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Abstract. This paper proposes and demonstrates improvements for the Monte Carlo simulation for Uncertainty Estimation (MCUE) 

method. MCUE is a type of Bayesian Monte Carlo aimed at input data uncertainty propagation in implicit 3D geological modeling. 10 

In the Monte Carlo process, a series of statistically plausible models are built from the input data set which uncertainty is to be 

propagated to a final probabilistic geological model (PGM) or uncertainty index model (UIM). 

Significant differences in terms of topology are observed in the plausible model suite that is generated as an intermediary step in 

MCUE. These differences are interpreted as analogous to population heterogeneity. The source of this heterogeneity is traced to be 

the non-linear relationship between plausible datasets’ variability and plausible model’s variability. Non-linearity is shown to arise 15 

from the effect of the geometrical ruleset on model building which transforms lithological continuous interfaces into discontinuous 

piecewise ones. Plausible model heterogeneity induces geological incompatibility and challenges the underlying assumption of 

homogeneity which global uncertainty estimates rely on. To address this issue, a method for topological analysis applied to the 

plausible model suite in MCUE is introduced. Boolean topological signatures recording lithological units’ adjacency are used as n-

dimensional points to be considered individually or clustered using the Density-Based Spatial Clustering of Applications with Noise 20 

(DBSCAN) algorithm. The proposed method is tested on two challenging synthetic examples with varying levels of confidence in 

the structural input data. 

Results indicate that topological signatures constitute a powerful discriminant to address plausible model heterogeneity. Basic 

topological signatures appear to be a reliable indicator of the structural behavior of the plausible models and provide useful 

geological insights. Moreover, ignoring heterogeneity was found to be detrimental to the accuracy and relevance of the PGMs and 25 

UIMs. 
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Highlights 

• Monte Carlo uncertainty estimation (MCUE) methods often produce geologically incompatible plausible models 

• Geologically incompatible models can be differentiated using topological signatures 30 

• Geologically consistent probabilistic geological models (PGM) may be obtained through topological signatures clustering 
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Introduction 

Input data uncertainty propagation in is an essential part of risk aware 3D geological modeling (Schweizer et al., 2017;Wang et al., 

2016;Nearing et al., 2016;Aguilar et al., 2018;Mery et al., 2017;Dang et al., 2017;Lark et al., 2013). Accurate quantification of 

geometrical uncertainty is indeed key to determine the degree of confidence one can put into a model. How reliable a 3D geological 

model is and how this reliability varies in space are indispensable data to seek improvement of said model. Monte Carlo based 5 

uncertainty estimation (MCUE) algorithms have recently been proposed to tackle this issue (de la Varga and Wellmann, 

2016;Pakyuz Charrier et al., 2018;Pakyuz-Charrier et al., 2018). MCUE methods (Figure 1) aim to propagate the measurement 

uncertainty of structural input data (interface points, foliations, fold axes) through implicit 3D geological modeling engines to 

produce probabilistic geological models (PGM) and uncertainty index models (UIM). To do so each structural input data is replaced 

by a probability distribution thought to best represent its measurement uncertainty called a disturbance distribution (Pakyuz-Charrier 10 

et al., 2017b). Disturbance distributions are then sampled using Markov-Chain Monte-Carlo or random methods to generate 

alternative statistically plausible datasets. Plausible datasets can then used to build a suite of plausible 3D geological models which 

may be merged into PGMs or UIMs. Recent works (Thiele et al., 2016a;Thiele et al., 2016b) have demonstrated that the plausible 

3D geological models’ suite may display great geometrical variability to the point of making some plausible models conceptually 

incompatible with one another. Plausible models’ incompatibility is damaging to the relevance of MCUE because the PGMs and 15 

UIMs implicitly assume plausible model homogeneity. 

In this paper, the standard MCUE procedure is described, the source of plausible models’ incompatibility is discussed, and a 

topological analysis method is proposed to address the issue and improve the relevance of PGMs and UIMs to real world problems. 

The method relies on the extraction of adjacency matrices for each plausible model. Adjacency matrices qualify which geological 

units are in contact using Boolean logic. These matrices are then converted to binary signals called topological signatures that are 20 

then clustered using DBSCAN. The goal is to provide MCUE practitioners with a procedure to ensure that PGMs and UIMs are 

made of topologically consistent plausible models. Lastly, the method is tried and tested on two synthetic case studies to demonstrate 

its applicability. 

1 MCUE method 

Monte Carlo simulation for Uncertainty Estimation (MCUE) is an uncertainty propagation method focusing on input structural data 25 

(interface points, foliations, fold axes, drillhole data). It is usually applied to implicit 3D geological modeling (Giraud et al., 2017). 

Note that MCUE shares aspects with the Generalized Likelihood Uncertainty Estimation (Beven and Binley, 1992), a special 

implementation of a Bayesian Monte Carlo approach (Camacho et al., 2015). MCUE aims to provide probabilistic models and 

estimate model uncertainty by producing a range of alternate plausible 3D geological models and performing comparative analysis 

on them (Pakyuz-Charrier et al., 2017a;Wellmann, 2013;Lindsay et al., 2013). 3D geological model suites are built from a series of 30 

plausible datasets that are generated through input data perturbation (Figure 1), which is a process in which alternative input datasets 

are stochastically generated from the original data inputs by sampling from probability distribution functions known as disturbance 

distributions (Pakyuz-Charrier et al., 2017b). 

1.1 Disturbance distribution parameterization 

Disturbance distributions are probability distribution functions that are used to generate plausible datasets in MCUE. They are 35 

designed to simulate the effect of the inherent uncertainty of each observation separately. In principle, an individual disturbance 

distribution is associated to each observation (Figure1, preprocessing). Disturbance distributions are expected to be chosen and 

parameterized based on thorough metrological analysis of the original dataset, since disturbance distributions are expected to 

aggregate as many sources of input data uncertainty as possible. These sources of uncertainty relate to measurement error, rounding 

error, user error, local variability, mis-calibration or projection issues (Bardossy and Fodor, 2001). Generally, Gaussian-like 40 
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distributions make for appropriate disturbance distributions (Pakyuz-Charrier et al., 2017b). Disturbance distribution selection and 

parameterization is a complex topic and is outside the scope of this paper. However, practitioners may seek guidance from recent 

practical metrological work on foliations (Novakova and Pavlis, 2017;Stigsson, 2016;Cawood et al., 2017) and more theoretical 

work on disturbance distribution selection/parameterization for MCUE (de la Varga and Wellmann, 2016;Pakyuz-Charrier et al., 

2017b). 5 

1.2 Plausible datasets generation 

Plausible datasets are obtained by sampling from the numerous disturbance distributions that have been defined for each input 

observation. The sampling step is often referred to as the “perturbation” of the input data (Cherpeau et al., 2010). Sampling is usually 

made independently as errors do not show any spatial dependency, because measurements are physically independent (Pakyuz-

Charrier et al., 2017b). Nevertheless, spatial correlation of errors can be observed. Indeed, observing heteroscedasticity in the 10 

original dataset would imply that some level of error spatial correlation is possible. This is especially true for cyclical datasets such 

as foliations in folding scenarios. The sampling step may be followed by a range statistical checks to ensure stationarity, reject 

outlying datasets, examine likelihood or perform variographic analysis. 

1.3 Plausible models building 

Plausible dataset generation is an important part of the MCUE method because it heavily predetermines its outcomes. However, 15 

plausible datasets are only as relevant as the plausible model they correspond to. MCUE is then largely dependent on the particulars 

of the chosen modeling engine (Figure1, Building). Any modeling engine relies on the conceptualization of the phenomenon it is 

supposed to model. Conceptualization relies mainly on abstraction and simplification to make the modeling problem accessible to 

our minds and technology. Therefore, any workflow or method that relies on a modeling engine subsequently relies on these 

abstractions and simplifications which, by definition, are incomplete and uncertain. Consequently, MCUE is sensitive to this kind 20 

of “conceptual uncertainty” and care should be taken when selecting or parameterizing the modeling engine. Given that MCUE’s 

main aim is to propagate input uncertainty through the modeling engine to the final model, several indispensable properties of the 

modeling engine may be identified (i) the ability to estimate and propagate its own uncertainty (ii) may handle multiple plausible 

datasets without having to be reconfigured manually (iii) does not rely extensively on expert input. These properties are generally 

met by implicit modeling engines (Chilès et al., 2004;Aug et al., 2005;Calcagno et al., 2008;Chilès and Delfiner, 2009) by the virtue 25 

of them being reliant on potential field interpolation to estimate the geological surfaces from the input structural data. The 

interpolator is normally parameterized using variographic analysis and a geometrical ruleset to solve geometrical ambiguities 

(Jessell, 2001). The geometrical ruleset consists of a series of geometrical constraints such as the intersection priority of faults and 

geological units that are used to determine which interface stops on which. Conceptually, the geometrical ruleset enforces the age 

relationships between the faults and/or geological units in the model. In this paper, the modeling engine is the GeoModeller software 30 

which uses a stochastic cokriging interpolator and constrains surfaces using a predefined stratigraphic pile and fault relationship 

matrices as geometrical ruleset (Guillen et al., 2008;Calcagno et al., 2008). 

1.4 Comparative analysis 

In implicit 3D geological modeling, a model is essentially a set of spatial functions that describe the geometry of stratigraphic and 

intrusive interfaces and fault planes. In this form, it is difficult to apply common comparative analysis methods. Therefore, plausible 35 

models are either discretized to 3D grids (voxets), flattened to triangulated surfaces or shrunk to triple lines (Figure1, 

Postprocessing). Note that in all three cases, these operations are further simplifications of the models and add more uncertainty to 

the final outcome. Each of these transformations allow for different comparative analyses to be run (i) voxets are used to build 

probabilistic geological models (PGM) and uncertainty index models (UIM) such as entropy or stratigraphic variability (Wellmann 

and Regenauer-Lieb, 2012;Lindsay et al., 2012) (ii) the shape of triangulated surfaces may be used to estimate the variability of 40 
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curvature (Lindsay et al., 2013) (iii) triple lines may be used to analyze space partitioning in a more compact way than that of the 

previous two forms. Furthermore, the results of these analyses can be fed to external validation systems to reduce geological 

uncertainty and improve understanding of the modelled volume. Examples of external validation systems include geophysical 

inversion (Giraud et al., 2019), concurrent geophysical forward modeling (Bijani et al., 2017;Lipari et al., 2017), or groundtruthing. 

Lastly, the results obtained from the external validation systems may be reutilized by MCUE to further refine the models. 5 

2 Plausible model heterogeneity 

As stated in the previous section, comparative analysis in MCUE aims to study the variability of the plausible models and extract 

meaning from them. To this end, plausible models are transformed to a more manageable form that fits our analysis tools (Figure 

1). The most common comparative analysis tools used in MCUE are UIM such as Information Entropy and stratigraphic variability. 

These indexes are computed from a relative frequency voxet that is obtained by merging the voxets from all of the plausible models 10 

together. The underlying assumption is that the plausible models constitute a unimodal population and may be analyzed as such. 

The UIM used in MCUE are scalar proxies for categorical uncertainty and one of the critical conditions for a single scalar to be 

representative of the uncertainty of a variable is that it has to be distributed unimodally. To assume unimodality is risky because it 

restrains the relevance of the UIM to homogenous populations only. In the case of a heterogeneous population or a mixture of 

populations, this procedure will fail to represent accurately the behavior of the variable in the same way a bimodal distribution 15 

cannot be fully described by its mean and variance (Figure 2). In the case of MCUE, perturbation is usually performed using 

unimodal gaussian disturbance distributions (Pakyuz-Charrier et al., 2018;Pakyuz Charrier et al., 2018) and at first sight it may seem 

that model building should result in a homogenous population of plausible models. However, it has been demonstrated on simple 

synthetic cases that plausible models with strikingly different structural geological features may arise from perturbing the same 

original dataset (Thiele et al., 2016a;Thiele et al., 2016b) using unimodal disturbance distributions (Figure 3). These differences 20 

indicate that standard perturbation may lead to plausible model heterogeneity. This effect stems from the fact that the relationship 

between the variability of the plausible datasets and that of their corresponding plausible models is non-linear (Figure 3, Figure 4). 

The non-linearity of the plausible model suites can be explained by the interactions between the interpolator and the geometrical 

ruleset. The interpolators used in implicit 3D geological modeling are linear (Kriging, RBF) and it is the geometrical ruleset that 

introduces non-linearity by adding a discrete component to model realization. For example, a plausible model suite may display the 25 

same fault in various scenarios (normal, reverse, decollement) or open/close potential traps for fluids (Figure 4). In the latter example 

(Figure 4), non-linearity is observed because of the geometrical ruleset that gives intersection priority to the top impermeable unit 

(green) over the lower units. If not for this ruleset, interfaces would vary linearly, and no unit would stop on any other unit. 

Consequently (i) very small changes in a plausible dataset may induce large changes in the subsequent plausible model (ii) plausible 

dataset variography is not a reliable indicator of plausible model homogeneity. Therefore, standard statistical filters applied to 30 

plausible datasets are unlikely to prevent or warn of potential plausible model heterogeneity. Special sampling methods are such as 

Gibbs sampling may decrease model variability by forcing internal spatial correlation in plausible datasets (Wang et al., 2016) 

although, as stated above this is not guaranteed. Moreover, these methods work best if errors are spatially dependent. This is 

normally not the case for sparse geological structural measurements taken individually. Actually, there is no logical reason to 

consider that the measurement errors related to, for example, two foliations measured with a compass in different areas are dependent 35 

on one another. Note that spatial correlation of errors remains possible when the original dataset is heteroscedastic and measurements 

themselves are spatially correlated. 
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3 Plausible model topological analysis 

As ignoring plausible models suites’ heterogeneity may lead to an unknown amount of knowledge degradation, the need to 

distinguish and classify plausible models that correspond to different geological scenarios becomes apparent. By doing so, it 

becomes possible to design a scenario-based comparative analysis step in MCUE. In principle this approach has multiple advantages, 

a geological scenario-based procedure can be expected to (i) allow rejection of physically absurd models (ii) reduce uncertainty on 5 

a per-scenario basis (iii) enable targeted improvement of the model. A common way to distinguish groups or trends in complex 

dataset is via the use of clustering algorithms or machine learning. In MCUE, clustering is preferable because machine learning 

relies on training and validation datasets to function properly. Unfortunately, MCUE does not provide a reliable way to determine 

the adequacy of a plausible model training dataset for machine learning beforehand. In contrast, and given a certain number of 

assumptions, clustering algorithms are expected to work with the raw data. In this paper, the Density-Based Spatial Clustering of 10 

Applications with Noise (DBSCAN) (Ester et al., 1996) was selected for its simplicity, speed, robustness and overall reliability 

(Chakraborty et al., 2014;Schubert et al., 2017). However, all clustering algorithms require a relevant discriminatory variable to 

build clusters efficiently. In this instance, the discriminatory variable has to be logically linked with plausible models’ heterogeneity 

to allow the clustering algorithm to differentiate geological scenarios. A potential candidate that meets this criterion is lithological 

topology which was recently demonstrated to be an efficient tool to recognize highly discriminating features from plausible models 15 

in MCUE (Wellmann et al., 2015;Thiele et al., 2016a). As stated in the previous sections, the non-linearity and non-uniqueness in 

3D geological modeling is the cause of plausible model heterogeneity. In addition, non-linearity and non-uniqueness result from the 

topological constraints imposed by the geometrical ruleset. Therefore, the geometrical ruleset is at least partially responsible for the 

plausible models’ heterogeneity. It is then reasonable to assume that the topology of the plausible models can be used as a 

discriminatory variable to combat model heterogeneity. 20 

3.1 Lithological topology 

Topology describes the properties of special mathematical spaces that are unaltered under continuous deformation (Crossley, 2006). 

3D geological modeling mostly concerns itself with the topic of geospatial topology that focusses on spatial relationships such as 

adjacency, overlap or separation of geometrical objects such as points, lines, polygons and polyhedrons (Thiele et al., 2016a). 

Formally, eight binary spatial relationships are possible between 2D objects (Egenhofer, 1989). There is a total of sixty-one cross-25 

dimensional binary spatial relationships between 0, 1, 2 and 3D objects (Zlatanova, 2000). Essentially, the use of topological 

relationships to characterize 3D geological models allows a compact expression of a sub-set of their geometry (Burns, 1988). 

Combined with the knowledge of the intrinsic physical properties of the rock types that compose geological units, these relationships 

constrain the downstream predictions resulting from 3D geological models in terms of physical processes such as fluid, heat flow 

and electrical flow as well as mechanical stresses. The most common relationships between 3D objects encountered in 3D geological 30 

models are adjacency and separation of lithological units. In their simplest form, these relationships can be expressed using an 

adjacency matrix. Each element of the adjacency matrix is a boolean where 0 encodes separation and 1 encodes adjacency (Figure 

5). However, an adjacency matrix contains both redundant and irrelevant information. Indeed, the adjacency matrix 𝐴 of a model 

𝑀 comprised of 𝑛 geological units is symmetric and hollow. A is then of size 𝑛2 with its diagonal comprised solely of 1 while both 

sides are transpose of one another, it is then useful to half-vectorize 𝐴 and remove unit elements from the diagonal following the 35 

triangular number sequence. For example, the 4 × 4 adjacency matrix 

(1) 

A = [

1 1 0 1
1 1 1 1
0
1

1
1

1 0
0 1

], 

is half vectorized 
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(2) 

vech(𝐴)𝑇 = [1 1 0 1 1 1 1 1 0 1], 

Note that vech(𝐴) is of size 
𝑛2+𝑛

2
 and contains all the necessary information to fully describe the adjacency of lithological units in 

a 3D geological model with 𝑛 distinct lithological units. vech(𝐴) can be also considered as a 
𝑛2+𝑛

2
 bit binary sequence called a basic 

topological signature. The total number of possible topological signatures is 2
𝑛2+𝑛

2
 . However, it is unlikely that all possible 5 

signatures are present in the plausible model suite given that the geometrical ruleset constrain their topology. Consequently, the 

issue of the representativity of the plausible model suite in terms of the variability of its topological signatures comes into question.. 

At a minimum, the variability of topological signatures should be qualitatively representative of the plausible model space to allow 

clustering algorithm to delineate the right number of clusters. Cumulative observed topological signatures graphs are a practical and 

efficient way to determine the topological representativity of the plausible model suite in real time (Thiele et al., 2016b). As the 10 

modeling engine produces new plausible models, these graphs plot the number of distinct topological signatures observed versus 

the number of plausible models generated so far. When the number of distinct topological signatures observed reaches a plateau, it 

is safe to consider that most topologies have been observed and qualitative topological stationarity may then be assumed reasonably 

(Figure 6). Note that clustering the topological signatures of the plausible model suite implies that quantitative topological 

stationarity is not required. That is, distinct topological signatures need not to be in exact proportions relative to each other given 15 

that the clustering algorithm is expected to have them separated.  

3.2 Topological clustering using DBSCAN 

The Density-based spatial clustering of applications with noise (DBSCAN) is a point density reliant flat data clustering algorithm 

(Schubert et al., 2017;Ester et al., 1996). DBSCAN is based on the notion on the reachability of border points from core points 

(Figure 7). The algorithm only needs two parameters (i) the minimum number of points 𝑃𝑚𝑖𝑛  that are required to form a cluster and 20 

(ii) the maximum distance 𝜀 allowed for two points to still be considered to be neighbors. On this basis the algorithm builds a 

distance matrix between all points and uses that matrix to determine the neighbors of each points based on 𝜀. Each points that has 

at least 𝑃𝑚𝑖𝑛  neighbors is a core point that forms a cluster seed to which all directly reachable points are attached. In order to build 

the distance matrix, DBSCAN requires each point to be characterized by a metric variable. Therefore, the variable would allow 

distances to be computed using regular norms such as the Euclidean distance. However, topological signatures form a series of 25 

Boolean variables that cannot provide appropriate measures for they are not additive. An alternative is to consider the whole 

topological signatures as a binary word and use the Hamming distance (Hamming, 1950) as the metric. The Hamming distance 

counts the number of individual bit switches required to match two binary words of equal lengths, effectively quantifying their 

disagreement. Implementation wise, a simple XOR over two topological signatures gives the Hamming distance that separates them. 

As a special case, when 𝜀 = 0 and 𝑃𝑚𝑖𝑛 = 1, DBSCAN will distinguish every distinct topological signature into a separate cluster 30 

and the size of each cluster will count their occurrences. 

3.3 Post-clustering analysis 

Once the plausible model suite has been segregated into clusters based on their topology, a range of statistical methods may be 

applied to the results to (i) evaluate the quality and relevance of the clusters (ii) determine data leverage in relation to the clusters 

(iii) perform standard MCUE comparative analysis on the clusters (iv) feed the clusters to an external rejection system. Cluster 35 

quality may be evaluated by computing the internal information Entropy matrix 𝐸 for each cluster 

(3) 

𝐸𝑖
𝑗

= − ∑ 𝐴(𝑘)𝑖
𝑗
log(𝑘𝐴(𝑘)𝑖

𝑗
)

𝑐

𝑘=1

, 
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where 𝐴(𝑘) is the 𝑘𝑡ℎ adjacency matrix of the cluster, 𝑐 is the cardinality of the cluster and 𝑖, 𝑗 are standard matrix indexes. For a 

given cluster, 𝐸 informs the user about the internal variability of the binary topological relationships between each lithological 

couple. Most entries are expected to be null, indicating no variations, while non-null entries indicate topological “switches” inside 

the cluster itself. That is, E highlights topological changes that the clustering algorithm considered not to be significant enough to 

warrant a split in the cluster. Importantly, this is directly translatable into geological insights: “these two models are different because 5 

in only one of them is the sandstone unit found adjacent to the shale unit”.  Naturally, (3 may be applied to the whole suite of 

plausible models’ adjacency matrices as a practical reference to compare individual clusters’ internal information Entropy matrices 

to a global information Entropy matrix. Standard MCUE comparative analysis tools may be applied to the individual clusters 

concurrently to, for example, obtain per-cluster/scenario uncertainty indexes and sub-PGMs. Given that common MCUE UIM are 

sums of matching positive elements, per-cluster UIM voxets are guaranteed to yield equal or lower values compared to their global 10 

equivalent. Moreover, per-cluster UIM are expected to be better structured as a common effect of all clustering algorithms is to 

reduces intraclass variance. Clustered plausible models may be traced back to their plausible input datasets (structural 

measurements) to conduct cluster leverage analysis. The aim of cluster leverage analysis is to determine which parts of the datasets 

are responsible for the topological switches that induce the formation of new clusters. A straightforward way to achieve this aim is 

to compute a central statistic for every individual input in every cluster’s plausible datasets 15 

(4) 

𝐮̅ = [𝑑̅𝑙=1 … 𝑑̅𝑡], 

where 𝐮̅ is the vector of central, 𝑑̅𝑙 is the central statistic for the plausible input observation 𝑙 and t is the cardinality of the input 

data. The next step is to compare every matching individual input data central statistic between all cluster pairs 

(5) 20 

∆𝐮̅(𝑎, 𝑏) = (𝐮̅𝑎 − 𝐮̅𝑏) ∘ (𝐮̅𝑎 − 𝐮̅𝑏). 

Where 𝑎, 𝑏 identifies a cluster pair and ∘ stands for the Hadamard product. The results of this procedure should be ranked to find 

the highest leverage plausible input data differences between clusters.  

4 Synthetic case study 

To serve as proof of concept, the plausible models clustering procedure that is proposed in the previous section is tested on a 25 

synthetic case of medium complexity called CarloTopo. The aim is to assess how plausible model clustering may improve the 

accuracy, practicability and tractability of MCUE in a comprehensible yet relevant environment. The procedure follows standard 

MCUE (Figure 1) with topological clustering being added to the last step of comparative analysis. Results are expressed in three 

complementary modes, (i) differences between topological clusters are visualized using information Entropy as a proxy for 

uncertainty estimation; (ii) intra-cluster variability is assessed using internal Entropy matrices; (iii) the initial and individual 30 

plausible models are characterized by their topological signatures and lithological cross-sections.  

4.1 Model description and MCUE parameters 

The CarloTopo 3D geological model features 8 lithological units distributed into 5 series and 2 faults (Figure 8). All of the 25 

foliations and 46 interface (Table 1) points for all units and faults are placed onto a single N-S vertical median cross-section. This 

design decision was made to ensure that the cross sections discussed in the subsequent sections are representative of the models. 35 

CarloTopo simulates a normally faulted basin placed on top of a mafic formation that sits on an erosional surface. Below the 

erosional surface is a metamorphic folded series comprised of 3 individual formations. The metamorphic series rests onto the 

basement and both are intruded by a pluton. The geometries for each unit were designed to manifest as many common geological 

features as possible without compromising its relevance for practical issues such as mining/oil & gas exploration. More specifically, 

several potential traps for sedimentary-hosted deposits were included in the original model along with a, network of faults that serve 40 
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as theoretical channels or barriers (Figure 9). The case study was split into two separate MCUE experiments with different 

disturbance distribution parameterization with over a thousand perturbations each. The first run aims to simulate a high input data 

confidence scenario applicable to well-surveyed areas. Conversely, the second run simulates a low confidence scenario applicable 

to legacy data or early stages of exploration. Disturbance distributions in the high input data confidence scenario were chosen to be 

of the Gaussian type with relatively low dispersion, whereas Uniform type distribution parameterized with large ranges were used 5 

for the low input data confidence scenario (Table 2). 

4.2 High input data confidence run 

For this run, a global information Entropy UIM voxet was produced to serve as a reference against matching topology-based 

estimates. Three vertical N-S cross-sections were extracted from the voxet at 250m, 500m and 750m Easting (Figure 10). The 250m 

and 750m information Entropy cross-sections are almost identical because the original model is symmetrical about the N-S median 10 

cross-section where all structural data is located. Both sections display low to medium levels of Entropy (0.20 to 0.40) distributed 

around the original interfaces trace and forming Entropy halos of about 70m apparent thickness for non-triple-points areas. 

Conversely, triple points and areas of potential geometrical ambiguities display medium to high levels of Entropy (0.50 to 0.70) and 

thicker halos (~100m). The 500m information Entropy cross-section exhibits lower levels of Entropy and much thinner halos (~20m) 

because of its extreme proximity to the structural data inputs. 15 

To verify topological stationarity, each plausible model was exported to a voxet that was used to build its corresponding adjacency 

matrix (Figure 6). Every “new” topology was placed into a standard topological stationarity graph (Figure 11). The number of 

distinct topologies observed over the process of generating plausible models appears to follow a logarithmic pattern. That is, the 

greater part of possible topologies are “discovered” quickly and further plausible model generation yields diminishing returns. In 

this instance, a third of topologies are discovered in a mere 3% of the total number of perturbations and the next third is completed 20 

in under 25% of said number. The total number of observed distinct topologies represents about 5% of the total number of plausible 

models. Note that these finds are in accordance with previous work on topological stationarity in 3D geological modeling (Thiele 

et al., 2016b). Based on these observations, it is safe to assume topological stationarity for this run. Several parameter sets for 

DBSCAN were tested and it appeared that the only working set for this case is 𝜀 = 0 and 𝑃𝑚𝑖𝑛 = 1. Otherwise, DBSCAN returns 

a single cluster along with a small number of unclustered topological signature. That is, each distinct topological signature has to 25 

be considered as a cluster in itself in order to obtain more than one cluster. Such behavior is not entirely unexpected because of the 

low dispersion parameters set for the disturbance distributions. Indeed, low dispersion of disturbance distributions is partially and 

non-linearly correlated to low plausible model topological variability. This is confirmed by the low number (9) of non-null elements 

in the global internal information Entropy matrix (Table 3) which indicates that few topological relationships were affected by the 

perturbation process. With the aforementioned settings, DBSCAN returned fifty-five clusters that correspond to the fifty-five distinct 30 

topological signatures present in the plausible models suite. A significance threshold of sixty occurrences was applied (Figure 12) 

to retain only the six most significant topological signatures and make subsequent steps more manageable, and such operation is 

only justified on the basis that topological stationarity is adequately met.  

A representative plausible model was selected from each significant topological signature cluster and three vertical N-S cross-

sections were taken (Figure 13) to obtain a qualitative view of the topological and geometrical differences between them. The 500m 35 

Easting, median cross-section is mostly invariant throughout the cluster as pointed out by the low value observed on the global 

information Entropy UIM voxet (Figure 10). The 250m and 750m Easting cross-sections appear to be significantly more variable 

throughout the clusters in terms of distinct topological features and geometrical variations. Evident differences in section view 

include (i) the basin lower unit (Figure 13, green) gaining or losing contact with the metamorphic folded series (Figure 13, pinks) 

with the Mafic Cover separating the two series (Figure 13, blue), (ii) the basement (Figure 13, brown) coming into contact with the 40 

mafic cover, (iii) the upper metamorphic folded unit (Figure 13, light pink) being in direct contact with the lower metamorphic unit 

(Figure 13, dark pink). Additionally, the potential traps highlighted in the original model are seen to change size and shape, to close 
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and open throughout the clusters. These results indicate that topological signatures may help differentiate favorable scenarios in ore 

reservoir or oil and gas modeling applications. 

Information Entropy cross-sections were extracted from the UIM voxets (Figure 10) that were generated for each significant 

topological signature. Although, the information Entropy values look similar throughout the clusters, there are noticeable differences 

in terms of sharpness and triple-points differentiation. Predictably, the 500m Easting section shows very little extra-cluster 5 

variability and is very similar to its global counterpart. This is most likely because of its relative proximity to the original structural 

data inputs. In contrast, the 250m and 750m Easting sections display significant extra-cluster variability in terms of Entropy halos’ 

thicknesses (from 150m to 50m), triple-points differentiation (right ellipses) and sequence repetition in the metamorphic folded 

series (middle and left ellipses). As expected, cluster-based information Entropy cross-sections are all sharper than their non-

clustered counterpart. This constitutes a strong indication that topological clusters are geometrically consistent and supports the 10 

thesis that topology is an efficient determinant for geological coherence. Additionally, sharper information Entropy cross-sections 

imply sharper PGMs which allows for an increased external applicability of MCUE results. In general, these results underline the 

plausible model discriminating efficiency of topological signatures even when they are considered individually. 

4.3 Low input data confidence run 

As with the previous run, a global information Entropy UIM voxet was produced to serve as a reference against matching topology-15 

based estimates. Equivalent cross-sections were taken (Figure 14) and exhibit very similar features to the high data confidence run. 

However, attention is brought to the increased fuzziness of the information Entropy halos. These patterns can be explained by the 

disturbance distributions’ selection and parameter selection for this run. The uniform distributions that were selected in this instance 

always have a higher innate Entropy compared to Gaussian distributions. Furthermore, the ranges selected largely exceed those of 

the previous run. Although at a lesser degree, the topological stationarity graph (Figure 15) expresses the same diminishing returns 20 

effect as the high input data confidence run. More specifically, a third of topologies were in the first 13% of plausible models, 

another third in the next 20% of plausible models and the final third in the last 70% of plausible models. In this instance, DBSCAN 

was parameterized with 𝜀 = 2 and 𝑃𝑚𝑖𝑛 = 2 and returned two topological signature clusters of size 953 and 39 respectively, along 

with 8 outliers. Lower or higher values for 𝜀 and 𝑃𝑚𝑖𝑛  returned either a single cluster of size 1000 or a thousand clusters of size 1.  

Cross-sections extracted from representative models of both clusters (Figure 16) display stark differences at the geometrical and 25 

topological levels. Significant topological changes between the two clusters include the disappearance of the middle the 

metamorphic folded unit (purple) from cluster 2, the emergence of the lower metamorphic folded unit (dark pink) against the lower 

basin unit (green) and the contact of the intrusion unit (red) with the upper metamorphic folded unit (light pink) in cluster 2. This is 

not surprising given the high number of non-null elements in the global internal information Entropy matrix (Table 4). Indeed, a 

total of twenty topological relationships were affected by the perturbation process to varying degrees. Moreover, per-cluster internal 30 

information Entropy matrices result in a significant number of non-null elements (Table ) which can be used to determine the main 

“breaking” topological relationships when compared against each other and against the global matrix. Most topological shifts 

between the two clusters (red entries, Table 4) relate to internal topological relationships of the metamorphic folded unit and the 

basement. These shifts are consistent with the representative models’ cross-sections and indicate that per-cluster internal information 

Entropy matrices may be used to draw geological inferences from their topological differences. When the clusters’ internal Entropy 35 

matrices are compared against the global one, small differences become visible (underlined entries, Table 4) because of the inclusion 

of the unclustered plausible models. Notably, the intermediate metamorphic folded unit entries are non-null against all other units 

and itself which suggests that the unit may be absent from some of the unclustered plausible models. 

The information Entropy UIM cross-sections for cluster 1 shows little variation to its global counterpart (Figure 14). This is mainly 

due to the large size of cluster 1 compared to the number of plausible models. About 95% of plausible models carry a topological 40 

signature that links them to cluster 1. Given the convex nature of information Entropy, large clusters are likely to be near 

undiscernible with the global population. Overall, cluster 2 displays sharper Entropy halos than cluster 1 or the global cross-sections. 
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It also features strong aliasing because of its relatively small size (39). Information Entropy peaks about the metamorphic folded 

series appear to be shifted by a half of a fold wavelength between the two clusters (ellipses) while other features remain mostly 

constant. The relative similarity between both clusters information Entropy cross-sections (Error! Reference source not 

found.Figure 14) despite their strong geological, structural and topological disagreement suggests that topological clustering holds 

potential as a differentiation tool in MCUE comparative analysis. Topological clustering would then be a way to mitigate the 5 

weaknesses of global information Entropy UIM in regard to structural relevance. 

5 Discussion 

In this paper, a basic procedure for topological clustering in MCUE was explored as possible improvement over currently available 

comparative analysis methods. The theoretical and practical aspects of the procedure were discussed and demonstrated over two 

proof of concept case studies. 10 

The case for topological clustering rests on the fact that MCUE commonly generates geologically incompatible models because of 

the non-linear relationship between the plausible datasets and the plausible models’ suite. This effect is introduced by the 

geometrical ruleset that implicit 3D geological modeling engines depend on to solve topological ambiguities. Ultimately, this 

topology-induced non-linearity translates into plausible model heterogeneity which is damaging to global comparative analysis 

methods that MCUE normally relies on and justifies topological clustering. Plausible model heterogeneity forms a strong logical 15 

barrier to merging seemingly incompatible plausible models into a single PGM or UIM. Plausible models obtained through the 

perturbation of the same dataset may describe very different “realities” which correspond to different geological scenarios. 

Combining such incompatible model types that describe very different geological scenarios into a single uncertainty estimate is 

detrimental to the understanding of the quality of our knowledge in the area of interest. 

Topological clustering provides more flexibility to external validation systems such as geophysical inversion or physical simulations 20 

as it does not lock them into a single PGM or UIM. In turn, such approach holds the potential to make targeted groundtruthing easier 

as topological differences between clusters and per-cluster leverage analysis would help indicate which observations or topological 

relationships introduce heterogeneity in the plausible model suites. Furthermore, per cluster uncertainty is always lower than its 

global counterpart because of the convexity of UIMs. Therefore, topological clustering produces sharper per-cluster UIMs that are 

more comprehensible than the global UIM which helps to parameterize external validation systems. Topological clustering preserves 25 

and improves geological knowledge since the differences between the topological signatures of distinct clusters are visible in the 

internal information Entropy matrices and can be interpreted in terms of geological relationships. Lastly, the proposed method 

increases the value of MCUE against analytical uncertainty propagation methods since the latter cannot consider the non-linearity 

that plausible model heterogeneity indicates. Analytical uncertainty propagation would estimate uncertainty from the interpolator 

directly without the need to build any more than a single PGM. However, it was shown that a single PGM cannot adequately express 30 

the inherent non-linearity of the modeling engine. Note that this non-linear behavior is not a defect of the modeling engines 

themselves but rather a consequence of natural geological rules such as intrusion, cross-cutting or superposition. 

Although promising, in its current form, the procedure may suffer from a number of limitations that concern DBSCAN and may 

indicate that other clustering algorithms such as k-means, c-means or machine learning are more appropriate. The low number of 

parameters, simplicity of the algorithm and low computational cost make DBSCAN an appealing choice for data clustering of large 35 

datasets where the number and shape of clusters is unknown. However, DBSCAN suffers from a number of disadvantages that may 

hinder its ability to function effectively. The most relevant ones to this study are the “hidden” metric parameter, point density scale 

issues and conflicted points. The metric parameter relates to the choice of the metric used to compute de distance matrix. Datasets 

with high dimensionality may exhibit a degeneracy of the concept of distance when the data is uncorrelated and noisy. The issue is 

mostly covered by the fact that the topology of 3D geological model is usually well structured because of the geometrical ruleset’s 40 

influence. The point density scale issue relates to the spatial variance of point density throughout the dataset. A high spatial variance 
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prevents an effective 𝜀 parameterization because the concept of a reachable neighbor becomes ambiguous. In the case of basic 

topological signatures extracted from plausible models, the variability of the point density of clusters is usually low. That is so 

because the geometrical ruleset massively decreases the chances of odd topological signatures occurring. Note that this applies even 

for very low confidence disturbance distribution parameterization provided that all units are sufficiently informed. Conflicted points 

relate to the fact that the DBSCAN algorithm is non-deterministic in some instances (Schubert et al., 2017). As a consequence, some 5 

border points may be reachable by several core points from different clusters at the same time. Although, DBSCAN only allows 

each point to belong to a single cluster. It is then the order in which the data was processed by the algorithm that will determine to 

which cluster these conflicted points belong to. For the purpose of this paper, this effect was avoided by parameterizing DBSCAN 

with a low 𝜀. Regardless of which clustering algorithm is chosen and how it is parameterized, the issue of the relevance of Boolean 

topological signatures clustering arises. Boolean topological signatures may be argued as being too simplistic in their representation 10 

of the actual geometrical relationships observed in the plausible model suites. Such oversimplification may inhibit the differentiating 

efficiency of the clustering algorithm. To address this problem, more accurate topological signatures may be used. The most 

straightforward improvement is to distinguish normal and faulted contacts between geological units and express topological 

signatures as a ternary signal instead of a binary one. This solution is appealing because the rest of the procedure remains unchanged 

given that the Hamming distance is defined for all degrees.  15 

Replacing lithological, unit-based, adjacency matrices with super, series-based, adjacency matrices is another possibility of 

improvement for the procedure. In this case, the geological units of a series would be considered as a single entry of the matrix. The 

aim is to simplify the adjacency matrices, eliminate redundant information, decrease computational costs and increase readability. 

However, this approach assumes that series are topologically consistent which is not guaranteed as illustrated by the metamorphic 

folded series behavior in the low input data confidence run. In theory, better applicability of the procedure could be achieved by 20 

removing irrelevant topological relationships from the topological signature. The clustering algorithm would then be made blind to 

them and, in some cases, display higher differentiating ability. Although, the question of the relevance of a topological relationship 

is likely to be ad hoc. At the practical level, in this paper, adjacency matrices were extracted from 3D grids obtained by discretizing 

the plausible 3D geological model. Therefore, adjacency matrices are prone to discretization artefacts when resolution is too low. 

Triple lines or triangulated interfaces could be used to derive the topological signatures while avoiding these artefacts. 25 

Overall, more in-depth case studies are required to assess the capabilities of the method and determine the best route for possible 

improvements. More specifically, 3D real case studies are needed to better demonstrate the usability and practicability of the method 

as opposed to the synthetic 2D section-based model used in this paper. 

Conclusion 

In this paper, previous findings (Wellmann et al., 2014;Thiele et al., 2016a;Wellmann and Caumon, 2018) about plausible models’ 30 

variability in MCUE were verified and a complete innovative comparative analysis procedure was proposed to address the issues 

raised by said findings. It was confirmed through experiment that MCUE outputs a significant proportion of geologically 

incompatible plausible models and that topological analysis is a viable tool to differentiate them. The reasons for this incompatibility 

were discussed and were found to be due to the non-linear relationship between the plausible input datasets and the plausible models. 

That is, the model building process is non-linear itself. It was proposed that the model building non-linearity emanates from the 35 

geometrical ruleset that is used to constrain and partially define the topology of models in implicit 3D geological modeling engines. 

In view of this fact, topological clustering was proposed as a solution to distinguish geologically incompatible models. Therefore, 

increasing the relevance and quality of the uncertainty indexes and probabilistic models in MCUE. Based off a two stages synthetic 

case study, it was found that topological analysis is a viable tool to differentiate geologically incompatible models and that 

topological signatures are strong indicators of geological features in 3D geological models. Topological analysis was shown to help 40 

reduce overall model uncertainty by ensuring topological consistency in the uncertainty indexes. Moreover, topology-driven 
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comparative analysis may allow for higher model improvement potential than what standard uncertainty indexes or probabilistic 

geological models allow for. The rationale is that improved knowledge of uncertainty allows users to target areas of interest where 

supplementary data collection is required to reduce said uncertainty. In this case, uncertainty is thought of as an improvement 

enabling tool that initiates a positive feedback loop and allows users to refine their understanding of the modelled area and increase 

the reliability of their model. This work finds applications in mining and oil & gas industries at the strategical and tactical stages of 5 

exploration or for mine development and planning. In particular, topologically consistent probabilistic geological models and their 

associated topological signatures could be used as input for geophysical inversion and physical simulation software. 

Data/Code availability 

All datasets and models used in the present study are available online at https://doi.org/10.5281/zenodo.1202314. 

Appendices 10 

Appendix A: The Spherical Cap distribution 

The spherical cap distribution is designed to describe variables that are uniformly distributed over any solid angle on the unit sphere 

𝑆2. The proposed parameterization is that of the mean/median direction spherical unit vector µ and half-aperture angle 𝜆 

(6) 

𝑝𝑆𝐶 = 𝑓(𝑥|𝜇, 𝜆). 15 

Start with the formula for the area of a spherical cap 

(7) 

𝐴 = 2𝜋𝑟2(1 − cos(𝜃)), 

where 𝜃 is the polar angle and 𝑟 is the radius of the sphere. It ensues that, over 𝑆2, the maximum value for 𝐴 is for 𝜃 = 𝜋 

(8) 20 

𝐴max = 2𝜋(1 − 𝑐𝑜𝑠(𝜋)) = 4𝜋. 

The relative area of a spherical cap to the total sphere area is then given by 

(9) 

𝐴max

𝐴
=

2

1 − cos(𝜃)
. 

Given 25 

(10) 

∰ 𝑝𝑆𝐶 = 1, 

And knowing 

(11) 

𝑓(𝑥|(. ), 𝜆 = 𝜋) =
1

4𝜋
, 30 

It follows that if 

(12) 

     𝜇𝑇𝑥 ≥ cos𝜆, 

then 

(13) 35 

𝑓(𝑥|𝜇, 𝜆) = 4𝜋−1
2

1 − cos(𝜆)
. 

https://doi.org/10.5281/zenodo.1202314
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The authorized form is then 

(14) 

𝑝SC(𝑥|𝛾, 𝜆) = {2𝜋

1

(1 − cos𝜆)
,      𝜇𝑇𝑥 ≥ cos𝜆     

0        ,      else          

. 

Appendix B: Spherical Cap pseudo random number generation 

To generate a Spherical cap uniformly distributed pseudo random spherical 3D unit vector 𝑋sphe on 𝑆2 for a given mean direction 5 

µ and range 𝜆, define 

(15) 

𝑋sphe  = [𝜙, 𝜃, 𝑟].  

For µ = [0, (. ), 1] the pseudo random vector is given by 

(16) 10 

𝑋sphe = [arcos(W), 𝑉, 1]. 

𝑊 is given by 

(17) 

𝑊 = cos(𝜆) + 𝜉, 

where† 15 

(18) 

𝜉~𝑈(0,1 − 𝑐𝑜𝑠(𝜆)). 

𝑉 is drawn as follows 

(19) 

𝑉~𝑈(0, 2𝜋). 20 

𝑋sphe should then be rotated to be consistent with the chosen µ. 

Appendix C: Spherical standardized Irwin-Hall distribution 

The standardized Irwin-Hall (IH) distribution is the distribution of the sum of a number of standardized uniformly distributed 

independent random variables 

(20) 25 

𝑋 = ∑ 𝑈𝑛

𝑛

𝑖=1

, 

with all 𝑈𝑛 drawn from 𝑈(−𝑎, 𝑎). This distribution is useful in Bayesian inference as it models the sequenced hypersampling of a 

standardized uniform distribution in a compact form. For 𝑎 =
1

2
, the IH distribution density is given by 

(21) 

𝑓𝑋(𝑥|𝑛) =
1

2(𝑛 − 1)!
∑(−1)𝑖 (

𝑛
𝑖

) (𝑥 +
𝑛

2
− 𝑖)

𝑛−1
𝑛

𝑖=0

sign (𝑥 +
𝑛

2
− 𝑘). 30 

In this form, its mean is always 0 and variance is 
𝑛

12
. The standardized IH distribution can be redefined as the chain convolution of 

its uniform components. For example, 

(22) 

                                                           
† 𝑈(𝑎, 𝑏) is the usual continuous uniform distribution. 
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𝑓𝑋(𝑥|𝑛 = 2) ≡ 𝑈(−𝑎, 𝑎) ∗ 𝑈(−𝑎, 𝑎). 

Using the convolution theorem, this can be generalized to 

(23) 

𝑓𝑋(𝑥|𝑛) ∝ ℱ−1(ℱ(𝑈(−𝑎, 𝑎))
𝑛

), 

where ℱ is the Fourier transform and ℱ−1 its inverse. Substituting (9) into (18), one finds that the standardized spherical IH 5 

distribution of order 𝑛 is proportional to the inverse Fourier transform of the 𝑛-exponentiated Fourier transform of the standardized 

Spherical cap distribution 

(24) 

𝑆IH
𝑛 ∝  ℱ−1(ℱ(𝑝SC(𝑥|[0, (. ), 1], 𝜆))

𝑛
), 

with 10 

(25) 

ℱ(𝑝SC(𝑥|𝛾, 𝜆)) =
𝑠𝑖𝑛 (

𝜋𝜔
2

)

√2𝜋(𝜋𝜔 − 𝜋𝜔𝑐𝑜𝑠(𝜆))
. 

Competing interest 

The authors declare that they have no conflict of interest. 

Funding 15 

Funding: This work was supported by the Geological Survey of Western Australia; the Western Australian Fellowship Program; 

and the Australian Research Council for their financial support 

Acknowledgements 

The authors would like to thank Intrepid Geophysics for their participation in the software development effort that proved essential 

to the completion of this project. 20 

 

  

caumon5
Texte surligné 



 

15 

Figures 

 

Figure 1 MCUE simplified procedure, Modified from Pakyuz-Charrier et al 2018 
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Figure 2 Bimodal distribution with associated global and modal dispersion parameters 
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Figure 3 Example of equally plausible yet geologically incompatible models  
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Figure 4 The open or closed status of an ore deposit sedimentary trap varies with the topology of surrounding impermeable (i) units. 
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Figure 5 Procedure  for topological signature extraction 
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Figure 6 Topological stationarity graph with example cases 
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Figure 7 Density-Based Spatial Clustering of Applications (DBCAN) workflow 
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Figure 8 CarloTopo 3D geological model with original input foliations (disks) and interfaces (points), geometrical rulesets for units and 

faults, and adjacency matrix. The model box is kilometric and all data is on the x=500m vertical cross-section 
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Figure 9 Original CarloTopo vertical cross-sections at x=250m, 500m and 750m with potential ore deposit traps or channels circled 
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Figure 10 Global (top row) and top 5 most significant topological signatures vertical cross-sections of information Entropy uncertainty 

index models (UIM) for the low input data confidence run 
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Figure 11 Topological stationarity graph for the CarloTopo high input data confidence run. 1:1 graph in background as reference 
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Figure 12 Unique topologies occurrences for the high input data confidence run with significance threshold of 60. Note that in this instance, 

the clustering algorithm returned every topological signature as a distinct cluster 
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Figure 13 Vertical cross-sections of representative plausible models for the top 5 most significant topological signatures in the high input 

data confidence run. Major topological changes are circled  
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Figure 14 Global (top row) and per-cluster vertical cross-sections of information Entropy uncertainty index models (UIM) for the low 

input data confidence run 
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Figure 15 Topological stationarity graph for the CarloTopo low input data confidence run. 1:1 graph in background as reference 
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Figure 16 Vertical cross-sections of representative plausible models for each cluster in the low input data confidence run. Major topological 

changes are circled 
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Tables 

Table 1 Original input structural data description for the CarloTopo 3D geological model 
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Table 2 Summary of all MCUE parameters used in this study 
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Table 3 Global internal information Entropy matrix for the high input data confidence run 
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Table 4 Per-cluster (top), global (bottom left), and contrast (bottom right) internal information Entropy matrices for the low input data 

confidence run 
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