Using Seismic Attributes in seismotectonic research: an application to 1 the Norcia's Mw=6.5 earthquake (30th October 2016) in Central Italy. 2

Maurizio Ercoli^{1*}, Emanuele Forte², Massimiliano Porreca^{1*}, Ramon Carbonell³, Cristina Pauselli^{1*}, 3 Giorgio Minelli¹*, Massimiliano R. Barchi¹*. 4

- ¹Dip. di Fisica e Geologia Università degli Studi di Perugia (Perugia, Italy). 6
- 7 ² Dept. of Mathematics and Geosciences, University of Trieste (Trieste, Italy).
- 8 ³ Dept. Structure & Dynamics of the Earth, CSIC-Inst. Earth Sciences Jaume Almera (Barcelona, Spain).
- 9 *member of Interuniversity Center for Research on 3D-Seismotectonics (Centro InterRUniversitario per l'Analisi 10 SismoTettonica tridimensionale con applicazioni territoriali – CRUST).
- 11 Correspondence to: Maurizio Ercoli (maurizio.ercoli@unipg.it; maurizio.ercoli@gmail.com)

12 Abstract. In seismotectonic studies, seismic reflection data are a powerful tool to unravel the complex deep architecture of 13 active faults. Such tectonic structures are usually mapped at surface through traditional geological surveying whilst seismic 14 reflection data may help to trace their continuation from the near-surface down to hypocentral depth. In this study, we 15 propose the application of the seismic attributes technique, commonly used in seismic reflection exploration by oil industry, 16 to seismotectonic research for the first time. The study area is a geologically complex region of Central Italy, recently struck 17 by a long-lasting seismic sequence including a Mw 6.5 main-shock. A seismic reflection data-set consisting of three vintage 18 seismic profiles, currently the only available across the epicentral zone, constitutes a singular opportunity to attempt a 19 seismic attribute analysis. This analysis resulted in peculiar seismic signatures which generally correlate with the exposed 20 surface geologic features, and also confirming the presence of other debated structures. These results are critical, because 21 provide information also on the relatively deep structural setting, mapping a prominent, high amplitude regional reflector 22 that marks the top basement, interpreted as important rheological boundary. Complex patterns of high-angle discontinuities 23 crossing the reflectors have been also identified. These dipping fabrics are interpreted as the expression of fault zones, 24 belonging to the active normal fault systems responsible for the seismicity of the region. This work demonstrates that 25 seismic attribute analysis, even if used on low-quality vintage 2D data, may contribute to improve the subsurface geological 26 interpretation of areas characterized by high seismic potential.

27 **1** Introduction

5

=

28 Studying the connections between the earthquakes and the faults to which they are associated is a primary assignment of 29 seismotectonics (Allen et al., 1965; Schwartz and Coppersmith, 1984). Clearly, this is not an easy task: it is in fact generally 30 complex to fill the gap between the exposed geology including the active "geological faults" mapped by the geologists and

31 the seismic features describing the geometry and kinematics of the seismic source at hypocentral depth ("seismological

32 faults", e.g. Barchi & Mirabella, 2008).

- 33 In case of strong earthquakes, impressive topographic changes and surface ruptures are often reported (e.g. Press and
- Jackson, 1965; Wyss & Brune, 1967; Jibson et al., 2018; Yi et al., 2018; Civico et al, 2018). While many studies on the
- 35 surface geology are generally performed, especially after important events, the recovery of deep information on the
- 36 seismogenic structures is always a challenge, primarily due to the lack of high-resolution geophysical data and/or wells
- 37 stratigraphy.
- 38 This fact generates uncertainties that may amplify the scientific debate and the number of models introduced by the
- 39 geoscientists. Therefore, this process requires the use of appropriate geophysical data, aimed at recovering information on 40 the deep geological architecture and, in particular, on the geometry of active faults.
- 41 Different geophysical methods (e.g. Gravimetry, Magnetics, Electric and Magnetotellurics, Ground Penetrating Radar) may
- 42 contribute to define the stratigraphy and structural setting of the upper crust at different scales. But the seismic reflection is
- 43 largely the most powerful tool producing high-resolution images fundamental to trace the actual geometry of active faults at
- 44 surface (usually mapped and reconstructed in geological cross-sections), from the near surface down to hypocentral depths.
- 45 However, the ex-novo acquisition of onshore deep reflection data, possibly 3D, is often hampered by environmental
- 46 problems, complex logistics, and high costs. These issues seriously limit the possible, widespread use of this technique for
- 47 scientific research. Significant exceptions are research projects for deep crustal investigations like BIRPS (Brewer et al.,
- 48 1983), CoCORP (Cook et al., 1979), ECORS (Roure et al., 1989) and CROP (Barchi et al., 1998; Finetti et al., 2001),
- 49 IBERSEIS (Simancas et al., 2003).
- 50 Such limitations can be partially overcome by considering old profiles (legacy data) acquired by the exploration industry.
- 51 When collected in seismically active regions, such data may be used to connect the active faults mapped at the surface with
- 52 the seismogenic sources depicted by seismological recordings (Boncio et al., 2000; Bonini et al., 2014; Carvalho et al., 2008;
- 53 Beidinger et al., 2011; Maesano et al., 2015; Porreca et al., 2018). Vintage profiles can therefore significantly contribute to
- 54 seismotectonic research, even if their location and orientation were not specifically designed with this aim. In addition,
- seismic technologies and acquisition/processing strategies of some decades ago, produced data with both relatively low
- 56 signal/noise ratio (S/N) and resolution in comparison to modern data.
- 57 To improve the data quality and increase the accuracy of the interpretation, three main strategies can be usually considered:
- 58 1) collection of new reflection seismic data with modern technologies, optimizing feasibility studies on the base of available
- 59 vintage datasets; 2) reprocessing of the old data from raw to new stacks using new and available powerful capabilities and
- 60 developments and, 3) use post-stack processing techniques such as seismic attributes analysis. These approaches are
- 61 currently all used by the O&G industry (e.g. in the re-assessment of known reservoirs) and are clearly characterized by
- 62 different potential, costs and working time.
- 63 Some limitations characterize the first two approaches: the first is particularly demanding in terms of costs and logistic, and
- 64 not practicable in zones where the use of dynamite or arrays of vibroseis trucks is forbidden or limited (e.g. National Parks

65 or urban areas). The second requires broad projects encompassing specialized teams, high-computation power and generally 66 long processing times, the latter is dependent on the quality of the raw data. The third strategy, in the case of the attribute 67 analysis exploits a well-known and mature technique. It has been used since early 80's by the O&G exploration industry 68 (Chopra & Marfurt, 2005) for geometrical and petrophysical characterization of reservoirs (Chopra & Marfurt, 2008). 69 A seismic attribute is a quantity derived from seismic data (pre-stack and/or post-stack) that can be calculated on a single 70 trace, on multiple traces, or volumes. This technique is commonly used to extract additional information that may be unclear 71 in a traditional seismic image, therefore leading to a better interpretation of the data. Examples of applications on dense 3D 72 seismic volumes produced spectacular results (Chopra & Marfurt, 2007; Marfurt et al., 2011; Hale, 2013; Barnes, 2016, 73 Marfurt, 2018). Recent developments of approaches based on machine learning techniques are currently pushing it further to 74 contribute towards an objective (automatic) interpretation of seismic data-sets (Wrona et al., 2018; Di & AlRegib, 2019; 75 Naeini & Prindle, 2019). Therefore, among the three strategies, the attribute analysis is probably the easiest, cheapest and 76 fastest to qualitatively emphasize the geophysical features and data properties of reflection seismic data sets in complex 77 geological areas. Due to different well-known limitations and advantages existing between 2D vs 3D seismic data (these are 78 extensively discussed by Torvela et al. (2013) and Hutchinson (2016), 2D seismic attribute analysis of post-stack data may 79 be subjected to possible pitfalls and/or may not bring so impressive improvements in the seismic images. However, the main 80 point is that inland, most of the sedimentary basins have actually been sampled by 2D grids of seismic profiles, or at least 81 they have been probed by a few sparse 2D seismic lines. Hence, it is relevant to extract as much information as possible from 82 these 2D surveys in areas not covered by 3D seismic surveys. Whilst in the hydrocarbon industry this process is useful even 83 if mainly driven by a constant necessity to reduce the costs (Ha et al., 2019), in seismotectonic researches it is affected by 84 even worse limitations previously aforementioned. Therefore, also slight improvements obtained on vintage 2D data may 85 bring to new and unprecedent subsurface information in complex and active tectonic environments. We think that we might 86 successfully export a similar approach in a seismotectonic study applying this type of analysis on an active seismic zone. 87 covered only by a very limited number of 2D seismic lines. Based on such considerations, the selected study area is located 88 in the central Apennines (Central Italy), a region between the southeastern part of the Umbria-Marche Apennines and the 89 Laga Domain in the outer Northern Apennines (e.g. Barchi et al., 2001). This area presents ideal characteristics to test the 90 proposed new approach. In fact, in the past, several seismic profiles were acquired at this location for hydrocarbon 91 exploration, providing good constraints for subsurface geological interpretation (Bally et al., 1986; Barchi et al, 1991; Barchi 92 et al., 1998; Ciaccio et al., 2005; Pauselli et al., 2006; Mirabella et al. 2008; Barchi et al., 2009; Bigi et al., 2011). After the 93 last 2016-2017 seismic sequence, Porreca et al. (2018) have provided a new regional geological model based on the 94 interpretation of vintage 2D seismic lines. In such a study, the authors remark important differences in the seismic data 95 quality across the region. In fact, the eastern area that shows higher overall data quality, is located at the footwall of the 96 Mount Sibillini thrust (MSt) and, includes (consists of) flyschoid units of the Laga foredeep Domain. It is noteworthy that the Mw 6.5 epicentral zone, is located on the MSt hanging-wall (Lavecchia, 1985). This is characterized by prevalent 97 98 carbonate sequence and, its crossed by seismic sections with lower S/N ratio, that hampered the subsurface interpretation.

- 99 Therefore, this contribution focuses on three low quality seismic cross-sections located close to the Mw 6.5 main-shock area,
- aiming to exploit the use of seismic attributes to squeeze additional information. The main goal of this study is to obtain as
- 101 much information as possible on the geological structures responsible for the seismicity. Therefore, any improvement, that
- 102 for example can increase the resolution, the definition and/or the lateral continuity of the structural features is a very valuable
- 103 contribution. The current manuscript is an example of how can seismic attribute analysis contribute to seismotectonic
- 104 research as an innovative approach.

105 2 Geological framework and seismotectonics of the study area

- During the 2016-2017, a wide part of Central Italy has been struck by a complex seismic sequence, characterized by multi fault ruptures occurred within few months (August 2016 January 2017) similarly to previous seismic sequences in Central
 Italy (e.g. L'Aquila and Colfiorito, Valoroso et al., 2013 and Chiaraluce et al., 2005). Nine earthquakes with M>5 and more
- 109 that 97'000 events in two years have been recorded at hypocentral depth not exceeding 12 km (Fig.1). The strongest
- 110 mainshock of Mw 6.5 occurred on 30th October 2016 (Chiaraluce et al., 2017; Chiarabba et al., 2018; Gruppo di Lavoro
- 111 Sequenza Centro Italia, 2019; Improta et al., 2019; ISIDe working group, 2019), generating impressive co-seismic ruptures
- 112 (Civico et al., 2018; Brozzetti et al., 2019).
- 113 The study area is located in the easternmost part of the Northern Apennines fold and thrust belt, including the Umbria-
- 114 Marche thrust and fold belt domain and Laga Formation. This is a geologically complex region, where in the past the
- analysis of 2D seismic profiles have produced contrasting interpretation of the upper crust structural setting, e.g. thin vs.
- 116 thick-skinned tectonics, fault reactivation/inversion, basement depth (Bally et al., 1986; Barchi, 1991; Barchi et al., 2001;
- 117 Bigi et al., 2011; Calamita et al., 2012; Porreca et al., 2018). The Umbria-Marche fold and thrust belt was formed during the
- 118 Miocene compressive phase, and overthrusts the Laga foredeep sequence, through arc-shaped major thrusts, namely the M.
- 119 Sibillini thrust (MSt, Koopman, 1983; Lavecchia, 1985), with eastward convexity. The compressional structures were later
- 120 disrupted by the extensional faults since the Late Pliocene.
- 121 The Umbria-Marche domain involves the rocks of the sedimentary cover, represented by three main units;
- 122 1) on top, the Laga sequence consisting of siliciclastic turbidites belonging to the Laga foredeep and foreland Formation
- 123 (Milli et al., 2007; Bigi et al., 2011); it is made by alternating layers of sandstones, marls and evaporites (Late Messinian -
- Lower Pliocene, up to 3000 m thick, average seismic velocity (v_{av}) = 4000 m/s), mainly outcropping in the eastern sector of
- 125 the study area (i.e. at the footwall of the MSt).
- 126 2) in the middle, carbonate formations (Jurassic-Oligocene, about 2000 m thick, v_{av} = 5800 m/s) formed by pelagic
- 127 limestones (Mirabella et al., 2008) with subordinated marly levels overlying an early Jurassic carbonate platform (Calcare
- 128 Massiccio Fm.)
- 129 3) at the bottom_x Late Triassic evaporites (1500–2500 m thick, v_{av} = 6400 m/s), consisting in alternated layers of anhydrites
- 130 and dolomites (Anidriti di Burano Fm. And and Raethavicula Contorta beds; Martinis & Pieri, 1964), never outcropping and

- 131 intercepted, only, by deep wells (Porreca et al., 2018 and references therein), representing the main ad deeper detachment of
- the region.
- 133 An underlying basement of variable lithology ($v_{av} = 5100 \text{ m/s}$) that never crops out (Vai, 2001), was intercepted by deep
- wells (Bally et al., 1986; Minelli & Menichetti, 1990; Anelli et al., 1994; Patacca & Scandone, 2001) and, it is separated by
 the aforementioned units by the aforementioned important regional decollement.

136 In a such complex structural setting, the Late Pliocene-Quaternary extensional tectonic phase, characterized by a prevalent

137 NE-SW stretching direction, produced NNW-SSE striking WSW-dipping normal faults. These faults were also responsible of

138 the tectono-sedimentary evolution of intra-mountain continental basins (Calamita et al., 1994; Cavinato and De Celles, 1999).

139 The most evident Quaternary basins of this part of the Apennines are the Castelluccio di Norcia (CNb) and Norcia (Nb) basins,

140 located respectively at 1270 and 700 m a.s.l. They have been subjected to a lacustrine and fluvial sedimentation of hundreds

141 of meters characterized by fine clayey to coarse grained deposits (Blumetti et al., 1993; Coltorti and Farabollini, 1995).

142 The area is affected by historical and instrumental seismicity with frequent small to moderate magnitude earthquakes (4 <

143 Mw < 7, Boncio and Lavecchia, 2000; Rovida et al., 2016). The recent 2016-2017 seismic sequence has been caused by the

activation of a complex NNW-SSE trending fault system, characterized by prevalent high-angle WSW-dipping normal faults

145 (Lavecchia et al., 2016). More in detail, the easternmost fault system of the region recently activated is the NNW-SSE

146 trending "Monte Vettore fault system" (Vf). This was the responsible of the mainshock nucleation between the continental

147 Norcia (Nb) and Castelluccio di Norcia basins (CNb) (Fig. 1). Nb and CNb are two asymmetrical grabens, bordered by high-

angle WSW-dipping normal faults located on their eastern flanks. Both fault systems are thought to have high seismogenic

potential and able to generate earthquakes up to Mw 7.0 (e.g. Barchi et al., 2000; Basili et al., 2008; Rovida et al., 2016;

150 DISS Working Group, 2018).

151 The Nb master fault (Nottoria-Preci fault, Nf) is considered responsible of the 1979 earthquake (Deschamps et al., 1984;

152 Brozzetti & Lavecchia, 1994; Rovida et al., 2016) and possibly associated to multiple historical events (Galli et al., 2005;

Pauselli et al., 2010; Galli et al., 2018), including the 1703 (Me = 6.8, Rovida et al., 2016). The CNb master fault (Vf) and its

154 secondary splays activated during the 2016-2017 sequence (e.g. Wilkinson et al., 2017; Villani et al., 2018a) were already

155 known and mapped due to paleo-seismological and shallow geophysical evidences (Galadini & Galli, 2003; Galli et al.,

156 2008; Ercoli et al., 2013; Ercoli et al., 2014). However, despite of the large amount of surface data collected (Livio et al.,

157 2016; Pucci at al., 2017; Wilkinson et al., 2017; De Guidi et al., 2017; Brozzetti et al., 2019; Galli et al., 2018), the deep

158 extension of the Norcia and Castelluccio faults (particularly the Vf), and the overall complex structure of the area are still

debated (Lavecchia et al., 2016; Porreca et al., 2018; Bonini et al., 2019, Cheloni et al., 2019, Improta et al. 2019).

160 **3 Data**

We have performed the seismic attributes analysis on three W-E trending 2D seismic reflection profiles crossing the epicentral area between the Umbria and Marche regions (Central Italy, Fig.1). Such 2D data are part of a much larger,

163 unpublished dataset including 97 seismic profiles and few boreholes, drilled for hydrocarbon exploration by ENI in the

164 period 1970-1998.

- 165 The data quality is extremely variable (medium/poor) with limited fold (generally < 60 traces / Common Mid-Point CMP)
- 166 mainly due to environmental and logistical factors like: acquisition technologies, limited site access, complex tectonic
- 167 setting, and different (contrasting) outcropping lithologies like Carbonates and Quaternary sediments that resulted often in
- 168 low S/N recordings (e.g. Mazzotti et al., 2000, Mirabella et al., 2008).
- 169 The analysed lines include: NOR01 (stack, 14 km long), NOR02 (time-migrated, 20 km long, partially parallel to NOR01 on
- the western sector), and CAS01 (stack, 16 km long), located more to the south (Fig. 1). NOR01 and CAS01 were acquired
- 171 using a Vibroseis source, whilst explosive was used for NOR02; all the lines are displayed in Two-Way-Travel-Time
- 172 (TWTT) limited to 4.5 s. The average frequency spectra display bandwidths ranging from few Hz up to 60-70 Hz, whilst
- 173 NOR02 extends up to 100 Hz. Assuming the average peak frequency of 20 Hz, a vertical resolution of ca. 80 m can be
- 174 estimated (average carbonate velocity = 6 km/s, parameters in Table 1s, supporting information). Some processing artefacts
- 175 (A) are visible in NOR01 as a straight horizontal signal at ca. 1 s (Fig. 2a), and two others sub-horizontal between 1-2 s in
- 176 CAS01 (Fig. 1s-a, supporting information). However, some seismic events and lineaments, related to geological structures of
- 177 interest, are slightly visible and their display seems potentially improvable with a proper choice of seismic attributes type
- 178 and parameters. Therefore, we loaded the lines into the OpendTect (OdT) software, setting up a common seismic datum
- 179 equal to 500 m while adding some ancillary data, extracted by a complementary GIS (OGis software) project including:
- (Quis software) project menduing.
- regional fault patterns (from maps and Ithaca database), a regional DTM (Tarquini et al., 2007; Tarquini et al., 2012),
- 181 geological maps (Pierantoni et al., 2013; Carta Geologica Regionale 1:10'000 Regione Marche, 2014; Carta Geologica
- 182 Regionale 1:10'000 Regione Umbria, 2016), as well as mainshock earthquakes distribution belonging to the studied
- 183 seismic sequence (Iside database). The integration of such information in a pseudo-3D environment offered us a
- 184 multidisciplinary platform to clearly display the seismic lines and to link surface data and the deep geologic structures at
- 185 hypocentral depth.

186 4 Methods

187 The seismic reflection data interpretation is generally accomplished through the definition of specific signal characteristics 188 (seismic signature), supported by the geological knowledge of the study area. A standard seismic interpretation is affected by 189 a certain degree of uncertainty/subjectivity (particularly in case of poor data quality), because generally based on a 190 qualitative analysis of reflection amplitude, geometry and lateral continuity. Over the last years, the introduction of seismic 191 attributes and related automated/semi-automated procedures had an important role in reducing the subjectivity of seismic 192 interpretation, at first in 2D/3D seismic reflection data (Barnes 1996; Taner et al., 1979; Barnes, 1999; Chen and Sidney, 193 1997; Taner, 2001; Chopra and Marfurt, 2007; Chopra and Marfurt, 2008; Forte et al., 2016) and, more recently, also in 194 other reflection techniques like the Ground Penetrating Radar (GPR) (e.g. McClymont et al., 2008; Forte et al., 2012; Ercoli 195 et al., 2015, De Lima et al., 2018). In this work, we have tested several post-stack attributes on three 2D vintage seismic

lines, also using composite multi-attribute displays. Among those analysed, we selected the three attributes that resulted in

the best images, making possible to detect peculiar seismic signatures of regional seismogenic layers and fault zones. Detailsabout the calculated attributes are hereafter provided.

199

200 "Energy" (E): one of the RMS amplitude-based attributes, it is defined as the ratio between the squared sum of the 201 sample values in a specified time-gate and the number of samples in the gate (Taner, 1979, Chopra & Marfurt, 202 2005, Chopra & Marfurt, 2007). The Energy measures the reflectivity in a specified time-gate, so the higher the 203 Energy, the higher is the reflection amplitude. In comparison to the original seismic amplitude, it is independent of 204 the polarity of the seismic data being always positive, and in turn preventing the zero-crossing problems of the 205 seismic amplitude (Forte et al., 2012, Ercoli et al., 2015, Lima et al., 2018, Zhao et al., 2018). This attribute is 206 useful to emphasize the most reflective zones (e.g. characterization of acoustic properties of rocks). It may also 207 enhance sharp lateral variations in seismic events, highlighting discontinuities like fractures and faults. In this work, 208 we set a 20 ms time window (i.e. about the mean wavelet length), obtaining considerable improvements in the 209 visualization of higher acoustic impedance contrasts.

- 210 "Energy gradient" (EG): it is the first derivative of the energy with respect to time (or depth). The algorithm 211 calculates the derivative in moving windows and returns the variation of the calculated energy as a function of time 212 or depth (Chopra & Marfurt, 2007; Forte et al., 2012). It is a simple and robust attribute, also useful for a detailed 213 semi-automatic mapping of horizons with a relative low level of subjectivity. The attribute acts as an edge detection 214 tool, effective in the mapping of the reflection patterns as well as the continuity of both steep discontinuities like 215 faults and fractures, and channels, particularly in slices of 3D data (Chopra & Marfurt, 2007). In this work, we have 216 used the same time window of the Energy, obtaining considerable improvements in the visualization not only of the 217 strong acoustic impedance reflectors but particularly in the faults imaged in the shallowest part of the seismic 218 sections.
- Pseudo-relief (PR): it is obtained in two steps: the energy attribute is first computed in a short time window, then
 followed by the Hilbert transform (phase rotation of -90 degrees). The Pseudo-relief is considered very useful in 2D
 seismic interpretation to generate "outcrop-like" images allowing an easier detection of both faults and horizons
 (Bulhões, 1999; Barnes et al., 2011; Vernengo et al. 2017, Lima et al., 2018). In this work, considerable display
 improvements have been obtained using the Pseudo-relief computed in a window of 20 ms. In comparison to the
 standard amplitude, it better highlights the reflection patterns and thus the continuity/discontinuity of reflectors,
 enhancing steep discontinuities and fault zones.

226 **5 Results** =

The comparison between the original seismic lines and the images obtained after the attribute analysis allows to detect considerable improvements in the visualization and interpretability of the geophysical features. In profiles NOR01, CAS01

- and NOR02 (Figs 2, 3 and 4, respectively) we focus our analysis on three main types of geophysical features highlighted by the attributes: sub-horizontal deep reflectors, low-angle and high-angle discontinuities.
- Analysing in detail the line NOR01 (Fig. 2a, line location in the excerpt on the top), the most apparent low-angle
- 232 geophysical features are located in the eastern portion of the line between 2-3 s of the time window. The EN attribute in Fig.
- 233 2b clearly enhances a high-amplitude, gently W-dipping event at about 2.5 s (blue arrows). The EG and SR attributes of
- NOR01 show clearly that this horizon (Figs. 2c, 2d, hereafter H) is characterized by a continuous package of reflectors (ca.
- 235 200 ms in TWT, ca. 8 km long), with common characteristics in terms of reflection strength and period.
- A similar feature showing such a peculiar signature is visible also in CAS01, approximately at the same time interval (Fig.
- 237 3a, line location reported on the top insert). But in comparison to NOR01, it appears more discontinuous all along the
- 238 seismic profile, and in addition it is partially interfering with suspicious processing artefacts (highlighted with yellow dots,
- 239 labelled as "A", slightly undulated in Fig. 3a whilst horizontal in Fig. 2a ca. at 1 s). For those reasons, H is not particularly
- clear in the standard amplitude line CAS01 (Fig. 3a), even if it is mainly visible on the westernmost side and beneath the
- southern termination of Nb (ca. between 11-15 km). Despite a generalized high frequency noise content, H is better
- enhanced in fig. 3b by EN attribute (blue arrows), and in particular by the EG and PR attributes (Figs. 3c and 3d), that
- considerably help to better detect and mark its extension and geometry.
- Regarding the most visible steep geophysical features detectable in these two seismic provides, in NOR01 a high-angle E-244 245 dipping lineament is defined by a clear high-angle discontinuity of the seismic signal, particularly enhanced in the eastern 246 sector (distance ca. 10 km) below the Nb (red arrows in fig. 2c and 2d). A very similar high-angle East-dipping discontinuity 247 can be noticed in the eastern sector of CAS01 (red arrows in Fig. 3c and 3d). Another main high-angle W-dipping lineament 248 is enhanced in Figs. 2c-2d of NOR01 (red arrows at the end of the line), that clearly divides two patterns of reflectors 249 showing different dip; this discontinuity propagates down to ca. 2.5 s and intercepts the aforementioned strong reflector H. 250 Between those two main alignments bounding the Nb, other similar but minor discontinuities can be also noticed crossing 251 and slightly disrupting the shallower reflectors: those high angle features are efficiently displayed by the EG and PR 252 attributes (Fig. 2c, 2d), whilst in the original line in Fig. 2a cannot be really appreciated.
- 252 attributes (Fig. 2c, 2d), whist in the original me in Fig. 2a cannot be rearry appreciated.
 253 The figure 4a display the original seismic line NOR02 characterized by similar geophysical features (location on the top)
- insert). The EN attribute in Fig. 4b again results efficient in enhancing sub-horizontal (blue arrows) and also gently dipping deep events (green dots). On the western sector, the attributes in Figs. 4b and 4c show a pattern of relatively continuous and gently W-dipping events between 0-2.5 s (0-5 km along the line). The most evident high-amplitude and continuous reflector characterizes the central part of NOR02 at ca. 3.2–3.5 s (blue arrows in Figs. 4b, 4c, 4d), gently East-dipping and relatively
- 258 continuous for more than 8 km. This latter is intercepted by an important and well visible low-angle W-dipping discontinuity
- 259 (T, green dots in Figs. 4b, 4c and 4d). It crosses the entire profile, rising from about 4 s (West) to ca. 2 s (East), where it
- 260 intercepts one of the high amplitude events on the eastern end of the seismic line (18-20 km). Here again the attribute
- analysis results extremely efficient to clearly detect such geophysical features otherwise poorly visible on the original line
- 262 NOR02 in Fig. 4a.

264 NOR02, aiding an easier detection of high-angle discontinuities, at different scales. In fact, a main high-angle E-dipping 265 discontinuity (red arrows) delimits the NOR02 western sector (ca. 1 km of distance along the line at surface); another steep 266 W-dipping alignment (red arrows) clearly cuts and slightly disrupt the set of reflectors below the Nb (0-2.5 s, ca. 4-5 km). In 267 addition, smaller discontinuities pervasively cross-cut the set of reflectors between 1-4 km bounded by such two main 268 features, producing a densely fragmented reflectors pattern in the middle portion. Another steep E-dipping feature is visible 269 at higher depth (red arrows at 1-3 s, ca. 7-9 km) beneath the topographic relief separating Nb by CNb; it seems to end up on 270 the deep surface T and in addition it doesn't reach the shallower portion of the seismic line. This discontinuity is subparallel 271 to a similar structure displayed in a more central portion of NOR02 (western side of CNb highlighted by red arrows at 10-12 272 km). The Figs. 4c and 4d show here sets of reflectors sharply interrupted, fragmented and displaced in a narrow zone. The 273 same seismic pattern is present in the western side of CNb, but it is due to some west-dipping discontinuities located 274 between 14-16 km. These features highlight an asymmetric "V-shape" fabric characterized by very short and fragmented 275 reflectors bounded by those two steep features of opposite dip. The deep continuation of such a main W-dipping alignment 276 also seems to truncate and disrupt both the gently-dipping discontinuity T and the deep reflector H: at approximately 3.2 s, it 277 appears interrupted laterally on its western side (Figs. 4c and 4d). 278 The results of this work produced has globally improved the interpretability of the original dataset. In particular, the data

The most important result provided by the EG and PR attributes is a much clear visualization of the reflection patterns of

integration in a 3D environment and the use of multi-attribute displays clarified the deep geometries of the main reflectors
 and of the geophysical discontinuities, later interpreted on the light of the known and debated tectonic structures on the study

area. This is particularly clear in Fig. 5a, in which we report the seismic line NOR02 after the combined plot of the PR

282 attribute ("similarity" palette) with superimposed the EG attribute ("energy" palette), overlapped using ODT software (depth

283 conversion with $V_{Pav} = 6000$ m/s, vertical scale 2x). The reflectors characteristics and the discontinuities are clearly visible at

different levels of detail, and the two boxes (blue and black colours, respectively) highlight on the two most representative

seismic facies described before. The blue box of Fig.5a is reported in Fig. 5b and 5c by displaying a comparison of the H

signature in the original line and a plot of the EN attribute superimposed on the PR attribute. On the two other inserts in Figs.

287 5d and 5e, the same comparison of the data included in the black box is proposed. Fig.4d shows the scarce detectability of

the dense pattern of steep discontinuities in the original seismic profile (SA). The Fig.5e displays the enhancement obtained plotting the PR attribute ("similarity palette") in transparency on the seismic line in amplitude (SA).

An analogous visualization is proposed in Fig. 6a for the seismic line NOR01. The comparison between the multi-display of attributes PR and EG (blue box in Fig. 6a), the original line (Fig. 6b) and the EN+PR plot (Fig.6c) shows the improved

signature of the strong reflector H. The black box again reports the original line NOR01 and the version PR+SA, clearly

boosting the visualization of the high-angle discontinuities.

294 Such results therefore ensure an easier and more accurate interpretation of the subsurface geological structures; those are

295 connected with the surface geology and related to the hypocentre location of the main seismic events, that will be discussed

296 more in detail within the following chapter.

263

297 6 New constraints on the deep geological structure reconstruction

298 Due to the lack of 3D seismic volumes and of a regular grid of 2D seismic profiles in the area, the geological meaning of the

- results provided by the attributes analysis have been constrained by integrating all the other available literature data. We
- have therefore integrated geological and structural maps (Koopman, 1983; Centamore et al., 1993; Pierantoni et al., 2013),
- high-resolution topographic data (Tarquini et al., 2007 and 2012), mainshocks hypocentral data (Chiaraluce et al., 2017) and
- 302 co-seismic surface ruptures data (Civico et al., 2018; Villani et al., 2018; Brozzetti et al., 2019).
- 303 In fig. 7, a 3D overview of the study region summarizes the data analysed across the area surrounding the Mw 6.5 mainshock
- 304 (30th October 2016), plotter together with other three strong seismic events in the Northern sector. The two seismic images
- in Figs. 7b and 7c have been obtained by using again a multi-attributes visualization, in this case overlapping the PR and EN
- attributes in transparency with the original seismic lines NOR01 and NOR02. The black boxes centred on the NB and CNb
- 307 basins have been magnified above and display the limits of the bounding faults (black dashed lines) and the main important
- reflectors detected in depth. In the Figs. 7d and 7e, we propose a detailed interpretation of the geophysical features displayed by the attribute images, together with the location of the focal mechanisms of the principal mainshocks.
- 310 The deep, high-amplitude reflector (H, blue arrows and dashed line) highlighted to the West of Nb in NOR01 (at 2.5 s, in
- Figs. 2d and 7d and in Figs. 3d of CAS01), presents an attribute signature similar to the one deeper visible in NOR02
- 312 beneath CNb (3.2 s, in Figs. 4b and 7e). This set of reflectors are interpreted as a high acoustic impedance contrast, possibly
- related to an important velocity inversion occurring between the Triassic Evaporites (anhydrites and dolostones, $Vp \approx 6$
- 314 km/s, e.g. Trippetta et al., 2010) and the underlying acoustic Basement (metasedimentary rocks, $Vp \approx 5$ km/s, sensu Bally et
- 315 al., 1986). Similar, prominent reflections were detected in adjacent regions of the Umbria-Marche Apennines (e.g. Mirabella
- et al., 2008) confirming its regional importance, particularly because it represents a lithological control marking a seismicity
- 317 cutoff (Porreca et al., 2018; Mancinelli et al., 2019).
- 318 The continuity of the deep reflector H is interrupted in the western edge by the low-angle west-dipping T discontinuity
- crossing NOR02 (Figs. 4d and 7e), not identified by Porreca et al. (2018). We interpret this discontinuity as the evidence of a
 deep thrust emerging in the easternmost sector of the region.
- 321 The steep discontinuities highlighted by the attribute analysis are here interpreted as the seismic signature at depth of
- 322 complex normal faults mapped at the surface. More in detail, the most evident seismic discontinuity is marked by an E-
- dipping fault in NOR01, bordering westward the Nb (Figs. 2d and 7d). The latter does not have a clear surface expression
- 324 and therefore its presence is still debated in literature (Blumetti et al., 1993; Pizzi et al., 2002; Galadini et al., 2018; Galli et
- 325 al., 2018): its location and geometry in NOR01 perfectly match the supposed position at surface. Therefore, it may represent
- 326 the evidence of the antithetic normal fault of Norcia (aNf), belonging to a conjugate tectonic system (Brozzetti & Lavecchia,
- 327 1994; Lavecchia et al., 1994) and suggested by morphological evidences (Blumetti et al., 1990) and paleoseismological
- 328 records (Borre et al., 2003). It is a synthetic (W-dipping) high-angle, normal fault bordering the eastern flank of Nb
- 329 ("Nottoria-Preci fault" Nf, Calamita et al., 1982; Blumetti et al., 1993; Calamita & Pizzi, 1994). The Nf in NOR02 is

- 330 evident by a downward propagation of steep alignments (red arrows, Figs. 2c, 2d and 7d), that generates sharp lateral
- 331 truncations of the gently W-dipping reflectors. This area is also fragmented by several minor strands parallel to the main
- faults (Figs. 7d). In addition, another similar structure is visible slightly eastward (Figs.4c, 4d red arrows between 7-9 km,
- 333 ca. 1-3 s and westernmost dashed black line in Fig. 7e). It is not reaching the shallower portion of the seismic line, but it is
- 334 clearly visible in depth down to the discontinuity T. This feature might be interpreted as a parallel E-dipping fault, moreover
- 335 suggested by several authors to be connected with an aftershock (Mw5.4), that "ruptured a buried antithetic normal fault on
- eastern side of Nb, parallel to the western bounding fault of CNb" (Chiaraluce et al., 2017, Porreca et al., 2018 and Improta
- 337 et al., 2019).
- The central sector of NOR02 including CNb, was described as a "triangle-shaped zone" by Porreca et al. (2018), who remark a generalized difficulty to detect the accurate position of the normal faults. The multi-attribute visualization shows a clear reflection fabric dominated by high-angle discontinuities. Those are interpretable as two opposite dipping normal faults bordering the basin, well matching their positions mapped at surface (cfr. Pierantoni et al., 2013).
- 342 The main fault is here represented by the W-dipping Vf fault, reactivated during the 2016 earthquake (Villani et al., 2018a).
- 343 It can be traced, from its surface expression downward to hypocentre location along its deep seismic signature, made by
- 344 several high-angle seismic discontinuities cross-cutting the gently W-dipping reflectors (Figs. 4d and 7e). At depth, the Vf
- 345 seems also to displace the Top Basement (H) and the thrust (T) at about 3.2 s.
- 346 Analogous considerations can be extended to the E-dipping set of steep events at the westward side of CNb. These may
- 347 represent evidence of an antithetic fault (aVf), made by several minor fault strands (Villani et al., 2018b). Such a fault
- 348 appears connected at about 2-3 s to the W-dipping master Vf, producing a geometry of a conjugate system similar to Nb
- 349 (Figs. 4d and 7e).
- 350 For both Nb and CNb, the interpreted data suggest two slightly asymmetric fault systems, due to conjugate sets of
- 351 seismogenic master faults (Ramsay & Huber, 1987) producing a "basin-and-range" morphology (Serva at al., 2002). Those
- 352 control the evolution of the continental basins, and are associated with several complex sets of secondary strands, able to 353 produce surface ruptures as occurred in the 2016-2017seismic swarm.
- 354 The attribute images produced in this work suggest that such synthetic and antithetic tectonic structures at the Nb and CNb
- 355 cannot be actually simplified as a unique fault plane, but as complex and fractured fault zones (Fz, in Fig. 7d), like also
- 356 conceived also by Ferrario & Livio (2018) as "distributed faulting and rupture zones".

357 Conclusions

- Taking into account the important role that seismic attributes play in the O&G industry their usage might be similar interest for seismotectonic studies. And have a high potential impact on earthquakes hazard assessment.
- 360 This contribution presents one of the first case studies where the seismic attribute analysis is used for seismotectonic purposes.
- 361 The analysis is applied to seismic reflection data collected more than 30 years ago in Central Italy. Such industrial data,

362 nowadays irreproducible in regions where the seismic exploration is forbidden, represent, despite the limited quality, a unique

363 high-resolution source of information.

364 This contribution reveals that the use of seismic attributes can greatly improve the interpretation for the subsurface assessment 365 and structural characterization. Certainly, the overall low quality of the data sets did neither allow to extract rock petrophysical 366 parameters, nor more quantitative information. However, the attributes aid the seismic interpretation to better display the 367 reflection patterns of interest and provided new and original details on complex tectonic region in Central Italy. We 368 considerably improved the overall interpretability of the vintage seismic lines crossing the epicentral area of the 2016-2017 369 Norcia-Amatrice seismic sequence. In particular, we detected peculiar seismic signatures of a deep horizon of regional 370 importance, corresponding, most probably, to the base of the seismogenic layer, and to the location and geometry of the 371 complex active fault zones. Those consists of several secondary synthetic and antithetic splays in both the Ouaternary basins. 372 generally consistent with its surface location, but also reinforcing the existence of faults with no clear surface outcrop, issue 373 currently much debated in the literature.

374 The analysis and integration of the seismic attributes has allowed the determination of the deep continuation of the (known 375 and supposed) faults and, the recently mapped co-seismic ruptures at surface, providing a pseudo-3D picture of the buried 376 structural setting of the area. The seismic attributes may help to reduce the gap between the surface geology and deep 377 seismological data, also revealing, a high structural complexity at different scales, that cannot generally be detected by using 378 only traditional interpretation techniques. This approach has shown the potential of the attributes analysis, that even when 379 applied on 2D vintage seismic lines, may significantly extend the data value. For all these reasons, we strongly encourage its 380 application for seismotectonic research to provide new information and additional constraints across other seismically active 381 regions around the world.

382 Acknowledgments

We are grateful to Eni S.p.A. for providing an inedited set of seismic reflection lines after the 2016-2017 seismic crisis in Central Italy (raw data available in Fig.2 of supporting information). The original seismic reflection lines used in this study are available in the supplementary material. The authors are very grateful to dgB Earth Sciences and to QGIS team for providing the academic software used in this work. We thank Dr. Christian Berndt for his useful comments in the revision of the paper.

388 References

- Allen, C. R., St. Amand, P., Richter, C. F., & Nordquist, J.: Relationship between seismicity and geologic structure in the southern California region. Bulletin of the Seismological Society of America, 55(4), 753-797, 1965.
- 391 Anelli, L., Gorza, M., Pieri, M., and Riva, M.: Subsurface well data in the Northern Apennines (Italy). Memorie della Società
- 392 Geologica Italiana, 48, 461–471, 1994.
- 393 Bally, A. W., Burbi, L., Cooper, C., & Ghelardoni, R.: Balanced cross-sections and seismic reflection profiles across the central
- 394 Apennines. Memorie della Societa Geologica Italiana, 35, 257–310, 1986.
- 395 Barchi, M.: Integration of a seismic profile with surface and subsurface geology in a cross-section through the Umbria-Marche
- Apennines. Bollettino della Società Geologica Italiana, 110, 469–479, 1991.
- Barchi, M. R., Minelli, G. and Pialli, G.: The CROP 03 Profile: a synthesis of results on deep structures of the Northern
 Apennines, Mem. Soc. Geol. It., 52, 383-400, 1998.
- 399 Barchi M.R., Galadini, F., Lavecchia, G., Messina, P., Michetti, A. M., Peruzza, L., Pizzi, A., Tondi & Vittori, E.: Sintesi delle
- 400 conoscenze sulle faglie attive in Italia Centrale: parametrizzazione ai fini della caratterizzazione della pericolosità sismica.
- 401 CNR-Gruppo Nazionale per la Difesa dai Terremoti, Roma, 62 pp., 2000.
- Barchi, M., Landuzzi, A., Minelli, G., & Pialli, G.: Outer northern Apennines. In anatomy of an orogen: The Apennines and
 adjacent Mediterranean Basins. Netherlands, Springer, 215–253, 2001.
- Barchi, M. R., & Mirabella, F.: The 1997-98 Umbria-Marche earthquake sequence: "Geological" vs. "seismological" faults.
 Tectonophysics, 476(1–2), 170–179. https://doi.org/10.1016/j.tecto.2008.09.013, 2009.
- 406 Barnes, A. E.: Theory of two-dimensional complex seismic trace analysis. Geophysics, 61, 264–272, 1996.
- Barnes, A. E.: Attributes for automating seismic facies analysis. Seg Technical Program Expanded Abstracts, 19.
 doi:10.1190/1.1816121, 1999.
- 409 Barnes, A. E.: "Displaying Seismic Data to Look Like Geology", chapter of: "Attributes: New Views on Seismic Imaging-
- 410 Their Use in Exploration and Production", Marfurt, K. J. Gao, D., Barnes, A., Chopra, S., Corrao, A., Hart, B., James, H.,
- 411 Pacht, J., Rosen, N.C. (2011), SEPM Society for Sedimentary Geology, 31, doi: 10.5724/gcs.11.31, 2011.
- 412 Barnes, A., E.: Handbook of Poststack Seismic Attributes, Society of Exploration Geophysicists, 21, doi:
 413 10.1190/1.9781560803324, 2016.
- 414 Basili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano, S., ... & Boschi, E.: The Database of Individual
- Seismogenic Sources (DISS), version 3: summarizing 20 years of research on Italy's earthquake geology. Tectonophysics,
 416 453(1-4), 20-43, 2008.
- Beidinger, A., Decker, K., & Roch, K. H.: The Lassee segment of the Vienna Basin fault system as a potential source of the
 earthquake of Carnuntum in the fourth century AD. International Journal of Earth Sciences, 100(6), 1315-1329, 2011.
- 419 Bigi, S., Casero, P., & Ciotoli, G.: Seismic interpretation of the Laga basin; constraints on the structural setting and kinematics
- 420 of the central Apennines. Journal of the Geological Society, 168(1), 179–190. doi 10.1144/0016-76492010-084, 2011.

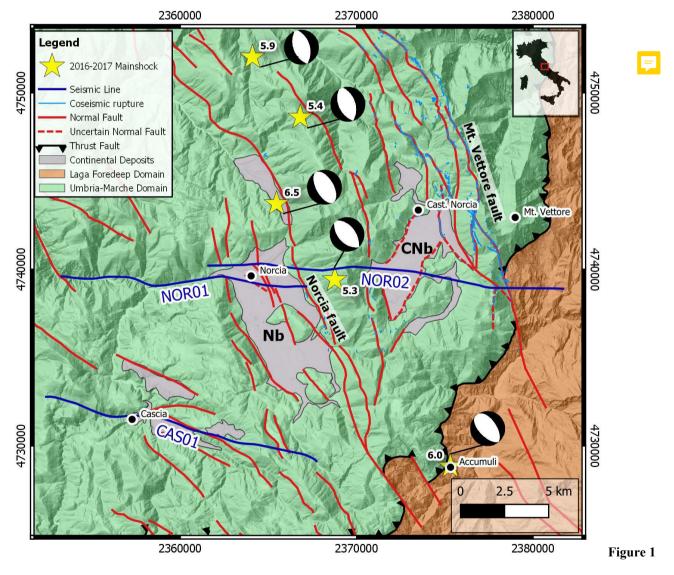
- 421 Borre, K., Cacon, S., Cello, G., Kontny, B., Likke Andersen, H., Moratti, G., Piccardi, L., Stemberk, J., Tondi, E., Vilimek,
- 422 V.: The COST project in Italy: analysis and monitoring of seismogenic faults in the Gargano and Norcia areas (centralsouthern
- 423 Apennines, Italy). J. Geodyn. 36, 3–18, 2003.
- Blumetti, A.M., Coltorti, M., Dramis, F., Farabollini, P.: Due sezioni stratigrafiche nel Pleistocene medio della conca di Norcia;
 implicazioni geomorfologiche e neotettoniche. Rend. Soc. Geol. Ital. 13, 17–26, 1990.
- 426 Blumetti, A. M., Dramis, F., & Michetti, A. M.: Fault-generated mountain fronts in the central Apennines (Central Italy):
- 427 Geomorphological features and seismotectonic implications. Earth Surface Processes and Landforms, 18(3), 203–223. doi:
- 428 10.1002/esp.3290180304, 1993.
- Bonini, L., Toscani, G., & Seno, S.: Three-dimensional segmentation and different rupture behavior during the 2012 Emilia
 seismic sequence (Northern Italy). Tectonophysics, 630, 33-42, 2014.
- 431 Bonini, L., Basili, R., Burrato, P., Cannelli, V., Fracassi, U., Maesano, F. E., et al.: Testing different tectonic models for the
- 432 source of the Mw 6.5, 30 October 2016, Norcia earthquake (central Italy): A youthful normal fault, or negative inversion of
- 433 an old thrust? Tectonics, 38, doi:10.1029/2018TC005185, 2019.
- Boncio, P., F. Brozzetti, and G. Lavecchia: Architecture and seismotectonics of a regional low-angle normal fault zone in central Italy, Tectonics, 19(6), 1038–1055, doi:10.1029/2000TC900023, 2000.
- 436 Boncio, P., Lavecchia, G., & Pace, B.: Defining a model of 3D seismogenic sources for seismic hazard assessment applications:
- 437 The case of central Apennines (Italy). Journal of Seismology, 8(3), 407–425, 2004.
- Brewer, J. A., Matthews, D. H., Warner, M. R., Hall, J., Smythe, D. K., & Whittington, R. J.: BIRPS deep seismic reflection
 studies of the British Caledonides. Nature, 305(5931), 206, 1983.
- Brozzetti, F., & Lavecchia, G.: Seismicity and related extensional stress field: the case of the Norcia seismic zone. Annales
 Tectonicae, 8, 38–57, 1994.
- 442 Brozzetti, F., Boncio, P., Cirillo, D., Ferrarini, F., de Nardis, R., Testa, A., Liberi, F., & Lavecchia, G.: High resolution field
- mapping and analysis of the August October 2016 coseismic surface faulting (Central Italy Earthquakes): slip distribution,
 parameterization and comparison with global earthquakes. Tectonics, 38. <u>https://doi.org/10.1029/2018TC005305</u>, 2019.
- Bulhões, E.M.: Técnica "Volume de Amplitudes". SBGF/6° Congresso Internacional da Sociedade Brasileira de Geofísica,
 Rio de Janeiro, Anais (In Portuguese), 1999.
- Calamita, F., Coltorti, M., Deiana, G., Dramis, F. and Pambianchi, G.: Neotectonic evolution and geomorphology of the Cascia
 and Norcia depressions (Umbria-Marche Apennines), Geografia Fisica e Dinamica Quaternaria, 5, 263-276, 1982.
- 449 Calamita, F., & Pizzi, A.: Recent and active extensional tectonics in the southern Umbro-Marchean Apennines (Central Italy).
- 450 Memorie della Società Geologica Italiana, 48, 541–548, 1994.
- 451 Calamita, F., Pace, P., & Satolli, S., Coexistence of fault-propagation and fault-bend folding in curve-shaped foreland fold-
- 452 and-thrust belts: examples from the Northern Apennines (Italy). Terra Nova, 24(5), 396-406, 2012.
- 453 Carvalho, J., Taha, R., Cabral, J., Carrilho, F. and Miranda, M.: Geophysical characterization of the OtaVila Franca de Xira-
- 454 Lisbon-Sesimbra fault zone, Portugal. Geophysical Journal International, 174, 567-584, 2008.

- 455 Cavinato, G. P., & De Celles, P. G.: Extensional basins in the tectonically bimodal central Apennines fold-thrust belt, Italy:
- 456 Response to corner flow above a subducting slab in retrograde motion. Geology, 27(10), 955–958, 1999.
- 457 Centamore, E., Adamoli, L., Berti, D., Bigi, G., Bigi, S., Casnedi, R., et al.: Carta geologica dei bacini della Laga e del Cellino
- 458 e dei rilievi carbonatici circostanti. In: Studi Geologici Camerti, Vol. Spec. Università degli Studi, Dipartimento di Scienze
- 459 della Terra. SELCA, Firenze, 1992.
- 460 Cheloni, D., Falcucci, E., & Gori, S.: Half-graben rupture geometry of the 30 October 2016 MW 6.6 Mt. Vettore-Mt. Bove
- 461 earthquake, central Italy. Journal of Geophysical Research: Solid Earth, 124. <u>https://doi.org/10.1029/2018JB015851</u>
- 462 Chen, Q. and Sidney, S.: Seismic Attribute Technology for Reservoir Forecasting and Monitoring. The Leading Edge, 16 (5):
- 463 445. <u>http://dx.doi.org/10.1190/1.1437657</u>, 1997.
- Chiarabba, C., De Gori, P., Cattaneo, M., Spallarossa, D., & Segou, M.: Faults geometry and the role of fluids in the 2016–
 2017 Central Italy seismic sequence. Geophysical Research Letters, 45, 6963–6971, 2018.
- 466 Chiaraluce, L., Barchi, M., Collettini, C., Mirabella, F. & Pucci, S. Connecting seismically active normal faults with
- 467 Quaternary geological structures in a complex extensional environment: the Colfiorito 1997 case history (northern Apennines,
- 468 Italy). Tectonics 24, TC1002, <u>https://doi.org/10.1029/2004TC001627</u>, 2005.
- 469 Chiaraluce, L., Di Stefano, R., Tinti, E., Scognamiglio, L., Michele, M., Casarotti, E., et al.: The 2016 Central Italy seismic
- 470 sequence: A first look at the mainshocks, aftershocks, and source models. Seismological Research Letters, 88(3), 757–771.
- 471 <u>https://doi.org/10.1785/0220160221</u>, 2017.
- 472 Chopra, S. & J. Marfurt, K.: Seismic attributes A Historical Perspective. Geophysics. 70(5):3.
 473 <u>https://doi.org/10.1190/1.2098670</u>, 2005.
- 474 Chopra, S. and Marfurt, K. J.: Seismic Attributes for Prospect Identification and Reservoir Characterization. SEG Geophysical
- 475 Developments Series No. 11, Stephen J. Hill, series editor and volume editor. ISBN 978-1-56080-141-2 (volume) ISBN 978-
- 476 0-931830-41-9 (series), 464 pp, 2007.
- 477 Chopra, S. & J. Marfurt, K.: Emerging and future trends in seismic attributes. The Leading Edge. 27. 298-318.
 478 10.1190/1.2896620, 2008.
- Ciaccio, M., Barchi M. R., Chiarabba, C., Mirabella, F. and Stucchi E.: Seismological, geological and geophysical constraints
 for the Gualdo Tadino fault, Umbria-Marche Apennines (central Italy), Tectonophysics, 406, 233 247, 2005.
- 481 Civico, R., Pucci, S., Villani, F., Pizzimenti, L., De Martini, P. M., Nappi, R. & the Open EMERGEO Working Group: Surface
- 482 ruptures following the 30 October 2016 Mw 6.5 Norcia earthquake, central Italy, Journal of Maps, 14:2, 151-160, doi:
 483 10.1080/17445647.2018.1441756, 2018.
- Coltorti, M., Farabollini, P.: Quaternary evolution of the "Castelluccio di Norcia" basin (Umbro-Marchean Apennines, central
 Italy). Il Quaternario 8(1), 149–166, 1995.
- 486 Cook, F. A., Albaugh, D. S., Brown, L. D., Kaufman, S., Oliver, J. E., & Hatcher Jr, R. D.: Thin-skinned tectonics in the
- 487 crystalline southern Appalachians; COCORP seismic-reflection profiling of the Blue Ridge and Piedmont. Geology, 7(12),
- 488 563-567, 1979.

- 489 De Guidi, G., Vecchio, A., Brighenti, F., Caputo, R., Carnemolla, F., Di Pietro, A., et al.: Co-seismic displacement on October
- 490 26 and 30, 2016 (Mw 5.9 and 6.5) earthquakes in central Italy from the analysis of discrete GNSS network. Natural Hazards
- and Earth System Sciences Discussions, 2017(May), 1–11. doi: 10.5194/nhess-2017-130, 2017.
- 492 Deschamps, A., Innaccone, G., & Scarpa, R.: The Umbrian earthquake (Italy) of 19 September 1979. Annales Geophysicae,
 493 2, 29–36, 1984.
- 494 De Lima, R. & Luiz Evangelista Teixeira, W. & Ramos de Albuquerque, F. & Lima-Filho, F. P.: Ground Penetrating Radar
- 495 digital imaging and modeling of microbialites from the Salitre Formation, Northeast Brazil. Geologia USP Serie Cientifica,
- 496 18, 187-200. doi: 10.11606/issn.2316-9095.v18-146075, 2018.
- 497 Di, H., and AlRegib, G.: Semi-automatic fault/fracture interpretation based on seismic geometry analysis: Geophysical
 498 Prospecting, doi: 10.1111/1365-2478.12769, 2019.
- 499 DISS Working Group: Database of Individual Seismogenic Sources (DISS), Version 3.2.1: A compilation of potential sources
- 500 for earthquakes larger than M 5.5 in Italy and surrounding areas. http://diss.rm.ingv.it/diss/, Istituto Nazionale di Geofisica e
- 501 Vulcanologia, doi: 10.6092/INGV.IT-DISS3.2.1, 2018.
- 502 Ercoli, M., Pauselli, C., Frigeri, A., Forte, E., & Federico, C.: "Geophysical paleoseismology" through high resolution GPR
 503 data: A case of shallow faulting imaging in Central Italy. Journal of Applied Geophysics, 90, 27–40.
 504 doi.org/10.1016/j.jappgeo.2012.12.001, 2013.
- 505 Ercoli M., Pauselli C., Frigeri A., Forte E. and Federico C.: 3-D GPR data analysis for high-resolution imaging of shallow
- subsurface faults: the Mt Vettore case study (Central Apennines, Italy). Geophysical Journal International, 198:1(609-621).
 doi: 10.1093/gji/ggu156, 2014.
- Ercoli, M., Pauselli, C., Cinti, F.R., Forte, E. and Volpe, R.: Imaging of an active fault: Comparison between 3D GPR data
 and outcrops at the Castrovillari fault, Calabria, Italy. Interpretation, 3(3), pp. SY57-SY66, 2015.
- 510 Ferrario, M. F., & Livio, F.: Characterizing the distributed faulting during the 30 October 2016, Central Italy earthquake: A
- 511 reference for fault displacement hazard assessment. Tectonics, 37, 1256–1273. <u>https://doi.org/10.1029/2017TC004935</u>, 2018.
- 512 Finetti, I. R., Boccaletti, M., Bonini, M., Del Ben, A., Geletti, R., Pipan, M., & Sani, F.: Crustal section based on CROP seismic
- 513 data across the North Tyrrhenian–Northern Apennines–Adriatic Sea. Tectonophysics, 343(3-4), 135-163, 2001.
- 514 Ferrario, M. F., & Livio, F.: Characterizing the distributed faulting during the 30 October 2016, Central Italy earthquake: A
- reference for fault displacement hazard assessment. Tectonics, 37. doi:10.1029/2017TC004935, 2018.
- Forte E., Pipan M., Casabianca D., Di Cuia R., Riva A.: Imaging and characterization of a carbonate hydrocarbon reservoir
 analogue using GPR attributes. Journal of Applied Geophysics, 81, 76–87, 2012.
- 518 Forte E., Dossi M., Pipan M. and Del Ben A.: Automated phase attribute-based picking applied to reflection seismics,
- 519 Geophysics, 81, 2, V55-V64, doi: 10.1190/GEO2015-0333.1, 2016.
- 520 Galadini, F., & Galli, P.: Paleoseismology of silent faults in the central Apennines (Italy): The Mt. Vettore and Laga Mts.
- 521 Faults. Annals of Geophysics, 46. <u>https://doi.org/10.4401/ag-3457</u>, 2003.

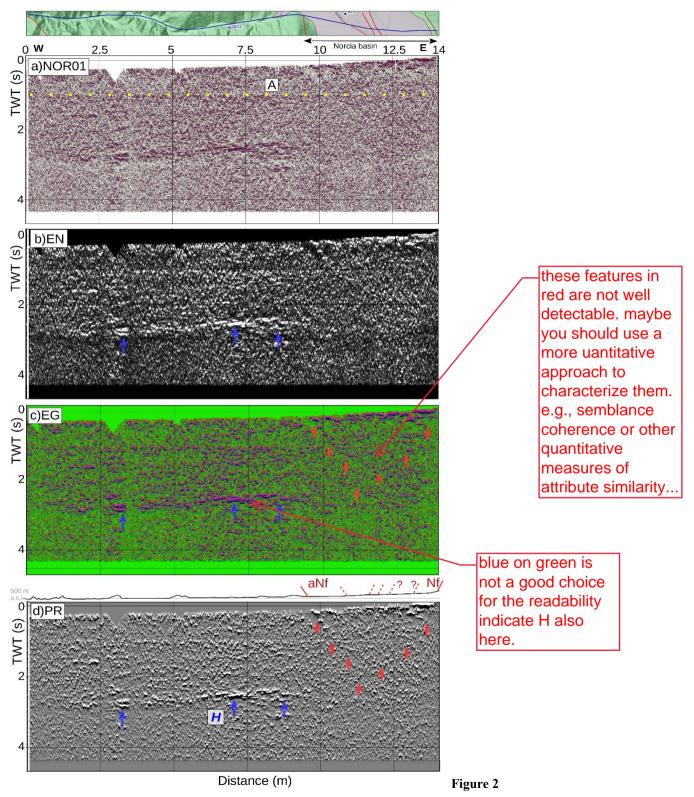
- 522 Galadini, F., Falcucci, E., Gori, S., Zimmaro, P., Cheloni, D. and Stewart J. P.: Active Faulting in Source Region of 2016-
- 523 2017 Central Italy Event Sequence. Earthquake Spectra, 34, 4, 1557-1583, 2018.
- Galli, P., Galadini, F., Calzoni, F.: Surface faulting in Norcia (Central Italy): a "paleoseismological perspective".
 Tectonophysics, 403, 117–130, 2005.
- 526 Galli, P., Galadini, F. & Pantosti, D.: Twenty years of paleoseismology in Italy, Earth-Sci. Rev., 88(1–2), 89–117, 2008.
- 527 Galli, P., Galderisi, A., Ilardo, I., Piscitelli, S., Scionti, V., Bellanova, J., Calzoni, F.: Holocene paleoseismology of the Norcia
- 528 fault system (Central Italy), Tectonophysics, 745, 154-169, doi:10.1016/j.tecto.2018.08.008, 2018.
- 529 Gruppo di Lavoro Sequenza Centro Italia: Rapporto Bollettino Sismico Italiano sulla revisione dei giorni 24-26 agosto; 26-27
- 530 ottobre; 30 ottobre 1° novembre 2016. Bollettino Sismico Italiano (BSI), 13 pp., 2019.
- Jibson, R.W., Allstadt, K.E., Rengers, F.K., and Godt, J.W.: Overview of the geologic effects of the November 14, 2016, Mw
- 532 7.8 Kaikoura, New Zealand earthquake, U.S. Geological Survey Scientific Investigations Report, 2017–5146, 39 pp.,
- 533 <u>https://doi.org/10.3133/sir20175146</u>, 2018.
- Ha, T. N., Marfurt, K. J. and Wallet B. C., Hutchinson, B.: Pitfalls and implementation of data conditioning, attribute analysis,
- and self-organizing mapping to 2D data: Application to the Exmouth Plateau, North Carnarvon Basin, Australia, Interpretation,
- 536 submitted, <u>http://mcee.ou.edu/aaspi/submitted/2019/Ha_et_al_2019_Seismic_attributes_for_2D_data.pdf</u>, 2019.
- 537 Hale, D.: Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images.
- 538 Geophysics, 78(2), O33–O43, <u>https://doi.org/10.1190/geo2012-0331.1</u>, 2013.
- Hutchinson, B.: Application and Limitations of Seismic Attributes on 2D Reconnaissance Surveys: Master's thesis, University
 of Oklahoma, 130 pp., 2016. https://shareok.org/handle/11244/34658.
- 541 Improta, L., Latorre, D., Margheriti, L., Nardi, A., Marchetti, A., Lombardi, A. M., Castello, B., Villani, F., Ciaccio, M. G.,
- 542 Mele, F. M., Moretti, M. & the Bollettino sismico Italiano Working Group: Multi-segment rupture of the 2016 Amatrice-
- 543 Visso-Norcia seismic sequence (central Italy) constrained by the first high-quality catalog of early Aftershocks. Scientific
- 544 Reports, 9, 6921, 2019. doi: 10.1038/s41598-019-43393-2
- 545 ISIDe working group: version 1.0; doi:10.13127/ISIDe, 2016.
- 546 Ithaca catalogue, Available at: http://www.isprambiente.gov.it/it/progetti/ suolo-e-territorio-1/ithaca-catalogo-delle-faglie-547 capaci, last accessed January 2019.
- 548 Koopman, A.: Detachment tectonics in the central Apennines, Italy. Geologica Eltraiectina, 30, 1–155, 1983.
- Lavecchia, G.: Il sovrascorrimento dei Monti Sibillini: Analisi cinematica e strutturale. Bollettino della Società Geologica
 Italiana, 104, 161–194, 1985.
- 551 Lavecchia, G., Brozzetti, F., Barchi, M., Keller, J., & Menichetti, M.: Seismotectonic zoning in east-central Italy deduced from
- the analysis of the Neogene to present deformations and related stress fields. Geological Society of America Bulletin, 106, 1107–1120, 1994.
- 554 Lavecchia, G., Castaldo, R., de Nardis, R., De Novellis, V., Ferrarini, F., Pepe, S., Brozzetti, F., Solaro, G., Cirillo, D., Bonano,
- 555 M., Boncio, P., Casu, F., De Luca, C., Lanari, R., Manunta, M., Manzo, M., Pepe, A., Zinno, I., Tizzani, P.: Ground

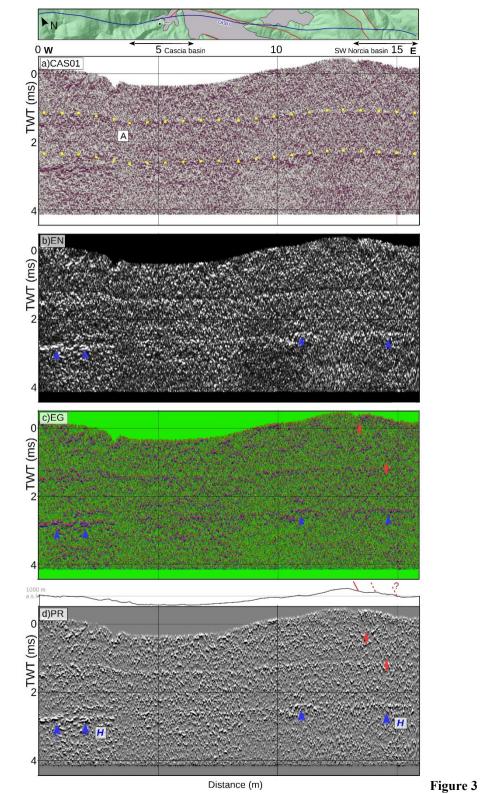
- deformation and source geometry of the 24 August 2016 Amatrice earthquake (Central Italy) investigated through analytical
- and numerical modeling of DInSAR measurements and structural-geological data. Geophysical Research Letters, 43, 12,389–
- 558 12,398 American Geophysical Union (AGU), 2016.
- 559 Lima, R. & Teixeira, L. E. W., de Albuquerque, F. R., and Lima-Filho, F. (2018). Ground Penetrating Radar digital imaging
- and modeling of microbialites from the Salitre Formation, Northeast Brazil. Geologia USP Serie Cientifica. 18. 187-200.
- 561 10.11606/issn.2316-9095.v18-146075.
- 562 Livio, F., Michetti, A. M., Vittori, E., Gregory, L., Wedmore, L., Piccardi, L., et al.: Surface faulting during the August 24,
- 563 2016, central Italy earthquake (Mw 6.0): Preliminary results. Annals of Geophysics, 59. doi: 10.4401/ag-7197, 2016.
- Maesano, F. E., D'Ambrogi, C., Burrato, P., & Toscani, G.: Slip-rates of blind thrusts in slow deforming areas: examples from
 the Po Plain (Italy). Tectonophysics, 643, 8-25, 2015.
- 566 Mancinelli, P., Porreca, M., Pauselli, C., Minelli, G., Barchi, M. R., & Speranza, F.: Gravity and magnetic modeling of Central
- Italy: Insights into the depth extent of the seismogenic layer. Geochemistry, Geophysics, Geosystems, 20, 2019,
 https://doi.org/10.1029/2018GC008002.
- Marfurt, K. J. Gao, D., Barnes, A., Chopra, S., Corrao, A., Hart, B., James, H., Pacht, J., Rosen, N.C.: SEPM Society for
 Sedimentary Geology, 31, doi: 10.5724/gcs.11.31, 2011.
- Marfurt, K. J.: Seismic Attributes as the Framework for Data Integration throughout the Oilfield Life Cycle, SEG, 508 pp.,
 2018.
- Martinis, B., and Pieri, M.: Alcune notizie sulla formazione evaporitica dell'Italia centrale e meridionale. Bollettino della
 Società Entomologica Italiana, 4, 649–678, 1964.
- 575 Mazzotti, A., Stucchi, E., Fradelizio, G., Zanzi, L., Scandone, P.: Seismic exploration in complex terrains: A processing 576 experience in the southern Apennines. Geophysics, 65(5), 1402–1417. https://doi.org/10.1190/1.1444830, 2000.
- 577 McClymont, A. F., Green, A. G., Villamor, P., Horstmeyer, H., Grass, C. and Nobes, D. C.: Characterization of the shallow
- 578 structures of active fault zones using 3-D ground-penetrating radar data, J. Geophys. Res., 113, B10315, 579 doi:10.1029/2007JB005402, 2008.
- 580 Milli, S., Moscatelli, M., Stanzione, O., & Falcini, F.: Sedimentology and physical stratigraphy of the Messinian turbidites
- deposits of the Laga basin (Central Apennines, Italy). Bollettino della Società Geologica Italiana, 126, 37–48, 2007.
- 582 Minelli, G., and Menichetti, M.: Tectonic evolution of the Perugia massifs area (Central Italy). Bollettino della Società
- 583 Entomologica Italiana, 109(5), 445–453, 1990.
- 584 Mirabella, F., Barchi, M. R. and Lupattelli, A.: Seismic reflection data in the Umbria Marche region: Limits and capabilities
- to unravel the subsurface structure in a seismically active area. Annals of Geophysics, 51(2–3), 383–396.
 https://doi.org/10.4401/ag-3032, 2008.
- 587 Naeini E. Z. and Prindle, K.: Machine learning and learning from machines, The Leading Edge, 37:12, 886-893, 2018.


- 588 Patacca, E., and Scandone, P.: Late thrust propagation and sedimentary response in the thrust-belt foredeep system of the
- southern Apennines (Pliocene–Pleistocene). In G. Vai & I. Martini (Eds.), Anatomy of an Orogen: The Apennines and adjacent
 Mediterranean basins, 441–454, Norwell, MA: Kluwer Acad., 2001.
- 591 Pauselli, C., Barchi, M. R., Federico, C., Magnani, M. B. and Minelli, G.: The crustal structure of the northern Apennines
- (Central Italy): An insight by the CROP03 seismic line. American Journal of Science, 306(6), 428–450.
 <u>https://doi.org/10.2475/06.2006.02</u>, 2006.
- Pauselli, C., Federico, C., Frigeri, A., Orosei, R., Barchi, M.R. & Basile, G.: Ground Penetrating Radar investigations to study
- active faults in the Norcia Basin (Central Italy), Journal of Applied Geophysics, 72, 39-45, 2010.
- Pierantoni, P. P., Deiana, G., & Galdenzi, S.: Stratigraphic and structural features of the Sibillini Mountains (Umbria–Marche
 Apennines, Italy). Italian Journal of Geosciences, 132, 497–520. https://doi.org/10.3301/IJG.2013.08, 2013.
- 598 Pizzi, A., Calamita, F., Coltorti, M., & Pieruccini, P.: Quaternary normal faults, intramontane basins and seismicity in the
- 599 Umbria-MarcheAbruzzi Apennine Ridge (Italy): Contribution of neotectonic analysis to seismic hazard assessment. Bollettino
- 600 Società Geologica Italiana Special Publication, 1(January), 923–929, 2002.
- 601 Porreca, M., Minelli, G., Ercoli, M., Brobia, A., Mancinelli, P., Cruciani, F., Giorgetti, C., Carboni, C., Mirabella, F., Cavinato,
- 602 G., Cannata, A., Pauselli, C., Barchi, M.R.: Seismic reflection profiles and subsurface geology of the area interested by the 603 2016–2017 earthquake sequence (Central Italy). Tectonics, 37, 1-22, doi: 10.1002/2017TC004915, 2018.
- Press, F., and D. Jackson: Alaskan earthquake, 27 March 1964: Vertical extent of faulting and elastic strain energy release,
 Science, 147, 867, 1965.
- 606 Pucci, S, De Martini, P.M., Civico, R., Villani, F, Nappi, R., Ricci, T., Azzaro, R., Brunori, C. A., Caciagli, M., Cinti, F. R.,
- 607 Sapia, V., De Ritis, R., Mazzarini, F., Tarquini, S., Gaudiosi, G., Nave, R., Alessio, G., Smedile, A., Alfonsi, L., Cucci, L.,
- 608 Pantosti. D.: Coseismic ruptures of the 24 August 2016, Mw6.0 Amatrice earthquake (central Italy). Geophysical Research
- 609 Letters, American Geophysical Union (AGU), 2017.
- Ramsay, J. G., Huber, M. I.: The Techniques of Modern Structural Geology: Folds and Fractures. Elsevier Science, 391 pp.,
 1987.
- 612 Roure, F., P. Choukroune, X. Berastegui, J. A. Munoz, A. Villien, P. Matheron, M. Bareyt, M. Seguret, P. Camara, and J.
- 613 Deramond: Ecors deep seismic data and balanced cross sections: Geometric constraints on the evolution of the Pyrenees,
- 614 Tectonics, 8(1), 41–50, doi:10.1029/TC008i001p00041, 1989.
- Rovida, A., Locati, M., Camassi, R., Lolli, B., & Gasperini P. (Eds.): CPTI15, the 2015 version of the parametric catalogue of
 Italian earthquakes, Istituto Nazionale di Geofisica e Vulcanologia. <u>https://doi.org/10.6092/INGV.IT-CPTI15</u>, 2016.
- 617 Schwartz, D. P., & Coppersmith, K. J.: Fault behavior and characteristic earthquakes: Examples from the Wasatch and San
- 618 Andreas fault zones. Journal of Geophysical Research: Solid Earth, 89(B7), 5681-5698, 1984.
- 619 Serva L., Blumetti A.M., Guerrieri L. and Michetti A.M.: The Apennine intermountain basins: the result of repeated strong
- 620 earthquakes over a geological time interval. Boll. Soc. Geol. It., 1, 939-946, 2002.

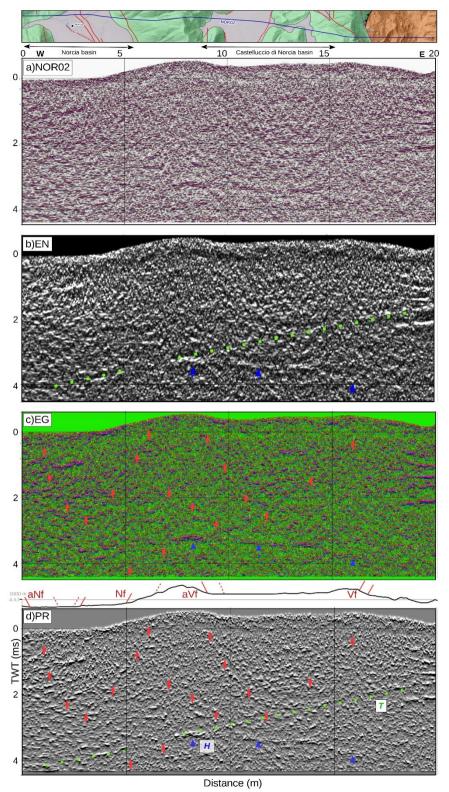
- 621 Simancas, J. F., Carbonell .R., González Lodeiro, F., Pérez Estaún, A., Juhlin, C., Ayarza, P., Kashubin, A., Azor, A., Martínez
- 622 Poyatos, D., Almodóvar, G.R., Pascual, E., Sáez, R., Expósito, I.: Crustal structure of the transpressional Variscan orogen of
- 623 SW Iberia: SW Iberia deep seismic reflection profile (IBERSEIS), *Tectonics*, 22, 1062, doi:10.1029/2002TC001479, 6, 2003.
- Taner, M.T., Koehler, F., and Sheriff, R.E.: Complex Seismic Trace Analysis. Geophysics, 44 (6): 1041.
- 625 <u>http://dx.doi.org/10.1190/1.1440994</u>, 1979.
- Taner, M.T.: Seismic attributes. Canadian Society of Exploration Geophysicists Recorder, 26. 48-56, 2001.
- Tarquini, S., Isola, I., Favalli, M., & Boschi, E.: TINITALY/01: a new triangular irregular network of Italy. Annals of
 Geophysics, 50–53, 2007.
- 629 Tarquini, S., Vinci, S., Favalli, M., Doumaz, F., Fornaciai, A., & Nannipieri, L.: Release of a 10-m-resolution DEM for the
- Italian territory: Comparison with global-coverage DEMs and anaglyph-mode exploration via the web. Computers and
 Geosciences, 38(1), 168–170. https://doi.org/10.1016/j.cageo.2011.04.018, 2012.
- 632 Trippetta, F., Collettini, C., Vinciguerra, S., & Meredith, P. G.: Laboratory measurements of the physical properties of Triassic
- evaporites from Central Italy and correlation with geophysical data. Tectonophysics, 492(1), 121–132, 2010.
- Torvela T., Moreau, J., Butler, R., W. H, Korja, A. and Heikkinen, P.: The mode of deformation in the orogenic mid-crust
 revealed by seismic attribute analysis, Geochem., Geophys., Geosyst., 14, 1069–1086, 2013.
- Vai, G. B.: Basement and early (pre-Alpine) history. In G. B. Vai & I. P. Martini (Eds.), Anatomy of an orogen: The Apennines
 and adjacent Mediterranean basins, 121–150, Dordrecht, Netherlands: Kluwer Academic Publisher.
 https://doi.org/10.1007/978-94-015-9829-3 10, 2001.
- 639 Valoroso, L. et al. Radiography of a normal fault system by 64,000 high-precision earthquake locations: The 2009 L'Aquila
- 640 (central Italy) case study. J. Geophys. Res. Solid Earth, 118, 1156–1176, <u>https://doi.org/10.1002/jgrb.50130</u>, 2013.
- Vernengo, L., Trinchero, E., Torrejón, M. G., and Rovira, I.: Amplitude volume technique attributes and multidimensional
 seismic interpretation. The Leading Edge, 36(9), 776–781. <u>https://doi.org/10.1190/tle36090776.1</u>, 2017.
- Villani, F., Pucci, S., Civico, R., De Martini, P. M., Cinti, F. R., & Pantosti, D.: Surface faulting of the 30 October 2016 Mw
- 644 6.5 central Italy earthquake: Detailed analysis of a complex coseismic rupture. Tectonics, 37, 3378–3410.
 645 <u>https://doi.org/10.1029/2018TC005175</u>, 2018a.
- 646 Villani, F., Sapia, V., Baccheschi, P., Civico, R., Di Giulio, G., Vassallo, M., et al.: Geometry and structure of a fault bounded
- extensional basin by integrating geophysical surveys and seismic anisotropy across the 30 October 2016 Mw 6.5 earthquake
- fault (central Italy): The Pian Grande di Castelluccio basin. Tectonics, 37. <u>https://doi.org/10.1029/2018TC005205</u>, 2018b.
- 649 Yi, S., Wu, C., Li, Y. et al. J. Mt. Sci.: Source tectonic dynamics features of Jiuzhaigou Ms 7.0 earthquake in Sichuan Province,
- 650 China, Journal of Mountain Science, 15(10): 2266-2275. doi: 10.1007/s11629-017-4703-6, 2018.
- 651 Wilkinson, M. W., McCaffrey, K. J. W., Jones, R. R., Roberts, G. P., Holdsworth, R. E., Gregory, L. C., et al.: Near-field fault
- 652 slip of the 2016 Vettore Mw 6.6 earthquake (Central Italy) measured using low-cost GNSS. Scientific Reports, 7(1), 4612,
- 653 doi:10.1038/s41598-017-04917-w, 2017.

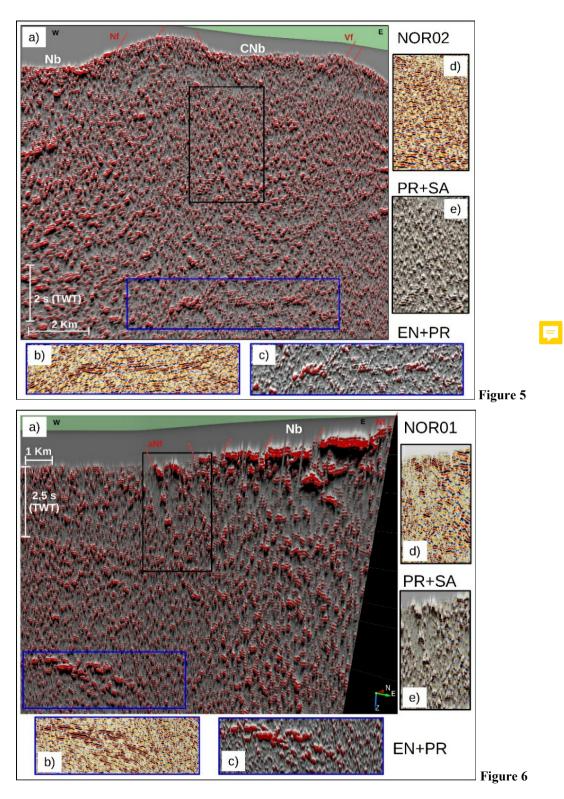
- Wrona, T., Pan, I., Gawthorpe, R. L. and Fossen, H.: Seismic facies analysis using machine learning, Geophysics, 83:5, O83-
- 655 O95, 2018.
- Wyss, M. and Brune, J. N.: The Alaska earthquake of 28 March 1964: A complex multiple rupture, Bull. Seism. Soc. Amer.
- 657 57, (5), 1967.

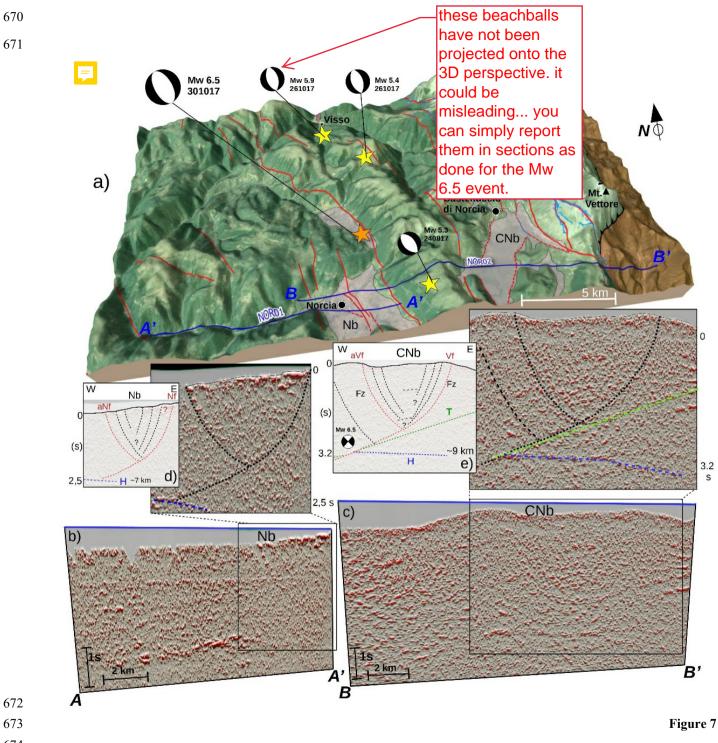



- 658 Zhao, W., Forte, E., Fontolan, G., Pipan, M.: Advanced GPR imaging of sedimentary features: integrated attribute analysis
- applied to sand dunes, Geophysical Journal International, 213:1, 147–156, <u>https://doi.org/10.1093/gji/ggx541</u>, 2018.
- 660

662


661




F

675	Table 1

Parameters	NOR01	NOR02	CAS01
Source	Vibroseis	Vibroseis	Explosive
Length (km)	14	20	16
Number of traces	938	825	1069
Samples/trace	1600	1750	1600
Time window (ms)	6400	7000	6400
Sampling interval (ms)	4	4	4
Trace interval (m)	15	25	15
Mean Spectral amplitude (dB)	0 -20 -40 -60 0 25 50 75 100 125 (Hz)	0 -20 -40 -60 0 25 50 75 100 125 (Hz)	-20 -40 0 25 50 75 100 125 (Hz)

677 Figures and Tables captions:

Figure 1: Simplified geological map of the study area (modified after Porreca et al., 2018), showing the 2D seismic data tracks, the 2016-2017 mainshock locations, beachballs and magnitudes, the surface ruptures and the known master faults. Nb Norcia basin,

679 2016-2017 mainshock locations, be 680 CNb Castelluccio di Norcia basin.

Figure 2: Stack version of NOR01; a) reflection amplitude, yellow dots underline a processing artefact (A); b) Energy attribute enhancing a strong reflectivity contrasts (H, blue arrows); c) Energy Gradient, improving the detection of dipping alignments and continuity of reflectors; d) Pseudo-Relief enhancing the reflection patterns cross-cut by steep discontinuities (red arrows). Nf Norcia fault, aNf antithetic Norcia fault.

Figure 3: Stack version of CAS01, with same attributes computation: a) reflection amplitude (yellow dots display processing
 artefacts); b) Energy attribute c) Energy Gradient attribute; d) Pseudo-Relief, showing the strong regional reflector H (blue arrows).
 A high-angle discontinuity on the western margin is interpretable as a normal fault, showing an attribute signature analogous to
 aNf.

Figure 4: Time migrated version of NOR02; a) reflection amplitude; b) Energy attribute displaying the reflector H (blue arrows)
 and a possible low angle discontinuity (T, green dots); c) Energy Gradient attribute, showing the master faults bounding the basins
 (red arrows); d) Pseudo-Relief, improving the reflectors continuity/discontinuity and the master faults display (red arrows). Nf
 Norcia fault, aNf antithetic Norcia fault; Vf Mt. Vettore fault, aVf antithetic Mt. Vettore fault.

Figure 5: Multi-attribute display of NOR02; a) EN+PR attributes, the seismic facie in the blue box is compared with the original seismic line (b) and EN+PR (c) for comparison; the same plot for the black box is reported in figures d) and e) (original line and

694 seismic line (b) and EN+PR (c) for 695 PR+SA, respectively).

- Figure 6: Multi-attribute display of NOR01; a) EN+PR attributes, the seismic facie in the blue box showing a strong set of deep reflectors is compared with the original seismic line in b) and EN+PR c). An analogous plot of the black box reports in figures d) and e) the original line and the combination PR+SA.
- 699 Figure 7: Integration of surface and subsurface data (DTM by Tarquini et al., 2012); a) 3D-view of a W-E section crossing Nb and
- 700 CNb, and the mainshock locations (ISIDe working group, 2016). Surface and deep data allow to correlate the master faults and
- 701 coseismic ruptures at the surface. The multi-attribute display of NOR01 (b) and NOR02 (c), is obtained overlapping the reflection
- amplitude in transparency with the Pseudo-Relief and Energy attributes (red palette). A significative improvement of the subsurface
- 703 images provides unprecedent details on the seismogenic fault zones: the two conjugate basins show master faults along the borders
- 704 and some minor synthetic and antithetic splays (see d) and e) sketches).
- Table 1: List of some parameters extracted from SEG-Y headers and three mean frequency spectra of the three seismic lines. An approximate vertical resolution equal to 80 m was derived (v=6 km/s).