction law (denoted by the TP law 195 

hereafter): F(u)=Foexp(-u/uc), where Fo is the static frictional force, to study seismic 196 

efficiency. Wang (2016b, 2017) applied the law to simulate slip of one-body and 197 

two-body spring-slider models. Fig. 3 exhibits F(u) versus u for five values of uc, i.e., 198 

0.1, 0.3, 0.5, 0.7, and 0.9 m. The friction force decreases with increasing u and it 199 
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decreases faster for smaller uc than for larger uc. Meanwhile, the force drop decreases 200 

with increasing uc. For small u, exp(-u/uc) can be approximated by 1-u/uc (Wang, 201 

2016a,b, 2017). The parameter uc
-1 is almost the decreasing rate, γ, of friction force 202 

with slip at small u. Small (large) uc is related to large (small) γ. 203 

2.4. Predominant Frequency and Period of the System 204 

To conduct marginal analyses of slip of one-body model with friction, Wang 205 

(2016b) used the friction law: F(u)=Fo-γu. His results show that the natural periods 206 

are To=2π/(K/m)1/2 when friction and viscosity are excluded and  207 

 208 

Tn=To/[1-To
2(η2+4mγ)/(4πm)2]1/2.                          (4) 209 

 210 

when friction and viscosity are included. Clearly, Tn is longer than Τo. Eq. (4) shows 211 

that Tn increases with η and γ, thus indicating that friction and viscosity both lengthen 212 

the natural period of the system.  213 

 214 

3. Normalization of Equation of Motion 215 

Substituting the TP law and the linear viscous law into Eq. (1) leads to 216 
 217 

md2u/dt2=-K(u-uo)-Foexp(-u/uc)-ηv.                         (5) 218 

 219 

To simplify numerical computations, Eq. (5) is normalized based on the following 220 

normalization parameters: Do=Fo/K, ωo=(K/m)1/2, τ=ωot, U=u/Do, Uc=uc/Do, and 221 

ΓD=FD/K. This gives du/dt=[Fo/(mK)1/2] dU/dτ,d2u/dt2=(Fo/mK)d2U/dτ2. The driving 222 

velocity becomes Vp=vp/Doωo Hence, the normalized acceleration and velocity are, 223 

respectively, A=d2U/dτ2and V=dU/dτ. The phase ωt is replaced by Ωτ, where 224 

Ω=ω/ωo is the dimensionless angular frequency. Note that η/(mK)1/2 is simply 225 

denoted by η below. Clearly, all normalization parameters are dimensionless. Hence, 226 

Eq. (5) becomes: 227 
 228 

d2U/dτ2=-U-ηdU/dτ-exp(-U/Uc)+ΓD.                   (6) 229 

 230 

When FD=vpt or ΓD=Vpτ, Eq. (6) is transformed to a set of three first-order 231 

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2017-17, 2017
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 25 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



 8 

differential equations by defining x=U/Uc, y=V/Vp, and z=-U+Vpτ-ηVpyτ 232 

(yt=dy/dτ): 233 

 234 

xτ=(Vp/Uc)y                                       (7a) 235 

 236 

yτ=(z-e-x)/Vp,                                      (7b) 237 

 238 

zτ=Vp(1-y-ηyτ).                                    (7c) 239 

 240 

As x<<1, e-x≈1-x and thus Eq. (7b) can be approximated by yτ≈(z-1+x)/Vp. The 241 

condition of x<<1 shows U/Uc<<1. Differential of this equation leas to 242 

yττ≈(zτ+xτ)/Vp, where yττ=d2y/dτ2. Substituting Eqs. (7a) and (7b) into this equation 243 

gives  244 

 245 

yττ+ηyτ+(1-1/Uc)y=1.                                (8) 246 

 247 

The homogeneous equation of Eq. (8) is 248 

 249 

yττ+ηyτ+(1-1/Uc)y=0.                                (9) 250 

 251 

Let the general solution be y～eλτ. This leads to [λ2+ηλ+(1-/Uc)]y=0 or 252 

 253 

λ2+ηλ+(1-/Uc)=0.                                   (10) 254 

 255 

The solutions of Eq. (10) are 256 

 257 

λ±=-η/2±[η2-4(1-1/Uc)]1/2/2.                           (11) 258 

 259 

The term -η/2 of Eq. (11) leads to e-λ/2 which yields attenuation of y. Define D(η,1/Uc) 260 

to be η2-4(1-1/Uc). As mentioned above, Uc
-1 is the normalized decreasing rate of 261 

friction, Γ, at U=0. Fig. 4 shows the plot of η versus 1/Uc and thus exhibits the root 262 

structure of the system. Because η>0 and Uc>0, only the plot in the first quadrant is 263 
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 9 

present in Fig. 4. The solid line displays the function: D(η,1/Uc)=η2-4(1-1/Uc)=0. 264 

Along the line, we have η2=4(1-1/Uc), and thus λ±=-η/2. In other word, the roots are 265 

equal and real, and thus the solution is a stable inflected node displayed by a solid 266 

circle in Fig. 4. As D(η,1/Uc)>0 or η2>4(1-1/Uc), the roots are both real and negative. 267 

The solution shows no oscillation and thus is a stable node shown by a solid square in 268 

Fig. 4. As D(η,1/Uc)<0 or η2<4(1-1/Uc), the roots are complex with negative real part. 269 

This results in oscillations of exponentially decaying amplitude. The solution is a 270 

stable spiral or a stable focus shown by an open circle in Fig. 4. 271 

 272 

4. Numerical Simulations 273 

Let y1=U and thus y2=dU/dτ. Eq. (6) can be re-written as two first-order 274 

differential equations:  275 
 276 

dy1/dτ=y2                                          (12a) 277 

 278 

dy2/dτ=-y1-ηy2-exp(-y1/Uc)+ΓD.                        (12b) 279 

 280 

Eq. (12) will be numerically solved using the fourth-order Runge-Kutta method (Press 281 

et al., 1986). To simplify the following computations, the value of ΓD is set to be a 282 

small constant of 10-5, which can continuously enforce the slider to move. 283 

A phase portrait, denoted by y=f(x), is a plot of a physical quantity versus 284 

another of an object in a dynamical system (Thompson and Stewart, 1986). The 285 

intersection point of the bisection line, i.e., y=x, and f(x) is called the fixed point, that 286 

is, f(x)=x. If the function f(x) is continuously differentiable in an open domain near a 287 

fixed point xf and |f’(xf)|<1, attraction is generated. In other words, an attractive fixed 288 

point is a fixed point xf of a function f(x) such that for any value of x in the domain 289 

that is close enough to xf, the iterated function sequences, i.e., x, f(x), f2(x), f3(x),…, 290 

converges to xf. An attractive fixed point is a special case of a wider mathematical 291 

concept of attractors. Chaos can be generated at some attractors. The details can be 292 

seen in Thompson and Stewart (1986) or other nonlinear literatures. In the following 293 

plots, the intersection points of the bisection line (denoted by a thin solid line) with 294 

the phase portrait of V/Vmax versus U/Umax are the fixed points. To explore nonlinear 295 

behavior of a system, the Fourier spectrum F[V(Ωk)], where Ωk=k/δτ is the 296 
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dimensionless angular frequency at k=0, ..., N-1, is calculated for the simulation 297 

velocity waveform through the fast Fourier transform (Press et al., 1986). The 298 

bifurcation from a predominant period to others will be seen in the Fourier spectra. 299 

Numerical simulations for the time variation in V/Vmax, the phase portrait of 300 

V/Vmax versus U/Umax, and Fourier spectrum based on different values of model 301 

parameters are displayed in Figs. 5–12. In the figures, Vmax and Umax are, respectively, 302 

the maximum velocity and displacement for case (a) of each figure, because the 303 

maximum values of U and V decrease from case (a) to case (d) in this study.  304 

First, the cases excluding viscosity, i.e., η=0, are explored. Fig. 5 is numerically 305 

made for four values of Uc: (a) for Uc=0.1; (b) for Uc=0.4; (c) for Uc=0.7; and (d) for 306 

Uc=0.9 when η=0. Fig. 6 is numerically made for four values of Uc: (a) for Uc=1.00; 307 

(b) for Uc=1.01; (c) for Uc=1.15; and (d) for Uc=2.00 when η=0. A comparison 308 

between Fig. 5 and Fig. 6 suggests that Uc=1 is a transition value of the friction law 309 

between two modes of slip as displayed in Fig. 4. Only Uc<1 is considered below. 310 

Secondly, the cases including both friction and viscosity are studied. Fig. 7 is 311 

numerically made for four values of η: (a) for η=0.20; (b) for η=0.50; (c) for η=0.87; 312 

and (d) for η=0.90 when Uc=0.20. Obviously, the time variation in V/Vmax exhibits 313 

cyclic oscillations with a particular period when η<ηl=0.86 and has intermittent slip 314 

with shorter periods when η>ηl. Such a phenomenon holds also for η<5.5. 315 

Fig. 8 is numerically made for four values of η: (a) for η=0.46; (b) for η=0.47; (c) 316 

for η=0.98; and (d) for η=0.99 when Uc=0.55. The Fourier spectrum is not calculated 317 

for case (d), because the velocity becomes negative infinity at a certain time. The time 318 

variation in V/Vmax exhibits cyclic oscillations specified with three main frequencies 319 

when η<ηl=0.47. There is intermittency slip with shorter periods when 320 

ηl<η<ηu=0.98. There are unstable slip when η>ηu. This phenomenon holds also 321 

when 0.55<Uc<1.  322 

Four examples for η varying from η<ηu to η>ηu for different values of Uc are 323 

displayed in Figs. 9–12. Fig. 9 is made for four values of η: (a) for η=0.39; (b) for 324 

η=0.83; (c) for η=0.84; and (d) for η=0.85 when Uc=0.6. Fig. 10 is made for four 325 

values of η: (a) for η=0.34; (b) for η=0.71; (c) for η=0.72; and (d) for η=0.73 when 326 

Uc=0.7. Fig. 11 is made for four values of η: (a) for η=0.25; (b) for η=0.53; (c) for 327 

η=0.54; and (d) for η=0.55 when Uc=0.8. Fig. 12 is made for four values of η: (a) for 328 
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η=0.14; (b) for η=0.35; (c) for η=0.36; and (d) for η=0.37 when Uc=0.9. The Fourier 329 

spectrum is not calculated for case (d) in each example, because the velocity becomes 330 

negative infinity at a certain time. 331 

Fig. 13 exhibits the data points of ηl (with a solid square) and that of ηu (with a 332 

solid circle) for several values Uc. The values of ηl and ηu for several values of Uc 333 

are given in Table 1. The figure exhibits a stable regime when η≤η l, an intermittency 334 

or transition regime when ηl<η≤ηu, and unstable regime when η>ηu. 335 

 336 

5. Discussion 337 

As mentioned above, the natural period of the one-body system at low 338 

displacements is To=2π/ωo=2π(m/K)1/2 in the absence of friction and viscosity and 339 

Τn=2π/ωn=To/[1-To
2(η2+4mγ)/(4πm)2]1/2 in the presence of friction and viscosity. 340 

Due to γ=1/uc at u=0, Tn increases with decreasing uc. Obviously, Tn is longer than 341 

Τo and increases with η and γ, thus indicating that friction and viscosity both lengthen 342 

the natural period of the system. 343 

Based on the marginal analysis of the normalized equation of motion, i.e., Eq. 344 

(11), the plot of η versus 1/Uc is displayed in Fig. 4 which exhibits the phase portrait 345 

and root structure of the system. Since η and Uc are both positive, only the plot of η 346 

versu 1/Uc in the first quadrant is displayed. In Fig. 4, the solid line displays the 347 

function: D(η,1/Uc)=η2-4(1-1/Uc)=0. Along the line, the solution λ±=-η/2 and thus 348 

exp(λt)=exp(-η/2). In other word, the roots are equal and real, and, thus, the phase 349 

portrait is a stable inflected node displayed by a solid circle in Fig. 4. Because of η≥0, 350 

we have 1/Uc≤1. As D(η,1/Uc)>0 or η2>4(1-1/Uc), the roots are both real and 351 

negative. The solution shows no oscillation and thus phase portrait is a stable node 352 

shown by a solid square in Fig. 4. Because of η≥0, we have 1/Uc≤1. As D(η,1/Uc)<0 353 

or η2<4(1-1/Uc), the roots are complex with a negative real part. This results in 354 

oscillations with exponentially decaying amplitude. The phase portrait is a stable 355 

spiral or a stable focus shown by an open circle in Fig. 4. 356 

Fig. 5 exhibits the time variation in V/Vmax, the phase portrait of V/Vmax versus 357 

U/Umax, and Fourier spectrum for four values of Uc: (a) for Uc=0.1; (b) for Uc=0.4; (c) 358 

for Uc=0.7; and (d) for Uc=0.9 when η=0. In the first panels, the time variation in 359 

V/Vmax exhibits cyclic behavior and the amplitude of V/Vmax decreases and the 360 
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predominant period of signal increases with increasing Uc. This is consistent with Eq. 361 

(5) in which Tn increases with Uc. Although the four phase portraits are almost similar, 362 

yet their size decreases with increasing Uc. The second panels exhibit two fixed points: 363 

one at V=0 and U=0 and the second one at larger V and larger V. The slope values at 364 

the first fixed points decrease with increasing Uc, thus suggesting that the fixed point 365 

is not an attractor for small Uc and can be an attractor for larger Uc. The slope values 366 

at the fixed points for smaller Uc are greater than 1 and thus they cannot be an 367 

attractor. The third panel for each case displays the Fourier spectrum. Fourier spectra 368 

exhibit that in addition to the peak related to the predominant frequency, there are 369 

numerous peaks associated with higher frequencies. This shows nonlinear behavior 370 

caused by nonlinear friction. The frequency related to the first peak decreases with 371 

increasing Uc. The amplitude of a peak decreases with increasing Uc. The amplitude 372 

of a peak decreases with increasing Ω for small Uc; while it first increases up to the 373 

maximum and then decreases with increasing Ω for large Uc. The amplitude of a peak 374 

becomes very small when Ω>0.25. 375 

Fig. 6 exhibits the time variation in V/Vmax, the phase portrait of V/Vmax versus 376 

U/Umax, and Fourier spectrum for four values of Uc: (a) for Uc=1.00; (b) for Uc=1.01; 377 

(c) for Uc=1.15; and (d) for Uc=2.0 when η=0. In the first panels, the time variation in 378 

V/Vmax exhibits cyclic behavior and the amplitude of V/Vmax remarkably decreases 379 

with increasing Uc when Uc>1. In the second panels, the size of phase portrait 380 

decreases with increasing Uc and there are two fixed points: the first one at V=0 and 381 

U=0 and the second one at larger V and larger V. With comparison to the phase 382 

portrait of Uc=1.0, the phase portrait becomes very small when Uc≥1.15. In contrast 383 

to Fig. 5, the absolute values of slope at the fixed points in Fig. 6 increase with Uc. 384 

Hence, the fixed points cannot be an attractor for Uc≥1. In the third panels, Fourier 385 

spectra exhibit that except for Uc=1, there is only one peak and the predominant 386 

frequency increases or the predominant period decreases with increasing Uc. This is 387 

consistent with Eq. (5). Results show that nonlinear behavior disappears when Uc>1. 388 

In addition, the amplitude of a peak decreases with increasing Uc when Uc>1. 389 

Obviously, Uc=1 is the critical value of the friction law as displayed in Fig. 4. 390 

Fig. 7 exhibits the time variation in V/Vmax, the phase portrait of V/Vmax versus 391 

U/Umax, and Fourier spectrum for four values of η: (a) for η=0.20; (b) for η=0.50; (c) 392 

for η=0.87; and (d) for η=0.90 when Uc=0.20. In the first panels, the time variation in 393 
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V/Vmax exhibits cyclic behavior and the amplitude of V/Vmax decreases with 394 

increasing η. The predominant period of signal only slightly increases with increasing 395 

η, because η changes in a small range. In the second panels, the size of phase portrait 396 

decreases with increasing Uc and there are two fixed points: the first one at V=0 and 397 

U=0 and the second one at larger V and larger V. Since the slope values of fixed 398 

points are clearly all higher than 1, they are not an attractor. In the third panels, the 399 

Fourier spectra exhibit that in addition to the peak related to the predominant 400 

frequency, there are numerous peaks associated with higher Ω. This shows nonlinear 401 

behavior, mainly caused by nonlinear friction, of the model. The highest peak for case 402 

(a) appears at the second frequency. When η<0.9, the amplitude of a peak decreases 403 

with increasing η. The frequencies related to the peaks do not change remarkably, 404 

because η varies in a small range. Except for case (a), the amplitude of a peak 405 

decreases with increasing Ω. The third peak amplitude disappears when η>0.5. The 406 

amplitude of a peak becomes very small when Ω>0.25. Except for Uc=0.1, the 407 

frequencies related to the peaks in Fig. 7 are different from and slightly smaller than 408 

those in Fig. 5. Note that when Uc<0.55 the simulation results in Fig. 5 are similar to 409 

those in Fig. 6. 410 

Fig. 8 shows the time variation in V/Vmax, the phase portrait of V/Vmax versus 411 

U/Umax, and Fourier spectrum for four values of η: (a) for η=0.46; (b) for η=0.47; (c) 412 

for η=0.98; and (d) for η=0.99 when Uc=0.55. When η≤0.47, the time variation in 413 

V/Vmax exhibits cyclic oscillations specified with different main angular frequencies. 414 

When η>0.47 (for example η=0.98 in the figure), in addition to cyclic behavior there 415 

is small intermittent slip with shorter periods. This phenomenon also exists when 416 

ηl<η<ηu=0.98. There are unstable (or chaotic) slip when η>ηu. Hence, the phase 417 

portraits in the second panels display unstable slip at small V and U when 418 

ηl<η≤ηu=0.98. When η=0.99, the velocity becomes negative infinity at a certain time 419 

and the phase portrait also displays unstable or chaotic slip at small V and U. Since 420 

the slope values of fixed points at large V and U are clearly higher than 1, they are not 421 

an attractor. Due to the appearance of infinity velocity when η=0.99, the Fourier 422 

spectrum is not calculated for η=0.99. The Fourier spectra exhibit that when η<0.47, 423 

in addition to the peak related to the predominant frequency, there are numerous peaks 424 

associated with higher Ω. This shows nonlinear behavior of the model caused by 425 

nonlinear friction. The amplitude of a peak decreases with increasing Uc and the peak 426 
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amplitude decreases with increasing Ω. When η=0.98, the amplitude of the highest 427 

peak is much larger than others. For the first three cases, the amplitude of a peak 428 

becomes very small when Ω>0.25. The frequencies related to the peaks in Fig. 8 are 429 

different from and slightly smaller than those in Fig. 7. 430 

Figs. 9–12 show a variation from stable slip to intermittent slip and then to 431 

unstable or chaotic slip when η increases from a smaller value to a larger one for 432 

Uc=0.6, 0.7, 0.8, and 0.9. The values of ηu for Uc=0.20–0.95 with a unit difference of 433 

0.05 are given in Table 1. Like Fig. 8, when η≤ηl, the time variation in V/Vmax 434 

exhibits only cyclic oscillations specified with different frequencies. When ηl<η≤ηu, 435 

there are small intermittent displacements appear in the cyclic oscillations. Hence, the 436 

phase portraits display that unstable slip at small V and U when η l<η≤ηu. When 437 

η>ηu, the velocity becomes negative infinity at a certain time and the phase portrait 438 

displays unstable slip at small V and U. Due to the appearance of infinity velocity, the 439 

Fourier spectrum is not calculated for η>ηu. When η<η l, in addition to the peak 440 

related to the predominant frequency, there are numerous peaks related to higher Ω. 441 

This shows nonlinear behavior, mainly caused by nonlinear friction, of the model. The 442 

amplitude of a peak decreases with increasing Uc and the amplitude of a peak 443 

decreases with increasing Ω. For the first three cases, the amplitude of a peak 444 

becomes very small when Ω>0.25. Figs. 7–12 show that the frequencies related to the 445 

peaks slightly decrease with increasing Uc and the decreasing rate decreases with 446 

increasing Uc. In other word, the frequencies related to the peaks for large Uc are 447 

almost similar. The number of higher peaks and the amplitudes of peaks at higher Ω 448 

both decrease with increasing η. This indicates that viscosity makes a stronger effect 449 

on higher- frequency waves than on lower ones, and the effect increases with η. 450 

Fig. 13 exhibits the data points of ηl (with a solid square) and that of ηu (with a 451 

solid circle) for several values Uc. The values of ηl and ηu for several values of Uc 452 

are given in Table 1. The figure exhibits a stable regime when η≤η l, an intermittency 453 

(or transition) regime when ηl<η≤ηu, and unstable (or chaotic) regime when η>ηu. 454 

When Uc<0.55, there is no ηl, in other word, unstable slip does not exist. Clearly, ηl, 455 

ηu, and their difference ηu-ηl all decrease with increasing Uc. This means that it is 456 

easier to yield unstable slip for larger Uc than for smaller Uc. Since smaller Uc is 457 

associated to larger γ of decreasing rate of friction force with slip, it is easier to yield 458 
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unstable slip from smaller γ than from larger γ.  459 

Huang and Turcotte (1990, 1992) observed intermittent phases in the 460 

displacements based on a two-body model. In other word, some major events are 461 

proceeded by numerous small events. Those small events could be foreshocks. They 462 

also claimed that earthquakes are an example of deterministic chaos. Ryabov and Ito 463 

(2001) also found intermittent phase transitions in a two-dimensional one-body model 464 

with velocity-weakening friction. Their simulations exhibit that intermittent phases 465 

appear before large ruptures. From numerical simulations of earthquake ruptures 466 

using a one-body model with a rate- and state-friction law, Erickson et al. (2008) 467 

found that the system undergoes a Hopf bifurcation to a periodic orbit. This periodic 468 

orbit then undergoes a period doubling cascade into a strange attractor, recognized as 469 

broadband noise in the power spectrum. From numerical simulations of earthquake 470 

ruptures using a two-body model with a rate- and state-friction law, Abe and Kato 471 

(2013) observed various slip patterns, including the periodic recurrence of seismic and 472 

aseismic slip events, and several types of chaotic behavior. The system exhibits 473 

typical period-doubling sequences for some parameter ranges, and attains chaotic 474 

motion. Their results also suggest that the simulated slip behavior is deterministic 475 

chaos andt ime variations of cumulative slip in chaotic slip patterns can be well 476 

approximated by a time-predictable model. In some cases, both seismic and aseismic 477 

slip events occur at a slider, and aseismic slip events complicate the earthquake 478 

recurrence patterns. The present results seem to be comparable with those made by 479 

the previous authors, even though viscosity was not included in their studies. This 480 

suggests that nonlinear friction and viscosity play the first and second roles, 481 

respectively, on the intermittent phases. The intermittent phases could be considered 482 

as foreshocks of the mainshock which is associated with the main rupture. Simulation 483 

results exhibit that foreshocks happen for some mainshcoks and not for others. 484 

 485 

6. Conclusions 486 

In this work, multistable slip of earthquakes caused by slip-weakening friction 487 

and viscosity is studied based on the normalized equation of motion of a one-degree- 488 

of-freedom spring-slider model in the presence of the two factors. The friction is 489 

caused by thermal pressurization and decays exponentially with displacement. The 490 

major model parameters are the normalized characteristic distance, Uc, for friction 491 
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and the normalized viscosity coefficient, η, between the slider and the background 492 

moving plate, which exerts a driving force on the former. Analytic results at small U 493 

suggest that there is a solution regime for η and γ (=1/Uc) to make the slider slip 494 

steadily. Numerical simulations lead to the time variation in V/Vmax, the phase portrait 495 

of V/Vmax versus U/Umax, and Fourier spectrum. Results show that the time variation 496 

in V/Vmax, obviously depends on Uc and η. The effect on the amplitude is stronger 497 

from η than from Uc. When Uc>1, the time variation of V/Vmax exhibits cyclic 498 

oscillations with a single period and the amplitude of V/Vmax remarkably decreases 499 

with increasing Uc. When Uc<1, slip changes from stable motion to intermittency and 500 

then to unstable motion when η increases. For a certain Uc, the three regimes are 501 

controlled by a lower bound, ηl, and an upper bound, ηu, of η. When Uc<0.55, ηu is 502 

absent and thus unstable or chaotic slip does not exist. When Uc≥0.55, the plots of ηl 503 

and ηu versus Uc exhibit a stable regime when η≤ηl, an intermittency (or transition) 504 

regime when ηl<η≤ηu, and unstable (or chaotic) regime when η>ηu. The values of η l, 505 

ηu, and ηu-ηl all decrease with increasing Uc, thus suggesting that it is easier to yield 506 

unstable slip for larger Uc than for smaller Uc or larger η than for smaller η. The 507 

phase portraits of V/Vmax versus U/Umax exhibit that there are two fixed points: The 508 

first one at large V/Vmax and large U/Umax is not an attractor for all cases in study; 509 

while the second one at small V/Vmax and small U/Umax can be an attractor for some 510 

values of Uc and η. When Uc<1, the Fourier spectra calculated from simulation 511 

velocity waveforms exhibit several peaks rather than one, thus suggesting the 512 

existence of nonlinear behavior of the system. When Uc>1, the related Fourier spectra 513 

show only one peak, thus suggesting linear behavior of the system. 514 
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 677 
 678 
 679 
Table 1. Values of η l, ηu, and Vmax for various Uc.  680 

Uc ηl ηu Vmax 
0.20 0.87 1.00 0.4068 
0.25 0.86 1.00 0.3611 
0.30 0.86 1.00 0.3149 
0.35 0.77 1.00 0.2905 
0.40 0.69 1.00 0.2649 
0.45 0.57 1.00 0.2497 
0.50 0.51 1.00 0.2216 
0.55 0.43 0.98 0.1989 
0.60 0.39 0.84 0.1684 
0.65 0.38 0.78 0.1338 
0.70 0.34 0.72 0.1071 
0.75 0.26 0.69 0.0879 
0.80 0.25 0.55 0.0604 
0.85 0.18 0.48 0.0423 
0.90 0.14 0.37 0.0234 
0.95 0.12 0.25 0.0076 
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 683 

 684 

 685 

      686 

 687 
Figure 1. One-body spring-slider model. In the figure, u, K, η, FD, N, and F denote, 688 

respectively, the displacement, the spring constant, the viscosity coefficient, the 689 
driving force, the normal force, and the frictional force. 690 
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 693 

 694 

 695 

 696 
Figure 2. The two types of viscous materials: (a) for the Kelvin–Voigt model and (b) 697 

for the Maxwell model. (κ=spring constant and υ=coefficient of viscosity) 698 
 699 
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 701 

 702 

 703 
 704 

          705 

 706 
Figure 3. The variations in friction force with displacement for F(u)=exp(-u/uc) when 707 

uc=0.1, 0.3, 0.5, 0.7, and 0.9 m (after Wang, 2016b). 708 
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 711 

 712 

 713 

 714 
Figure 4. The plot of η versus 1/Uc exhibits the phase portrait and root structure of the 715 

system. The solid line displays the function: D(η,1/Uc)=η2-4(1-1/Uc)=0. The 716 
solid circle, open circle, and solid square represent, respectively, a stable 717 
inflected node with D=0, a stable spiral with D<0, and a stable node with D>0. 718 
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 722 

 723 

 724 
Figure 5. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, 725 

and power spectrum for four values of Uc: (a) for Uc=0.1; (b) for Uc=0.4; (c) for 726 
Uc=0.7; and (d) for U =0.9 for the TP law of F(U)=exp(-U/Uc) when η=0. 727 
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 733 
Figure 6. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, 734 

and power spectrum for four values of Uc: (a) for Uc=1.00; (b) for Uc=1.01; (c) 735 
for Uc=1.15; and (d) for U =2.00 for the TP law of F(U)=exp(-U/Uc) when η=0. 736 
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 741 

 742 
Figure 7. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, 743 

and power spectrum for four values of η: (a) for η=0.20; (b) for η=0.50; (c) for 744 
η=0.87; and (d) for η=0.90 when Uc=0.20 for the TP law of F(U)=exp(-U/Uc). 745 
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 749 
 750 

 751 
Figure 8. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, 752 

and power spectrum for four values of η: (a) for η=0.43; (b) for η=0.47; (c) for 753 
η=0.98; and (d) for η=0.99 when Uc=055 for the TP law of F(U)=exp(-U/Uc). 754 
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 756 

 757 

 758 

 759 
Figure 9. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, 760 

and power spectrum for four values of η: (a) for η=0.39; (b) for η=0.83; (c) for 761 
η=0.84; and (d) for η=0.85 when Uc=0.6 for the TP law of F(U)=exp(-U/Uc). 762 
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 767 

 768 

 769 
Figure 10. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, 770 

and power spectrum for four values of η: (a) for η=0.34; (b) for η=0.71; (c) for 771 
η=0.72; and (d) for η=0.73 when Uc=0.7 for the TP law of F(U)=exp(-U/Uc).  772 
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 775 
 776 

 777 
Figure 11. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, 778 

and power spectrum for four values of η: (a) for η=0.25; (b) for η=0.54; (c) for 779 
η=0.55; and (d) for η=0.56 when Uc=0.8 for the TP law of F(U)=exp(-U/Uc). 780 

 781 
  782 

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2017-17, 2017
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 25 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



 34 

 783 

 784 

 785 

 786 
Figure 12. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, 787 

and power spectrum for four values of η: (a) for η=0.14; (b) for η=0.36; (c) for 788 
η=0.37; and (d) for η=0.38 when Uc=0.9 for the TP law of F(U)=exp(-U/Uc). 789 
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 794 

 795 
Figure 13. The plot of ηl (with a solid square) and ηu (with a solid circle) versus Uc. 796 
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