gi-2018-41

Interactive comment on "Description of the Baseline Surface Radiation Network (BSRN) station at the Izaña Observatory (2009-2017): measurements and quality control/assurance procedures" by R. D. García et al.

Anonymous Referee #2:

The paper gives a very clear overview of the quality control, calibration and measurement methods that are used for the IZA BSRN station. The paper is very well written and provides information in a high graphical and documented level, the way the station instruments perform. The presented procedures and the web links are very useful for scientists that deal or will deal with these measurements. I would definitely recommend the publication of this work in GIMDS journal as it in includes all the main aspects that the journal is dealing with.

<u>Authors:</u> We appreciate the positive and constructive comments of the Reviewer.

I have to minor comments that could improve the publication.

A comment on the overall instrument's uncertainty (e.g. also in the abstract) would be helpful because future studies of long term changes in the parameters that are measured at this station, would be easy to be justified and assessed by citing this work.

<u>Authors:</u> The instrument uncertainties were included in Sections 3.1 and 3.2 of the original manuscript. However, and to make this information more visible, we have incorporated it into the tables 1 and 2 as follows:

Table 1.- Basic-BSRN radiation instruments installed between 2009 and 2017 at IZA BSRN. (SWD, DIR, DIF and LWD).The instruments currently in operation are marked in bold.

Parameter	Manufacturer	Туре	Serial Number	WRCM	Start Date	End Date	Spectral Range	Instrument uncertainty
SWD	Kipp & Zonen	CM-21	080034	61001	01/03/2009	10/11/2016	335-2600	
							nm	<±1% for
	EKO	MS-802F	F15509FR	61010	11/11/2016		285-3000	daily totals
							nm	
DIR	Kipp & Zonen	CH-1	080050	61003	01/03/2009	10/11/2016	200-4000	<±1% for
	EKO	MS-56	F15048	61012	11/11/2016		nm	daily totals
	Kipp & Zonen	CM-21	080032	61002	01/03/2009	10/11/2016	335-2600	<±1% for
DIF							nm	daily totals
	EKO	MS-802F	F15508FR	61011	11/11/2016		285-3000	
							nm	
			080022	61004	01/03/2009	01/05/2009		
			050783	61008	01/05/2009	13/05/2014		
LWD	Kipp & Zonen	CGR-4	080022	61004	14/05/2014	22/07/2014	4.5-42μm	< 3% for
			050783	61008	23/07/2014	30/03/2017		daily totals
			080022	61004	30/03/2017	07/06/2017		
			050783	61008	08/06/2017			

Table 2. Extended-BSRN radiation instruments installed at IZA BSRN between 2009 and 2017 (UVB, UVA, SWD andLWU). Same as Table 1.

Parameter	Manufacturer	Туре	Serial Number	WRCM	Start Date	End Date	Spectral Range	Instrument uncertainty
			970839	61007	01/03/2009	22/02/2010		<5% daily
UV-B	Yankee YES	UVB-1	071221	61009	22/02/2010	22/07/2015	280-315	totals
			970839	61007	23/07/2015		nm	
UV-A	Kipp & Zonen	UV-A-S-	08005	61006	01/03/2009		315-400	<5% daily
		Т					nm	totals
							PYRA:	
	Kipp & Zonen	CRN1	030693	61005	01/03/2009	27/11/2016	305-2800	
							nm	<10% for
SWU and							PYRG: 5-	PYRG and
LWU							50µm	<5% for
		MR-60	S15115.07	61013	01/01/2017		PYRA:	PYRA daily
							285-3000	totals
	EKO						nm	
							PYRG: 3-	
							50 µm	

Some additional information on Rayleigh scattering and extraterrestrial LibRadTran model inputs used, could be informative for the reader. I guess for such a low pollution environment the extraterrestrial choice/uncertainty will play an important role on the small differences of model vs measurements reported here.

<u>Authors:</u> As Rayleigh scattering cross secction we have chosen the default provided in the LibRadtran model, that is, the one from Bodhaine et al. (1999). In particular, by default the model uses the equations 22 and 23 of the cited paper.

Regarding the extraterrestrial spectrum, we have made a sensitivity test of the LibRadtran model considering three different extraterrestrial spectra (Theakakara, Kuruz and Gueymard). The results obtained are practically the same (Figure 1), so the choice of the extraterrestrial spectrum does not influence the results obtained.

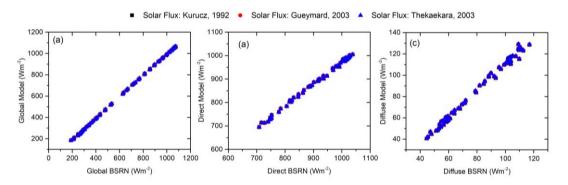


Figure 1. Scatterplot of the instantaneous (Wm⁻²) radiation measurements and simulations for (a) global, (b) direct and (c) diffuse radiation considering three extraterrestrial spectra.

Following the Referee's comment, the authors have added a new table with input parameters used in the simulations at the manuscript final.

Input	Source	Input parameters measured at IZA	References
Radiative transfer equation solver	Disort2	-	Stamnes et al. (1988,2000)
Atmosphere model	Long-term ozonesonde performed		
	at the Botanic Observatory (BTO; Tenerife)	Х	Rodriguez-Franco and Cuevas (2013)
Solar Flux	Kurucz	-	Kurucz (1992)
Ozone cross section	Bass and Paur	-	Bass and Paur (1985)
Absorption Parametrization	SBDART	-	(Pierluissi and Peng, 1985); Ricchiazzi et al., 1998
Surface albedo	0.11	Х	
Ozone Column	Brewer spectroradiometer	Х	
Water vapour column	AERONET products	Х	Holben et al. (1998)
Aerosol Ångström	AERONET products	Х	Holben et al. (1998)
Aerosol asymmetry parameter	AERONET products	Х	Holben et al. (1998)
Aerosol single scattering albedo	AERONET products	Х	Holben et al. (1998)
Aerosol profile	Shettle	Х	Shettle (1989)
Solar Zenith Angle	-	-	-
Altitude	2 400 m s.n.m.	-	-
Number of streams	16	-	-

Table 7. The input parameters of the LibRadtran model, their sources, and corresponding references.

"Following the BSRN recommendations, the detected instantaneous clear-sky periods are simulated and compared with instantaneous and daily radiation measurements. The RTM model used is LibRadtran (http://www.libradtran.org; Mayer and Kylling (2005); Emde et al. (2016)) that has been extensively tested at IZA (García et al., 2014; García et al., 2018). <u>The measured input parameters used in the LibRadtran model simulations are shown in Table 7</u> (García et al., 2014; García et al., 2018)..."

P1L20 variables

Authors: Done

P2L1 contribute

Authors: Done

P11L13 A Dep file?

<u>Authors:</u> The Dep file is that generated after removing mistakes, blank measurements or other errors might cause problems in the data evaluation process. It is referred as "*Dep Data*" in the diagram of Figure 7.

References

Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On Rayleigh optical Depth calculations, J. Atm. Ocean Technol., 16, 1854–1861, 1999.