
Reviewer 2 

Summary 

Some models are more consistent with historical observations than others. In climate projection, it 
makes intuitive sense to give more weight to the models that are more consistent with observed 
climate shifts and less weight to models that are less consistent with observed climate shifts. 

But how? 

This paper reports on a method of assigning model weights that relies on two distinct distance 
measures: the distance of models from observations and the distance of models from other models. 
The method requires the specification of two parameters that determine how each of these distances 
are turned into model weights. The method for determining the parameter associated with inter-model 
distance is poorly explained(see specific comment 8 below). The method for determining the 
parameter associated with distance from observations is also poorly explained, but for many 
experiments, involves future-time-pseudo-observations from the future states that are the objective of 
the prediction (see comment 10 below). In other words, the tuning method appears to render the tests 
of the method to be of the “in-sample” variety. To weaken the degree of “in-sampleness” an additional 
test is performed using CMIP5 runs. However, since one expects many of the CMIP6 models to be 
closely related to the CMIP5 models,there are strong reasons to believe that this test is not truly 
“out-of-sample” either. 

Even with the use of “future-time-pseudo-observations” in the tuning procedure, the improvements 
from this weighting scheme seem very modest in comparison with, for example, those obtained in 
Abramowitz and Bishop (2015, J. Climate) – (using a a method that solely required historical 
observations for the weights). The revised paper should include some attempt to 
compare/contrast/explain the Abramowitz and Bishop results. 

A superficially appealing feature of the method is that it gives more weight to models that are both 
skillful and statistically independent of other models. However, this independence is just described in 
terms of inter-model distance and not in terms of the independence of the model error. Is there some 
unstated proof that increased inter-model distance equates to increased model error independence? 
(It seems easy to think of counter examples). As demonstrated in Bishop and Abramowitz (2013),it is 
the independence of the error of the individual models comprising an ensemble forecast (as 
measured by inter-model forecast error correlation) that increases the predictive power of the 
ensemble. The revised paper needs to address the issue of the relationship or lack of relationship 
between inter-model distance and model error independence. 

After applying the method to the CMIP6 ensemble members, the authors find reduced warming 
relative to the simple sample means of CMIP6 ensembles for the high and low CO2 concentration 
scenarios considered. However, any confidence in this prediction must be strongly tempered by the 
“in sample” circular- nature of the testing and tuning procedures used by this method. My overall 
recommendation would be that the paper be returned to the authors to address the specific comments 
below and to include results from experiments in which only historical observations (or 
model-based-historical-pseudo-observations) were used to determine the weights. This constitutes 
major revision. 

We thank the reviewer for the critical assessment of our manuscript. The reviewer raises 
several important questions in the general comments above. Most of them we address in our 
answers to the specific comments as summarised below. In addition, we discuss the rationale 
behind our model independence metric in the following:  

● Calculation of the independence shape parameter: see comment 8 

● Calculation of the performance shape parameter: see comment 10 
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● Out of sample skill tests: see comment 10 

● Skill improvement and comparison with Abramowitz and Bishop (2015): see comment 
11; in addition we have added several references to the approach used therein in the 
revised manuscript.  

● Model distance versus model error independence: see below 

We have attached the current draft of the manuscript. We refer to it as ‘revised manuscript’ in 
our answers. Note that this version of the manuscript might still be updated before the official 
re-submission. 

 

Model-model distance and model error correlation 

The weighting method we apply in our study separates between a model's performance and 
independence. For establishing either measure, different metrics have been used in the past 
(see line 145 in the revised manuscript). In the case of independence, one could, for example, 
argue that it should be based on our knowledge of a model's inner workings (such as shared 
components, parameterizations or heritage with other models). However, this information is 
not always easily accessible and is, in addition, hard to quantify. Therefore, we here use an 
output-based definition of independence: given a generalised distance metric (based on the 
climatology of two variables) we define independence as a model distance to all other models 
in the ensemble. This is equivalent to the distance of the models’ errors: 

 e  (m  obs) (m  obs) mei −  j =  i −  −  j −  =  i − mj  

where  is the model error,  is the model, and  the observation.e m bso   

This approach has the advantage that it does not rely on observations, which are often 
geographically sparse and restricted in time. It, therefore, allows, in theory, establishing model 
independence based on hundreds of years of pre-industrial control runs or based on variables 
which do not have reliable global observations, such as precipitation.  

Here we use surface air temperature and surface pressure as the basis for our estimate of 
independence. This follows the work of Merrifield et al. (2020), who show that using these two 
variables allow a clear separation of initial-condition members of the same model as well as 
closely related models on the one side and independent models on the other side (see, e.g., 
figure 5 in Merrifield et al., 2020). In addition, in our manuscript we show qualitative results of 
our independence classification as a model dependence tree in figure 5 and discuss several 
clusters where the “inner workings” are known (line 389-395 in the revised manuscript). As a 
further test we insert artificial new models into the ensemble (see figure 6 and related 
discussions). This allows us to investigate the change in independence weight based on the 
relation of the inserted model to the rest of the multi-model ensemble.  

Bishop and Abramowitz (2013) follow a different approach that is based on the assumption 
that independent models have uncorrelated error time series. This approach can not directly 
be applied to our framework since we base our weighting on time-aggregated (mean, standard 
deviation, trend) spatially resolved fields. The main question the reviewer seems to pose, 
therefore is: Do the two approaches deliver fundamentally different results? 

To test this we assume that the concept of error independence also holds for time-averaged 
spatial fields. We apply an independence weighting based on the spatial correlation of model 
errors and contrast the results with our original results (based on model distances). inSij  
equation (1) then becomes the matrix of model error correlation distances: 
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Figure R1 below shows the models “family tree” equivalent to figure 5 in the manuscript based 
on these correlation distances. While the grouping of models is mostly the same as in figure 5, 
there are also some obvious differences. The difference between the closest related models 
(e.g., UKESM1-0-LL and HadGEM3-GC1-LL) and the maximum distance between any two 
clusters of models is considerably larger. Several models have changed to a different cluster 
(e.g., NorESM2-MM or AWI-CM-1-1-MR). Without a detailed analysis, however, we can not make 
any clear statements on which clustering is “more correct”.  

 

Figure R1: Similar to figure 5 in the revised manuscript but based on error correlation distances instead 
of model-model distances. Note that for this case we do not use any area weighting.  

Based on the general similarity of the two trees, we do not expect the change in the 
independence metric to have a major influence on the results. In a second step we, therefore, 
look at the weighted distributions based on independence weights using these error 
correlation distances. The results are presented in figure R2 below. Compared to figure 8 in 
the revised manuscript there are only minimal differences. This at least shows that there are 
no strong disagreements between the approaches. One reason for the similarity is certainly 
also the fact that the weighting is dominated to a large degree by the performance weighting 
and, in particular, by the low weights of some of the strong warming models.  

In summary we, therefore, argue that either approach might be appropriate to use, and the 
main conclusions in our manuscript are the same for an independence matric based on 
correlation. For simplicity we, therefore, prefer to continue using our original metric basing 
independence directly on model-model distances which does not require observations and 
thus eliminates one potential source of uncertainty.  
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Figure R2:  Similar to figure 8 in the revised manuscript but with the independence weighting based on 
error correlation distances instead of model-model distances. Note that for this case we do not use any 
area weighting in the independence weighting calculation.  

 

Specific comments 

1. Line 16. Consider explaining what TCR is in the abstract to appeal to a broader audience. 

Indeed our study aims at a quite general audience and therefore focuses mainly on projections 
of future global warming which are widely known. In the revised manuscript we no longer 
mention TCR in the abstract.  

2. Line 31. Do you mean model uncertainty, unknown model climate error, unknown 
model-climate-sensitivity-to-CO2 error or model climate differences? We know what the model is, and 
we can determine its climate past, present and future by running it. We can also determine the 
differences between the climates of different models. Given the limitations of the spatio-temporal 
distribution of observations, the uncertain thing is the actual climate both past, present, and future, is it 
not? 

Model uncertainty here refers to the error of both present and future climate. In particular to its 
bias, since for climate projections we are concerned with correctly estimating distributions of 
trajectories, rather than individual trajectories like for weather and climate prediction.  

“Model uncertainty”  has become a standard piece of terminology in this subfield, following its 
popularization by Hawkins and Sutton (2009). It is also mentioned as “structural” uncertainty 
or error, referring to the structure of the model (which is assumed to be different between 
different climate models, hence the “model” label). We have updated the paragraph in 
question to make that more clear (lines 30-34 in the revised manuscript). 

3. Line 35. Lorenz, the father of chaos theory, argued that while the accuracy of weather forecasts 
was limited to a few weeks the climate of a system was not sensitive to specified initial conditions and 
could be known provided the forcing on the system was known. I guess “climate” in the sense of 
Lorenz refers to the statistical description of the attractor of the chaotic system. When you refer to 
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“internal variability” do you just mean slow modes of the model’s chaotic attractor that might possibly 
be confused with a change in the mean of the model’s attractor if the ensemble size was too small? 

“Internal variability” indeed refers to initial condition sensitivity; the terminology has become 
standard in the climate literature following papers like Hawkins and Sutton (2009) or Deser et 
al. (2012). Here “climate” refers to the statistical description of the attractor of the system 
which these models attempt to represent - including the atmosphere but also the ocean, ice, 
and land surface. Particularly for the ocean, coupled models and the real earth’s coupled 
system show variations  on timescales of, at the very least, multiple years (e.g., due to ENSO) 
that depend on the initial conditions. Recently some efforts have sought to identify 
predictability on the order of decades, though if this exists it is assumed (here and generally) 
to be small.  

Because GCMs are expensive to run and have unknown but expected long timescales before 
ensemble variance that properly samples the climatology is achieved, CMIP models are not at 
the point where many of them have enough ensemble members to adequately sample the 
attractor (in contrast to weather prediction, where that is currently achievable and in fact often 
achieved). With a small number of ensemble members and long timescales, internal variability 
is convolved with forced responses. These can be isolated with “large ensembles” (of several 
tens of simulations differing only by initial conditions) but the CMIP ensemble includes many 
models which are expected to differ in their bias, some of which also include multiple 
realizations from the same model, which are expected to differ among each other only in terms 
of their “internal variability” or due to sampling. We have added some discussion to the 
paragraph in question (lines 34-40 in the revised manuscript). 

Deser, C., Phillips, A. S., Bourdette, V., & Teng, H. (2012). Uncertainty in climate change 
projections: the role of internal variability. Climate Dynamics, 38(3–4), 527–546. 
https://doi.org/10.1007/s00382-010-0977-x 

4. Line 102: I’m guessing you are referring to Section 3.2 of Brunner et al., 2019. Is that correct? If so, 
please state this in the text. Your wording suggested that you had estimated an observation error 
variance.​ ​However, on reading Section 3.2 of Brunner et al., 2019, I’m now guessing that you are 
referring to how your derived weights change depending on which subset of all observations you use. 
Are you suggesting that the reason for your weights changing is because the observations have 
different errors? Can you rule out the possibility that your weighting scheme isn’t just over-fitting each 
individual observational data set? In any case, the revised paper needs to clarify whether in fact you 
are referring to the size of the change in weights associated with using differing observational data 
sets. Also, the observed values are known. They are not uncertain. The errors of the observed values 
are unknown. It is the observational error that is uncertain. 

Thank you  for pointing this out, the wording was unclear in the original manuscript. Indeed, it 
has been pointed out in the literature that using different observational datasets can lead to 
diverging results in some cases (e.g., Gleckler et al. 2008, Lorenz et al. 2018, Brunner et al. 
2019) due to differences in the datasets. We referred to these differences in the observational 
datasets as observational uncertainty but no longer do so in the revised manuscript.  

What we are concerned with here is bias in the observational datasets, which are a central 
challenge in climate science. In the presence of such biases, it is not unexpected that the 
results of the weighting change based on the datasets used. To get a reference that is as 
robust as possible, we are using a combination of two observational datasets (ERA5 and 
MERRA2) to calculate the model-observation distances and further the performance weights. 
The datasets are combined by taking the center of the observational spread at each grid cell 
(following Brunner et al. 2019 who also discuss other approaches; see their section 3.2 as well 
as section S2 and figure S3 in their supplement). We have clarified that and added additional 
information to the section in question in the revised manuscript (lines 103-110).  
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Gleckler, P. J., Taylor, K. E., & Doutriaux, C. (2008). Performance metrics for climate models. 
Journal of Geophysical Research Atmospheres, 113(6), 1–20. 
https://doi.org/10.1029/2007JD008972 

5. Line 145. “We want to...” If there was a hypothetical user of the climate projection that only cared 
about temperature trend and not about year-to-year variability, might you not be doing them a 
disservice by down-weighting members that have an excellent temperature trend but poor 
inter-annual variability? Consider changing to “We choose to...“ 

The reviewer is correct in pointing out that the selection of diagnostics for establishing the 
models performance weights should depend on the target in question. In our study we look at 
temperature change in two time periods as a target, which is closely related to the temperature 
trend. Therefore, the temperature trend is indeed a powerful diagnostic.  

However, it also is strongly influenced by internal variability (i.e., it differs quite strongly 
between initial-condition members of the same model) which is not desirable for a good 
diagnostic as we argue in line 171 of the revised manuscript: “​Ideally, a performance weight is 
reflective of underlying model properties and does not depend on which ensemble member is 
chosen to represent that model (i.e., on internal variability). tasTREND does not fulfil this 
requirement: the spread within one model is the same order of magnitude as the spread 
among different models.” 

We therefore use “​a balanced combination of climate system features (i.e., diagnostics) 
relevant for the target to inform the weighting to minimise the risk for skill decreases. This 
guards against the possibility of a model “accidentally” fitting observations for a single 
diagnostic while being far away from them in several others (and hence possibly not providing 
a skilful projection of the target variable).​” (line 454 of the revised manuscript) 

In this sense we argue that even if a user is only interested in a model simulating future 
temperature trend correctly, it might still be important to also include other diagnostics. This 
can help to avoid weighting a model highly because it “accidentally” matches the 
observations in a given historical period due to, e.g., internal variability.  

6. Line 147-149. Equations should be added to precisely describe these observation derived 
quantities – perhaps in an appendix or supplementary material. 

We have now added a mathematical description of the diagnostic calculation to the 
supplement (section S2) and reference it in the revised manuscript in line 160. 

7. Line 170. You must state what was used as a proxy for a perfect model. I would think that the 
derived sigma_D must be related to the ensemble variance of the model states around the time 
averaged state. That quantity will depend on the model will it not? Please clarify. 

We have adjusted our description of the shape parameter calculation in the revised 
manuscript in order to make this more clear. In the revised manuscript we now refer to the 
iterative test used to the performance shape parameter as parameter calibration (lines 
182-191). In addition we have added additional information including a schematic of the 
calibration test to the supplement (section S3). 

8. Line 183. I looked at Section 2.3 of Brunner et al., 2019 for an explanation but Brunner et al. (2019) 
just directs the reader to Lorenz et al., 2018. Your work needs to be reproducible. When referring to 
another paper for a key explanation, you must give very specific information about where in the paper 
the explanation resides (e.g. a section number) to ensure reproducibility. You have not done this. 

The reviewer rightfully points out that we should have been more clear in referencing this 
important information. The calculation of the independence shape parameter and reasoning 
behind it is described in detail in the supplement of Brunner et al. (2019; section S3.1), which 

6 



we now explicitly mention. In addition we now provide a summary as well as a discussion of 
the chosen value in the context of our study in the supplement of the revised manuscript (see 
line 200 and supplement section S4 in the revised manuscript). 

9. Line 191. The method used to evaluate performance given here seems almost identical to that 
given in Abramowitz and Bishop (2015) but no reference is given to this paper or others that may 
have used this approach before. Such literature is relevant and should be cited. 

Thank you for pointing this out. We have added several references to the relevant literature 
which used similar approaches before (see line 206 in the revised manuscript).  

10. Line 200-205. Here, we learn that sigma_D weights are determined in part from information from a 
place that is inaccessible in reality: the future. Only model futures are accessible. By line 205 we learn 
that the model future states (rather than observations) are, in fact, an integral part of choosing the 
weights. This is a significant departure from many other observation-based methods for improving 
ensemble forecasts and projections. The use of future time observations in the training causes all of 
the associated tests to be “in-sample” tests – dramatically reducing their trustworthiness. Since the 
CMIP5 models belong to the same general class of human produced climate simulators they can 
barely be considered “out-of-sample”. Please comment on the limitations of this approach. In addition, 
you have not clarified how the method of tuning for future states interacts with the method to 
determine sigma_D referred to on line 170 (see previous comment). 

The reviewer rightfully points out that there is some influence from the future model states 
included in the weights via the performance parameter calibration. However, there also seems 
to be some misunderstanding regarding our approach.  We adapted the sections in question 
to make it more clear in the revised manuscript.  

The model performance weights are proportional to each model’s generalised distance (a 
combination of 5 diagnostics) to the observations ( ) as given in the numerator of equationDi  
(1). The proportionality constant is the performance shape parameter sigma_D, which 
translates these distances into the weights. It is indeed established using the target period, 
i.e., the future model states. The weighting for the ensemble is then calibrated as a whole 
using this single parameter, and it is not the case that the weight of each model is calibrated 
individually through its historical simulation.  

Crucially, this means that the weighting is still dominated by the comparison of models to the 
observations only. Consider, for example, a case where the diagnostics are really poorly 
chosen: this could be because they are dominated by (random) internal variability or because 
they do not have any physical relationship to the target. The weighting then would not have 
any skill, regardless of the sigma_D parameter.  

As, for example, Sanderson et al. (2017) state, selecting sigma_D only based on historical 
information might lead to overconfident results as a more skillful representation of the base 
state does not necessarily translate to a more skillful representation of the future. Selecting 
sigma_D only based on historical information would a priori assume that the chosen metric is 
relevant for the projection. One way of approaching the problem might be to apply the method 
on the historical and then test the result in a perfect model test, potentially adjusting the 
method in an iterative approach to maximise skill.  

In our weighting approach we already include such a perfect model test in the calculation of 
the weights in order to avoid overconfident results. To avoid confusion between the setting of 
the parameter and the subsequent testing of method skill we have changed the terminology in 
our manuscript and refer to the former as ​parameter calibration​ to separate it from the later 
perfect model tests which are used to calculate the skill of the weighting. In addition we have 
added a section in the supplement detailing and visualising this parameter calibration (section 
S3 and figure S1 in the revised manuscript).  
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Finally, addressing the question of the relationship between the calibration of the performance 
shape parameter and the subsequent testing of the skill of the method, we would argue that 
the circularity is quite limited. There are several reasons for this:  

● As we point out above, the weighting is, to a large degree, based on the model’s 
distance to historical observations, with future observations only influencing them via 
sigma_D, which is a single value constant across all models, over time, and all metrics.  

● The parameter calibration does not aim at maximising (mean) skill, but rather ensures 
that the results are not overconfident. Take the example of poorly chosen diagnostics 
again: in such a case, any separation into better or worse models would be 
overconfident as it would be based on pure chance. During the parameter calibration 
this would become obvious and sigma_D would be relaxed to a large value (in order to 
avoid this overconfidence) leading to an approximation of equal weighting.  
Subsequently testing the skill of the method can still be insightful to estimate the 
actual increase in skill (or the lack thereof - in the case of badly chosen diagnostics).  

● We use two different model pools to draw the perfect models from in our investigation 
of the method’s skill. The first one is based on CMIP6 data, and one could therefore 
argue that it has a stronger potential circularity as the same models have been used to 
calibrate sigma_D. However, this test is mainly used to investigate the relative 
differences between different combinations of diagnostics and to select the best 
performing one (see figure 1 and related discussion). Since any remaining circularity is 
the same for all cases shown in figure 1, a comparison between them should still be 
valid. We have adapted the abstract as well as section 3.1 to make that more clear.  

● For the second test, we use CMIP5 models, which have not been used in the parameter 
calibration, as perfect models. Here, another potential issue arises: several CMIP6 
models are related to CMIP5 models and are therefore not independent. However, 
about eight years of additional model development lie between the two generations. In 
addition, it has been noted that several CMIP6 models have a much higher climate 
sensitivity and are, hence, quite different from their predecessors (at least in their 
response to anthropogenic forcing, which dominates the future period used for the 
perfect model test).  

To further increase the independence between the CMIP5 and CMIP6 ensembles, we now 
exclude directly-related models from the perfect model test in the revised manuscript. So, for 
example, when weighting based on the CMIP5 model HadGEM2-ES we exclude the CMIP6 
models HadGEM3-GC31-LL and UKESM1-0-LL from the evaluation. A list of CMIP6 models 
excluded for each CMIP5 model can be found in table S5 in the supplement. 

11. Line 266-280. Here we learn that the method is very prone to creating decreased skill relative to 
the multi-model unweighted mean. This negative result is in contrast to the positive results found in 
Abramowitz and Bishop (2015) using the method of Bishop and Abramowitz (2013). 

Thank you for pointing this out, this was not expressed clearly in the original manuscript. In 
fact, the method produces a median skill increase of about 12-22% when using CMIP5 models 
as pseudo observations (see figure 3a in the revised manuscript). Nonetheless, it is correct 
that there can be a decrease in skill from the unweighted to the weighted multi-model 
ensemble based on our skill metric when using some CMIP5 models as pseudo-observations. 
However, these instances are limited to only a few (about 15% across SSPs and target periods) 
cases. We have revised the paragraph in question to make this more clear (line 314-322 in the 
revised manuscript).  

We note that the change in skill also depends on the skill metric used and the target it is 
applied to. Here, our target is 20-year mean, global mean temperature change from 1995-2014 
to two future periods (2041-60 and 2081-00). As a skill metric, we use the continuous ranked 
probability skill score (CRPSS), a measure for ensemble forecast quality. Note that this does 
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not only evaluate the distance between the (un-) weighted mean and the reference but also 
considers the full distribution.  
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