
We thank anonymous Referee #1 (RC1) for his encouraging and constructive comments. 

In the first part of this reply we respond on the general issues and in the second part we answer to the 
specific statements of RC1.

RC1 suggest to make the lognormal assumption the default case, sees a need to argue for normal 
assumption instead, and wishes to change the interpretation accordingly.
In our discussion, we tried to be conservative and accepted the alternative assumption of lognormal 
distribution only with those scenarios that showed a difference and improvement compared to the 
business-as-usual of the normal/Gaussian assumption.  In regard of the intended audience, we hesitate 
to adopt this stronger point of view and would rather stick to the more conservative default of the 
normal assumption.

RC1 also suggested a revised model for analysis and fitting all chambers together with this model and 
hence change the analysis. We agree that such an analysis was more elegant and concise. However, we 
applied the analysis and see several discrepancies of the suggested model (possible new appendix C). 
The main problem is that chamber effects and properties of the error structure vary with time. While 
there might be statistical models that can deal with these issues, itwill be difficult for many readers to 
replicate with their tool-set.
Therefore, we wand to stick to the current method based on shifting time windows. In this journal that 
primarily deals with measurements and their processing, we plan to keep the current approach of  
estimating true values by the LUT algorithm and focus on the structure of the resulting residuals. The 
LUT approach is familiar to ecologists working on Eddy-Covariance sites. 

We want to add an additional appendix B, where we extend our work with fitting both error terms 
(instrumentation error at normal scale and process error at log scale) using bayesian hierarchical 
modelling. Although the necessary statistical tools and their explanation go beyond the basic message 
and guidance of this paper, we are interested in the opinion of RC1. 

In the following we reply to the specific points.  Quotes of  of RC1 are preceded by RC1-<counter>: 
and noted in blue color.  The counter is intended to help referring to specific points.

RC1-1: The theory on the lognormal distribution, the distribution of sums of such variables and
the variance of sums of correlated variables is nicely summarized.
There is, however, a misnomer: The notion of “confidence interval” should be reserved
for the interval that covers the true PARAMETER value with the given confidence level,
but it is used to name an interval in which approximately 95% of the observations
should be contained. This may be called a scatter interval. It is related, but not identical
to a prediction interval or a tolerance interval.

Thanks for noting this misnomer. In Figs 3 and 4 we fit parameters of alternative distributions to a 
sample of observations and report intervals of quantiles of the fitted distribution. This corresponds to 
the interval in which a single future observation ( “prediction interval”) or multiple future observations 
(“tolerance interval”) of this distribution will fall. We will change notation from “confidence interval” 
and “confidence bounds” to “prediction interval”. Although we acknowledge the “scatter interval” or 
“tolerance interval” maybe technically better fitting terms, we anticipate that the intended audience 
(including ourselves) would be irritated by those unfamiliar terms, whose subtleties are not central to 
the message of this paper. A quick web search did not lead to any explanation of “scatter interval”.



Could you, please, guide us to relevant sources of more in depth explanation of the differences between
these terms? 

RC1-2: Fig. 1: The comparison of the two main methods - using the normal or the lognormal
assumption - is first examined by a respective qq plot of residuals. The residuals are
obtained as the differences between 4 individual observations and their average either
on the original or the log scale. However, these 4 observations stem from 4 measure-
ment devices in 4 fixed places, and an inspection of Fig. 3 shows that they are clearly
subject to systematic differences. Thus, the 4 residuals do not represent 4 indepen-
dent random errors. In addition, the 4 residuals are collected from many half hours
and then shown in a single qq plot. As the authors show in Fig.2 (and also emphasize
in the text), these groups of 4 do not have the same variances in case of the "normal
method". Therefore, they should not be shown in a common qq plot.

Correct. Therefore, we had produced these statistics and plots for each chamber separately. Fig 1 shows
the graphs for chamber 2 (the one with the least non-missing records). The plots for the other chambers
to not look very different. We will explain this better in the Figure caption.

RC1-3: Fig. 2 (left panel) and the related comments show quite convincingly that the assump-
tion of constant standard deviations does not hold - they rather increase with expected
values. This disappears when the lognormal distribution is used (right panel), since
for this model, the standard deviation is proportional to the expectation. 

This is exactly what Fig 2 should communicate. 

RC1-4: However, an
alternative would be to model the random error as normal with standard deviation pro-
portional to the mean. (Note that I would NOT prefer this approach over the log-normal
model!)

We will refer to the mentioned but not preferred alternative in the text.

RC1-5: Fig. 4 shows that the scatter interval ("confidence interval") for values aggretated over
a day are most often considerably narrower for the lognormal method. In the text, the
authors call them "the same" and discuss the few exceptions instead. Note, however,
that one should first make sure that the intervals produced by the two methods indeed
show approximately the same percentage of covering the observations.
In summary, while the theory has a good potential to improve the methodology, the way
it is applied is not convincing.

To our interpretation, the box plots of Fig 4 show only for very few cases (denoted by outlier dots) a 
narrower prediction interval for the lognormal assumption. The mass (denoted by very flat boxes) 
centers at a difference in interval width of zero. The few outlier dots are identified by +/-1.58 
IQR/sqrt(n), which roughly corresponds to being outside the 95% confidence interval (state in its help-
page).

RC1-6: A suggestion:
Fig. 3 suggests that the measurements follow a model
Y tk = h(t) · γ_k ·  eps_tk



or, on the log scale,
log(Y tk ) = g(t) + β k + log(# tk )
where t is the time, k, the measurement device (chamber), g() = log(h()), smooth
functions of time, and Y tk and # tk are the observations and the (lognormal) random
error. Thus, it would be adequate to fit this model (on the log scale) and then show its
adequacy using diagnostic plots (residuals against fitted values and time, qq plot).
(The smooth function g may - at least for other target variables than CO2 efflux - advan-
tageously be related to explanatory variables such as a daily and/or a seasonal cycle
and environmental variables, still allowing for a smooth additional term.)
This model can be fitted to half hourly measurements or daily averages. (The averages
may be the usual arithmetic means or robust version of them.)
If the above model fits well, without showing heteroscadasticity, an alternative method
for aggregating measurements to daily averages may be used: the fitted values can be
aggregated, and the correction factor for getting an expectation from the first parameter
of a log-normal, exp(σ 2 /2), can be applied to the result. This is similar in spirit as using
the estimated parameters of the lognormal distribution obtained from the 4 measure-
ment devices, as done in the paper, but that method wrongly includes the systematic

Thank you for proposing this new model. We studied in with suggested appendix C but with a slightly 
different interpretation.
First, the observation error eps_tk is additive (see reply to RC1-11). The suggested model considers a 
multiplicative observation error. Second, the process error is probably related but not the same as the 
differences between chambers. It is present also in the time series of a single chamber.  Hence it cannot 
be captured by the index k in a random effect offset across the chambers. 

Hence, we reinterpret this model as an approximation where observation error is neglected, eps_tk is 
the single chamber process error, and  γ_k is the cross-chamber process error.

However, the model does not fit well. The random effect of the chamber is also a function of time. 
Although it changes much more slowly (correlation length of a several weeks) than h(t), which has a 
daily pattern. We will work on representing the chamber offsets as Gaussian processes but this requires 
us to learn more about hierarchical bayesian models and this will be beyond the scope of this paper.

RC1-7: Discussion:
The model just described has consequences for
• spatial aggregation: The dominant term in such means are the mean of the γ k .
They can be interpreted as random effects if the locations of the measurement
devices are randomly chosen from the plot (or region). This is why aggregating
over time first (“space last”) produced a more plausible interval (Fig. 6). The
authors correctly explain this fact in other words - that this occurs “because it
wrongly assumed true replicates when in reality there are only pseudo-spatial
replicates.”

We fully agree, but see our discussion on the temporal patterns of y_k and our concerns of fitting all 
chambers with one model.

RC1-8: • temporal aggregation: If there is a daily or seasonal cycle, the time points should
not be treated as a stationary time series. If the smooth function g looks like
a stationary function without further patterns, then it can be integrated into the



correlated error term.

We agree and already argued that it is the non-stationarity of the chamber effects that is the most 
pressing problem. This is why we prefer the time-window based LUT estimate compared to fitting the 
full model.

RC1-9: The authors say: “We argued that several spatially distributed chambers correspond to
samples of a lognormal distribution.”
It would be difficult to judge the distributional form from 4 independent values γ k . Thus,
this amounts to an over-interpretation.

We agree that this would be over-interpretation and we cannot infer this from our 4 spatial replicates. 
We extrapolated our insight of comparing the consequences of  the normal vs. the lognormal 
assumption of errors from single time series to several chambers. 

In order to make this extrapolation more explicit, we suggest the formulation formulation:

“We argued that if a lognormally distributed process error dominates the observation error of single 
chamber, then such a processer error is assumed to dominate the differences between chambers. Hence,
we assume also a lognormal distribution of measurements across several chambers.”

RC1-10: Process error:
The authors give many reasons why the magnitude of the process error may depend
on the magnitude of the CO2 efflux itself. In fact, in biology and other fields, all kinds of
variation typically depend on the magnitude of the variable under consideration, and it
would be more necessary to find explanations if for some process this is not the case.

We fully agree. Although for the purpose of this paper we argue from a more conservative view with a 
Gaussian default.

RC1-11: This is even true for measurement errors. I do not see an intrinsic reason why the mea-
surement error should be better described by a normal than a log-normal distribution.
Hopefully, it is small enough that the two models cannot be distinguished. The authors
might adapt their comments on measurement errors accordingly.

In our view, the measurement error is primarily a result of the measurement device. Depending on the 
measurement device both cases are possible (increasing or not increasing with the magnitude of the 
flux). For flux chambers, there are many studies that look at the various sources of the systematic and 
random errors. Calibrations against known fluxes, here, do not show apparent deviations from Gaussian
or scaling with flux magnitude. Moreover, especially on very small fluxes, our data shows considerable
measurement errors and also negative fluxes. So we do now that in our case there is an error 
component that does not decrease (scale) with the flux magnitude.  

RC1-12: This contradicts their recommendation to “use the normal assumption for high- fre-
quency, e.g. hourly measurements,” for which I do not find a convincing reason.

We see the point of the reviewer that if measurement error also scales with the flux, this will be true. 
However, we argued in RC 1-11 that in our case measurement error does not scale with flux magnitude.



For high-frequency fluxes, we argue that we cannot show that magnitude of the random error is larger 
than the additive measurement error and therefore, on conservative grounds, do not recommend a 
change of current processing approach. We so far intend to stick to this conservative perspective in the 
revised version.

RC1-13: Recommendations:
These might be recast along the following line:
The lognormal model and methods are more appropriate for this kind of data. The
feature of standard deviations being proportional to expectations is the dominant tigger
of the improvements. When measurements are aggregated to means or sums, the
central limit theorem grants that the fit of the normal distribution gets better, but it will
rarely be better than the fit of the log-normal for environmental and similar measure-
ments, even after aggregation. However, the use of the log-normal is most needed
when considering single measurements, for example, when they are compared with
model values from any models (as the authors mention it).

We hesitate to write from such a strong point of log-normal as the default case in this paper and adopt 
the normal case as default and collect arguments where the log-normal should be applied instead. We 
want to convince practitioners to rethink their business-as-usual of the normal assumption and convince
them to invest time to investigate the alternative usage of the log-normal assumptions. For this purpose 
we want to write from a more conservative perspective and argue for evidence for the lognormal 
assumption.

RC1-14: Since this discussion suggests major changes of the analyses and interpretations, I do
not go into details of the text at this stage.

We look forward to a fruitful discussion on the proper model for the analysis of soil efflux data. We 
investigated the model proposed by RC1 (appendix C) and look forward to RC1 response to our 
clarified updated model of appendix B. This issue is relevant for many more data processing that we 
ecologists deal with.



Appendix B: Latent Gaussian Model formulation

The observations of CO2 efflux of a single chamber can be formulated as a Latent Gaussian Model (LGM) a subset of Bayesian

hierarchical models (Rue et al., 2009).

RS =Rµ + εIE (B1a)

ln(Rµ) =RB + εPR (B1b)5

εIE ∼N(0,σIE) (B1c)

εPR ∼N(0,σ) (B1d)

ln(σ−2
IE)∼Gamma(aIE , bIE) (B1e)

ln(σ−2) ∼Gamma(a,b) (B1f)

where ε are normally distributed error terms with shape parameter σ. Their corresponding precisions 1/σ2 are distributed by10

a logGamma hyperprior with specified parameters. Rb is the true value of log (soil CO2 efflux). It can be either plugged in by

the LUT approach, modelled as a linear model of covariates, or estimated together with the sigma parameters given a proper

constraint on their covariances in time and/or space of environmental variables.

Such a LGM can be estimated using INLA (Rue et al., 2009) (appendix B3) or Markov-Chain Monte-Carlo Sampling

(Metropolis et al., 1953; Gelman et al., 1995; Zobitz et al., 2011).15

Instrumentation error is of magnitude IE = σIE and process error at original scale is of magnitude PR=RB(eσ−1). This

study deals with two special cases. Since, the log-normally distributed process error scales with the flux magnitude, we expect

it to dominate at large fluxes, while we expect the instrumentation error to dominate at low fluxes.

B1 PR << IE

If the log-normally distributed error is small compared to the normally distributed one, it can be neglected. The model then20

simplifies to eq. B2.

RS =RBe + εIE (B2a)

εIE ∼N(0,σIE) (B2b)

ln(σ−2
IE)∼Gamma(aIE , bIE) (B2c)

With RBe = eRB . When assuming a flat prior (aIE =−1, bIE = 0), this model corresponds to a classical linear regression.25

B2 IE << PR

If the normally distributed error is small compared to the log-normally distributed one, it can be neglected. The model then

simplifies to eq. B3.

21



log(RS) =RB + ε (B3a)

ε∼N(0,σ) (B3b)

ln(σ−2
IE)∼Gamma(a,b) (B3c)

When assuming a flat prior (a=−1, b= 0), this model corresponds to a classical linear regression of the log-transformed

values.5

B3 Fitting the LGM using INLA

During periods with similar environmental conditions, we can model RB as a smooth function with time and fit it together

with the magnitudes of the two error types, σIE and σ, without the need of gap-filling before.

We fitted model B1 to the data of chamber two for a 5-day period in April using INLA (Rue et al., 2009) and its default

priors and compared the posterior estimates of the two standard deviations. While the standard deviations were both significant10

and of the same magnitude (σIE :mean= 0.047, q025 = 0.021, q975 = 0.088), the transformation of the lognormal error to

original scale indicated the deviations due to the lognormal error had a larger effect: ,RB(eσ − 1) :mean= 0.095, q025 =

0.024, q975 = 0.18).

During shorter (∼weeks) periods, we can assume that the difference between chambers can be modelled as a random inter-

cept+slope in the linear predictor at log scale. A simpler random intercept only model still showed patterns in the residuals.15

Compared ot the single-chamber-fit, the estimate of the normal error decreased further (σIE = 0.010), whereas the estimate

of the lognormal error increased (RB(eσ−1) = 0.27), and standard deviation of chambers intercept was larger:RB(eσCh−1) :

mean= 1.0, q025 = 0.55, q975 = 1.9).

This indicates that assumption of negligible instrumentation error compared to the log-normally distributed process error

(IE << PR) is viable.20

In addition, to the model with both error terms, we fitted models with only one of the error terms included and compared

models by DIC criterion (Spiegelhalter et al., 2002). The much lower DIC of full model of -5130 indicated a much better fit

compared to the lognormal-error-only model with DIC of -1080 and the normal-error-only model with a DIC of 555.

We will study if this approach can be extended to longer periods and adapted to more complex models of differences between

chambers.25

Appendix C: Lognormal fixed effects model

Using assumption IE << PR, we tried fitting a mixed effects model to the log-transformed observations of the entire non-

gapfilled dataset. First, we filtered for respiration being above 1.2 gCm−2day−1 to exclude those records strongly influenced by

the instrumentation error. If residual plots showed adequacy of the model, an alternative method for aggregating measurements

to daily averages may be used.30
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Figure C1. Residuals of the GAMM fit to the entire log-transformed respiration data.

We used mgcv package in R with the following specification:

ml1 <- gamm(

R ~ temp + moist + s(time, bs = "cr") + chamber, data = dsFin

,weights = varPower(0.4, ~temp)

)5

The model included fixed effects for soil temperature and soil moisture, a smoothing term for time and an offset per chamber.

The increase of residual variance with flux magnitude or temperature was accounted for by the weights term.

However, when inspecting Pearson-Residual plots (figures C1, C2, C3), it became apparent, that this model was not adequate.

Residuals showed a clear pattern with different chambers and a despite of the smoother varying patterns with time.

The most important problem was fluctuating pattern of chamber effects with time.10
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Figure C2. Subset of residuals of the GAMM fit to the entire log-transformed respiration data during five days in April.
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Figure C3. Subset of residuals of the GAMM fit to the entire log-transformed respiration data during five days in October.
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