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Abstract. The sixth Coupled Model Intercomparison Project (CMIP6) constitutes the latest update on expected future climate

change based on a new generation of climate models. To extract reliable estimates of future warming and related uncertainties

from these models, the spread in their projections is often translated into probabilistic estimates such as mean and likely range.

Here, we use a model weighting approach, which accounts for a model’ s
:::
the

:::::::
models’ historical performance based on several

diagnostics as well as possible model inter-dependence within the CMIP6 ensemble, to calculate constrained distributions of5

global mean temperature change. We investigate the skill of our approach in a perfect model test, where we remove each CMIP6

model from the ensemble in turn, use it as pseudo-observation
:::
use

::::::::::::::::
previous-generation

::::::
CMIP5

:::::::
models

::
as

:::::::::::::::::
pseudo-observations

in the historical period, and evaluate the weighted CMIP6 ensemble against it in the future. This is complemented by a second

perfect model test drawing on the previous-generation CMIP5 models as .
::::
The

:::::::::::
performance

::
of

:::
the

::
so

::::::::
weighted

::::::::::
distribution

::
in

:::::::
matching

:::
the

:
pseudo-observations

:
in
:::
the

::::::
future

:
is
::::
then

::::::::
evaluated

::::
and

:::
we

:::
find

::
a
:::::
mean

:::::::
increase

::
in

::::
skill

::
of

:::::
about

:::::::::::::
17% compared10

::
to

::
the

::::::::::
unweighted

::::::::::
distribution. In addition, we show that our independence diagnostics

::::::
metric correctly clusters models known

to be similar based on a CMIP6 “family tree”, which enables applying a weighting based on the degree of inter-model de-

pendence. We then apply the weighting approach, based on two observational estimates (ERA5 and MERRA2), to constrain

CMIP6 projections in weak (SSP1-2.6) and strong (SSP5-8.5) climate change scenarios. Our results show a reduction in pro-

jected mean warming for both scenarios because some CMIP6 models with high future warming receive systematically lower15

performance weights. The mean of end-of-century warming (2081-2100 relative to 1995-2014) for SSP5-8.5 with weighting

is 3.7 °C, compared to 4.1 °C without weighting; the likely (66%) uncertainty range is 3.1 °C to 4.6 °C, a decrease
::
in

::::::
spread

of 13%. For SSP1-2.6, weighted end-of-century warming is 1 °C (0.7 °C to 1.4 °C) . Applying the weighting to estimates of

Transient Climate Response (TCR) yields 1.9 °C (1.6 °C to 2.1 °C – a reduction in the likely uncertainty range of 46%), which

is consistent with estimates from previous model generations and other lines of evidence.
:
a
::::::::
reduction

:::
of

:::::::::
−0.2 °C in

:::
the

:::::
mean20

:::
and

::::::::
−24% in

:::
the

:::::
likely

:::::
range

::::::::
compared

:::
the

::::::::::
unweighted

:::::
case.
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1 Introduction

Projections of future climate by Earth System Models provide a crucial source of information for adaptation planing, mitigation

decisions, and the scientific community alike. Many of these climate model projections are coordinated and provided within the

frame of the Coupled Model Intercomparison Projects (CMIPs), which are now in phase 6 (Eyring et al., 2016). A typical way of25

communicating information from such multi-model ensembles (MMEs) is by combining them into probabilistic distributions,

such as
::::::
through

:
a best estimate and uncertainty range

:
an

::::::::::
uncertainty

:::::
range

:::
or

:
a
:::::::::::

probabilistic
::::::::::
distribution. In doing so it is

important to make sure that the different sources of uncertainty are identified, discussed, and accounted for, to provide reliable

information without being overconfident. Typically
::
In

::::::
climate

:::::::
science

:::::::
typically three main sources of uncertainty are identified

in MMEs: (i) uncertainty in future emissions, (ii) internal variability of the climate system, and (iii) model response uncertainty30

(e.g., Hawkins and Sutton, 2009; Knutti et al., 2010).

Uncertainty due to future emissions can easily be isolated by making projections conditional on scenarios such as the Shared

Socioeconomic Pathways (SSPs) in CMIP6 (O’Neill et al., 2014) or the Representative Concentration Pathways (RCPs) in

CMIP5 (van Vuuren et al., 2011). The other two sources of uncertainty are harder to quantify since reliably separating

them is often challenging (e.g., Kay et al., 2015; Maher et al., 2019). Model uncertainty arises due to different responses35

and feedbacks of
:::::::::
(sometimes

::::
also

::::::::
referred

::
to

:::
as

::::::::
structural

::::::::::
uncertainty

::
or

::::::::
response

:::::::::::
uncertainty)

::
is

::::
used

:::::
here

::
to

::::::::
describe

::
the

::::::::
differing

:::::::::
responses

::
of

:::::::
climate models to a given radiative forcing , leading to different estimates of mean warming or

Transient Climate Response (TCR) (e.g., Forster et al., 2013)
::::::
forcing

:::
due

::
to

::::
their

::::::::
structural

:::::::::
differences

:::::::::
following

:::
the

::::::::
definition

::
by

:::::::::::::::::::::::
Hawkins and Sutton (2009). Such different responses to the same forcing can emerge, among other things, due to different

processes and feedbacks as well as due to the parametrisations used in the different models (e.g., Zelinka et al., 2020). In-40

ternal variability
:
,
::::::
finally,

::::
here

:::::
refers

::
to

:
a
:::::::
model’s

:::::::::
sensitivity

::
to

:::
the

:::::
initial

:::::::::
conditions

::
as

::::::::
captured

::
by

::::::::::::::
initial-condition

::::::::
ensemble

:::::::
members

:::::::::::::::::::::
(e.g., Deser et al., 2012).

::
In

:::
this

:::::
sense

:
it
:
stems from the chaotic behavior of the climate system

:
at
::::::::
different

::::
time

:::::
scales

and is highly dependent on the variable of interest as well as the period and region averaged over
:::::::::
considered. While, for example,

uncertainty in global mean temperature is mainly dominated by differences between models, regional temperature trends are

considerably more dependent on internal variabilityas can be estimated from .
::::::::
Recently,

::::::
efforts

::::
have

::::
been

:::::
made

::
to

:::
use

::::::::
so-called45

Single Model Initial-condition Large Ensembles (SMILEs) (Lehner et al., 2020; Maher et al., 2019; Merrifield et al., 2019)
::
to

:::::::::
investigate

::::::
internal

:::::::::
variability

::
in

::
the

:::::::
climate

:::::::::
projections

::::
more

::::::::::::::
comprehensively

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Kay et al., 2015; Maher et al., 2019; Lehner et al., 2020; Merrifield et al., 2020).

Depending on the composition of the investigated MME, uncertainty estimates often fail to reflect that included models are

not always independent from each other. In the development process of climate models, ideas, code and even full components

are shared between institutions or models might be branched from each other in order to investigate specific questions. This can50

lead to some models (or model components) being copied more often, resulting in an over-representation of their respective in-

ternal variability or sensitivity to forcing (Bishop and Abramowitz, 2013; Boé, 2018; Boé and Terray, 2015)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Masson and Knutti, 2011; Bishop and Abramowitz, 2013; Knutti et al., 2013; Boé, 2018; Boé and Terray, 2015).

The CMIP MMEs in particular have not been designed with the aim of including only independent models and are therefore

sometimes referred to as “ensembles of opportunity” (e.g., Tebaldi and Knutti, 2007) incorporating as many models as possible.
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When calculating probabilities based on such MMEs it is therefore important to account for model inter-dependence in order55

to accurately translate model spread into estimates of mean change and related uncertainties
:::::::::::::::::::::::::::
(Knutti, 2010; Knutti et al., 2010).

In addition, not all models represent the aspects of the climate system relevant to a given question equally well. To account for

that, a variety of different approaches have been used to weight, sub-select, or constrain models based on their historical perfor-

mance. This has been done both regionally and globally as well as for a range of different target metrics such as end-of-century

temperature change or TCR (see, e.g., Brunner et al., 2020b; Eyring et al., 2019; Knutti et al., 2017a, for an overview)
:::::::
Transient60

::::::
Climate

::::::::
Response

::::::
(TCR)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(for an overview see, e.g., Knutti et al., 2017a; Eyring et al., 2019; Brunner et al., 2020b). Global mean

temperature increase in particular is one of the most widely discussed effects of continuing climate change and the main fo-

cus of many public and political discussions. With the release of the new generation of CMIP6 models, this discussion has

been sparked yet again, as several CMIP6 models show stronger warming than most of the earlier-generation CMIP5 models

(Forster et al., 2020; Zelinka et al., 2020; Swart et al., 2019; Gettelman et al., 2019; Voldoire et al., 2019; Golaz et al., 2019; Andrews et al., 2019)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Andrews et al., 2019; Gettelman et al., 2019; Golaz et al., 2019; Voldoire et al., 2019; Swart et al., 2019; Zelinka et al., 2020; Forster et al., 2020).65

This raises the question of whether these models are accurate representations of the climate system and what that means for

the interpretation of the historical climate record and the expected change due to future anthropogenic emissions.

Here, we use the Climate model Weighting by Independence and Performance (ClimWIP) method (e.g., Merrifield et al., 2019; Brunner et al., 2019; Knutti et al., 2017b)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Knutti et al., 2017b; Lorenz et al., 2018; Brunner et al., 2019; Merrifield et al., 2020) to

weight models in the CMIP6 MME. Weights are based on (i) each models
::::::
model’s

:
performance in simulating historical proper-

ties of the climate system such as horizontally resolved anomaly, variability, and trend fields, and (ii) its independence from the70

other models in the ensemble, estimated based on shared biases of climatology. In contrast to many other methods, which con-

strain model projections based on only one observable quantity, such as the warming trend (e.g., Giorgi and Mearns, 2002; Ribes et al., 2017; Jiménez-de-la Cuesta and Mauritsen, 2019; Nijsse et al., 2020; Tokarska et al., 2020)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Giorgi and Mearns, 2002; Ribes et al., 2017; Jiménez-de-la Cuesta and Mauritsen, 2019; Liang et al., 2020; Nijsse et al., 2020; Tokarska et al., 2020),

ClimWIP is based on multiple diagnostics, representing different aspects of the climate system. These diagnostics are chosen

to evaluate a model’s performance in simulating observed climatology, variability, and trend patterns. Note that, in contrast to

other approaches such as emergent constraint-based methods, some of these diagnostics might not be highly correlated with75

the target metric (however, it is still important that they are physically relevant – to avoid introducing noise without useful

information in the weighting). Combining a range of relevant diagnostics is less prone to overconfidence, since the risk of

up-weighting a model because it “accidentally” fits observations for one diagnostic, while being far away from them in several

others is greatly reduced. In turn, methods which are based on such a basket of diagnostics have been found to generally lead

to weaker constraints (Sanderson et al., 2017; Brunner et al., 2020b), as the effect of the weighting typically weakens when80

adding more diagnostics (Lorenz et al., 2018).

ClimWIP has already been used to create estimates of regional change and related uncertainties for a range of different vari-

ables such as Arctic sea ice (Knutti et al., 2017b), Antarctic ozone concentrations (Amos et al., 2020), North American maxi-

mum temperature (Lorenz et al., 2018) and European temperature and precipitation (Merrifield et al., 2019; Brunner et al., 2019).

::::::::::::::::::::::::::::::::::::
(Brunner et al., 2019; Merrifield et al., 2020).

::::::::
Recently,

::::::::::::::::::::
Liang et al. (2020) have

::::
used

::
an

:::::::::
adaptation

::
of

:::
the

:::::::
method

::
to

::::::::
constrain85

::::::
changes

::
in
::::::
global

::::::::::
temperature

::::
using

::::::
global

::::
mean

::::::::::
temperature

:::::
trend

::
as

:::::
single

:::::::::
diagnostic

::
for

::::
both

:::
the

:::::::::::
performance

:::
and

:::::::::::
independence

:::::::::
weighting.

:
Here, we focus on investigating the ClimWIP methods

::::::::
method’s performance in weighting global mean temper-

ature changes when informed by different
:
a
:::::
range

::
of

:
diagnostics. To assess the robustness of these choices, we perform an

out-of-sample perfect model test using CMIP5 and CMIP6 as pseudo-observations. Based on these results, we select a com-
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bination of diagnostics which capture not only a model’s transient warming but also its ability to reproduce historical patterns90

in climatology and variability fields in order to increase the robustness of the weighting scheme and minimize the risk of skill

decreases due to the weighting. This approach is particularly important for users interested in the “worst case” rather than in

mean changes. We also look into the inter-dependencies among the models, showing the ability of our diagnostics in clustering

models with known shared components using a “family tree” (Masson and Knutti, 2011; Knutti et al., 2013) and further the

skill of the independence weighting to account for this. We then calculate combined performance-independence weights based95

on two reanalysis products in order to also account for the uncertainty in the observational record. Finally, we apply these

weights to provide constrained distributions of future warming and CTR
::::
TCR.

2 Data and Methods

2.1 Model data

The analysis is based on all currently available CMIP6 models which provide surface air temperature (tas) and sea level100

pressure (psl) for the historical, SSP1-2.6, and SSP5-8.5 experiments. We use all available ensemble members, which is a

total of 129 runs from 33 models (see table S3
:::
S4 in the supplementary material for a full list including references). We use

models post-processed within the ETH Zurich CMIP6 next generation archive, which provides additional quality checks and

re-grids models onto a common 2.5°×2.5° latitude-longitude grid, using second order conservative remapping (see Brunner

et al., 2020a, for details). In addition, we use the first
:::
one

:
member of all CMIP5 models providing the same variables and the105

corresponding experiments (historical, RCP2.6, RCP8.5) which is a total of 27 models (see table S4
::
S5

:
for a full list).

2.2 Reanalysis data

To represent historical observations in tas and psl we use two reanalysis products: ERA5 (C3S, 2017) and MERRA2 (Gelaro et al., 2017; GMAO, 2015a, b).

::::::::::::::::::::::::::::::::
(GMAO, 2015a, b; Gelaro et al., 2017). Both products are regridded to a 2.5°×2.5° latitude-longitude grid using second order

conservative remapping and are evaluated in the period 1980-2014. Within the framework of the model weighting, they are110

combined to provide an estimate of observational uncertainty (see Brunner et al., 2019, for details)
:::
We

:::
use

::
a
::::::::::
combination

:::
of

::::
these

::::
two

:::::::::::
observational

:::::::
datasets

::::::::
following

:::
the

::::::
results

:::
of

:::::::::::::::::::
Lorenz et al. (2018) and

::::::::::::::::::
Brunner et al. (2019),

::::
who

:::::
show

::::
that

:::::
using

::::::::
individual

:::::::
datasets

:::::::::
separately

:::
can

::::
lead

:::
to

::::::::
diverging

::::::
results

::
in

:::::
some

::::::
cases.

::
It

:::
has

::::
been

:::::::
argued

:::
that

::::
that

:::::::::
combining

::::::::
multiple

::::::
datasets

:::::
(e.g.,

:::
by

:::::
using

::::
their

:::
full

:::::
range

:::
or

::::
their

::::::
mean)

:::::
yields

:::::
more

:::::
stable

::::::
results

::::::::::::::::::::::::::::::::::::
(Gleckler et al., 2008; Brunner et al., 2019).

::::
Here

:::
we

:::
use

:::
the

:::::
mean

::
of

::::::
ERA5

:::
and

:::::::::
MERRA2

::
at

::::
each

::::
grid

::::
point

:::
as

::::::::
reference

::::::::
equivalent

::
to
::::::::::::::::::
Brunner et al. (2019). Finally, we115

also compare our results to globally averaged merged temperatures from the Berkley Earth Surface Temperature (BEST) data

set
::::::::::::
(Cowtan, 2019).
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2.3 Model weighting scheme

We use an updated version of the ClimWIP method described in Merrifield et al. (2019) and Brunner et al. (2019)
::::::::::::::::::::
Brunner et al. (2019) and

::::::::::::::::::
Merrifield et al. (2020), which is based on earlier work by Lorenz et al. (2018), Knutti et al. (2017b), Sanderson et al. (2015b),120

and Sanderson et al. (2015a); it can be downloaded at: https://github.com/lukasbrunner/ClimWIP.git. It assigns a weight wi to

each model mi that accounts for both model performance as well as independence,

wi =
e
−
(
Di
σD

)2

1+
∑M

j 6=i e
−
(
Sij
σS

)2 , (1)

where Di and Sij are the generalised distances of model mi to the observations and to model mj , respectively. The shape

parameters σD and σS set the strength of the weighting, effectively determining the point at which a model is considered to be125

“close” to the observations or to another model (c.f., section 2.5).

This updated version of ClimWIP assigns the same weight to each initial-condition ensemble member of a model, which is

adjusted by the number of ensemble members (see the revised version of Merrifield et al., 2019, for a detailed discussion)
:::::::::::::::::::::::::::::::::::::::::::
(see Merrifield et al., 2020, for a detailed discussion).

To illustrate this additional step in the weighting method, consider a single performance diagnostic d. d is calculated for each

model and ensemble member separately, hence d= dki with i representing individual models , and k running over all ensemble130

members Ki of model mi (in CMIP6, from one to 50
::::::::
members

::
in

::::::
CMIP6). For each model mi, the mean diagnostic d′i is,

d′i =

∑K
k d

k
i

Ki
,for all i. (2)

d′i is then used to calculate the generalised distance Di and further the performance weight wi via (1).
::
A

::::::
detailed

::::::::::
description

::
of

:::
this

:::::::::
processing

:::::
chain

::::
can

::
be

::::::
found

::
in

::::::
section

:::
S2

::
in

:::
the

:::::::::::
supplement. An analogous process is used for distances between

models. This setup allows a consistent comparison of model fields to each other and to observations in the presence of internal135

variability and, in particular, also enables the use of variance-based diagnostics. In addition, it ensures a consistent estimate of

the performance shape parameter σD in the perfect model test
:::::::::
calibration (see section 2.5), based on the average weight per

model; in previous work, in contrast, it
::
the

:::::::::
calibration

:
was based on only one ensemble member per model.

2.4 Weighting target and diagnostics

We apply the weighting to projections of annual mean, global mean temperature change from two SSPs, representing weak140

(SSP1-2.6) and strong (SSP5-8.5) climate change scenarios. Changes in two 20-year target periods representing mid-century

(2041-2060) and end-of-century (2081-2100) conditions are compared to a 1995-2014 baseline. In addition, we weight TCR

values from all available models obtained from an update of the data set described in Tokarska et al. (2020). The weights are

calculated from global, horizontally-resolved diagnostics based on annual mean data in the 35-year period 1980-2014. We use

different diagnostics for the calculation of the independence and performance parts of the weighting, as proposed in the revised145

version of Merrifield et al. (2019)
::::::::::::::::::
Merrifield et al. (2020).
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The goal of the independence weighting is to identify structural similarities between models (such as shared offsets or similar

spatial patterns) which are interpreted to be indications of inter-dependence arising from, e.g., shared components or parametri-

sations. In the past, combinations of horizontally-resolved regional temperature, precipitation, and sea level pressure fields,

have typically been used (e.g., Brunner et al., 2019; Sanderson et al., 2017; Knutti et al., 2013; Boé, 2018; Lorenz et al., 2018)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Knutti et al., 2013; Sanderson et al., 2017; Boé, 2018; Lorenz et al., 2018; Brunner et al., 2019).150

Following the work of Merrifield et al. (2019)
::::::::::::::::::
Merrifield et al. (2020), we use a combination of two global, climatology-based

diagnostics, the spatial pattern of climatological temperature (tasCLIM) and sea level pressure (pslCLIM), that were found

to work well for clustering CMIP5-generation models known to be similar. This definition of independence does not
::::::
Beside

:::
our

::::::::
approach,

::::::
several

:::::
other

:::::::
methods

:::
to

:::::
tackle

::::
this

::::
issue

::
of

::::::
model

::::::::::
dependence

:::::
exist.

:::::::
Among

::::
them

:::
are

::::::::::
approaches

:::::
which

::::
use

::::
other

:::::::
metrics

::
to

::::::::
establish

:::::
model

::::::::::::
independence

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Pennell and Reichler, 2011; Bishop and Abramowitz, 2013; Boé, 2018),155

:::::
which

:::::
select

:
a
:::::
more

::::::::::
independent

:::::::
sub-set

::
of

:::
the

:::::::
original

::::::::
ensemble

:::::::::::::::::::::::::::::::::::::
(e.g., Leduc et al., 2016; Herger et al., 2018a),

::
or

:::::
even

::::
treat

:::::
model

::::::::
similarity

:::
as

:::
an

::::::::
indication

:::
for

::::::::::
robustness

:::
and

::::
give

:::::::
models

::::::
which

:::
are

:::::
closer

:::
to

:::
the

:::::
multi

::::::
model

:::::
mean

:::::
more

::::::
weight

:::::::::::::::::::::::::::::::::::::::::::
(e.g., Giorgi and Mearns, 2002; Tegegne et al., 2019).

::::::
Neither

::
of
:::::
these

:::::::::
definitions

::
of

:::::::::::
independence

:
hold in a purely

:::::
strictly

:
sta-

tistical sense (Annan and Hargreaves, 2017), but we still stress that it is important to account for different degrees of model

inter-dependencies as well
::::
good as possible when developing probabilistic estimates from an “ensemble of opportunity” such160

as CMIP6. We validate this approach in section 4.2 of the results.

The performance weighting, in turn, allocates more weight to models which better represent the observed behavior of the

climate system as measured by the diagnostics, while down-weighting models with large discrepancies from the observations.

We use multiple diagnostics to limit overconfidence in the case where a model fits the observations well in one diagnostic by

chance, while being far away from them in several others. For example, we want to avoid giving heavy weight to a model165

based solely on its representation of the temperature trend if its year-to-year variability differs strongly from observed year-

to-year variability. The performance weights are based on five global, horizontally-resolved diagnostics: temperature anomaly

(tasANOM; calculated from tasCLIM by removing the global mean), temperature variability (tasSTD), pslANOM, and pslSTD

as well as temperature trend (tasTREND).
:
A
:::::::
detailed

::::::::::
description

::
of

:::
the

:::::::::
diagnostic

:::::::::
calculation

::::
can

::
be

:::::
found

:::
in

::::::
section

:::
S2

::
in

::
the

:::::::::::
supplement.

:
We use anomalies instead of climatologies in the performance weight in order to avoid punishing models170

for absolute bias in global-mean temperature and pressure, because these are not correlated with projected warming (Flato

et al., 2013; Giorgi and Coppola, 2010). This can be different for regional cases, where, e.g., absolute temperature biases have

been shown to be important for constraining projections of Arctic sea ice extent (Knutti et al., 2017b) or European summer

temperatures (Selten et al., 2020).

One aim of our study is to find an optimal combination of diagnostics that successfully constrains projections for our target175

quantity (global temperature change) while avoiding overconfidence or susceptibility to uncertainty from internal variability.

For example, tasTREND is a powerful diagnostic because of its clear physical relationship to and high correlation with pro-

jected warming (e.g., Tokarska et al., 2020; Nijsse et al., 2020)
:::::::::::::::::::::::::::::::::::::
(e.g., Nijsse et al., 2020; Tokarska et al., 2020). However, while

it has the highest correlation to the target of all investigated diagnostics, it also has the largest uncertainty due to internal vari-

ability (i.e., spread of tasTREND across ensemble members of the same model). Ideally, a performance weight is reflective180

of underlying model properties and does not depend on which ensemble member is chosen to represent that model(i. e., on
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internal variability).
:
. tasTREND does not fulfil this requirement: the spread within one model is the same order of magnitude

as the spread among different models. To find a compromise, we divide our diagnostics into two groups: trend-based diag-

nostics (tasTREND) and not-trend based diagnostics (tasANOM, tasSTD, pslANOM, and pslSTD). Different combinations of

these two groups (ranging from only not-trend based to only tasTREND) are evaluated in section 3.1 and the best performing185

combination is selected for the remainder of the study.

2.5 Calculation
:::::::::
Estimation

:
of the shape parameters

The shape parameters σD and σS ::
are

::::
two

::::::::
constants

::::::
which determine the width of the Gaussian weighting functions .

:::
for

::
all

:::::::
models.

:::
As

::::
such

::::
they

::::
are

:::::::::
responsible

:::
for

::::::::::
translating

:::
the

::::::::::
generalised

::::::::
distances

:::
into

::::::::
weights.

:
In case of the performance

weighting, small values of σD lead to very aggressive weighting with a few models receiving all the weight, while large values190

lead to more equal weighting.
:
It

::
is

::::::::
important

::
to

::::
note

::::
that,

:::::
while

:::
σD::::

sets
:::
this

:::::::::
“strength”

::
of

:::
the

:::::::::
weighting,

:::
the

:::::
rank

::
of

:
a
::::::
model

::::
(i.e.,

:::::
where

::
it

:::
lies

::
on

:::
the

:::::
scale

::::
from

::::
best

::
to

::::::
worst)

:
is
::::::
purely

:::::
based

:::
on

::
its

::::::::::
generalised

:::::::
distance

::
to

:::
the

:::::::::::
observations. To estimate a

performance shape parameter σD that weights models based on their historical performance without being overconfident , we

use
:::
we

:::
use

:
a
:::::::::
calibration

::::::::
approach

:::::
based

:::
on the perfect model test detailed in Knutti et al. (2017b)

:
in
:::::::::::::::::::::

Knutti et al. (2017b) and

::::::
detailed

:::
in

::::::
section

:::
S3

::
in
::::

the
::::::::::
supplement. In short, the test

::::::::
calibration

:
selects the smallest σD value (hence the strongest195

weighting) for which 80% of perfect models
::::::
“perfect

:::::::
models” fall within the 10-90 percentile range of the weighted distribution

.
::
in

:::
the

:::::
target

::::::
period.

:::::::
Smaller

:::
σD::::::

values
::::
lead

::
to
::::

less
::::::
models

::::::::
fulfilling

::::
this

:::::::
criterion

::::
and

:::::
hence

::
to

:::
too

:::::::
narrow,

::::::::::::
overconfident

:::::::::
projections.

:
Note that methods that simply maximize correlation of the weighted mean to the target in a perfect model test

often tend to pick small values of σD that result in projections that are overconfident in the sense that the uncertainty ranges

are too small (Knutti et al., 2017b).
:
A

::::::
similar

:::::
issue

:::::
arises

::
for

::::::::
methods

:::::
which

:::::::
estimate

:::
σD:::::

based
::::
only

:::
on

::::::::
historical

::::::::::
information200

::
as

:::::
better

::::::::::
performance

::
in
:::
the

::::
base

:::::
state

::::
does

:::
not

:::::::::
necessarily

::::
lead

::
to

::
a

::::
more

::::
skill

::::::::::::
representation

::
of

:::
the

::::::
future,

::::
e.g.,

::
if

:::
the

::::::
chosen

:::::::::
diagnostics

:::
are

:::
not

:::::::
relevant

:::
for

:::::
target

:::::::::::::::::::::::::
(Sanderson and Wehner, 2017).

:

The independence weighting has a subtle but fundamentally different dependence on its shape parameter σS : small values

lead to equal weighting, as all models are considered to be independent, but so do large values, as all models are considered to be

dependent. Hence, the effect of the independence weighting is strongest if the shape parameter is chosen such that it identifies205

clusters of models as similar (down-weighting them) while still correctly identifying models which are far from each other as in-

dependent (hence giving them relatively more weight)(see revised version of Merrifield et al., 2019, for a more detailed discussion including SMILEs).

:
.
:::
For

:
a
:::::::
detailed

:::::::::
discussion

::::::::
including

::::::::
SMILEs

:::
see

:::::::::::::::::::
Merrifield et al. (2020).

:
To estimate σS , we use the information from mod-

els with more than one ensemble member. We know that
::::::
Simply

:::
put,

:::
we

:::::
know

::::
that

::::::::::::::
initial-condition ensemble members are

copies of the same model that differ only due to internal variability, and therefore we have a priori
:::::
some information about210

the correct independence weighting.
:::
The

:::::::
method

:::
for

:::::::::
calculating

:
σS is

::::::::
described

::
in

:::::
detail

::
in

::::::
section

::
3
::
of

::::
the

:::::::::
supplement

:::
of

:::::::::::::::::
Brunner et al. (2019).

:::::
Here,

:::
we

:::::
arrive

::
at

:
a
:::::
value

::
of

::::::::::
σS = 0.54,

:::::
which

:::
we

:::
use

:::::::::
throughout

:::
the

::::::::::
manuscript.

::
It

::
is

:::::
worth

:::::
noting

::::
that

::
σS::

is
:
based only on historical

:::::
model

:
information, and is therefore independent from

::::::::::
observations

::
or

:
the selected target period

or scenario. Following the method described in detail in Brunner et al. (2019), we arrive at a value of σS = 0.54, which we
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use throughout the manuscript
::
and

::::::::
scenario.

:::::::::
Additional

:::::::::
discussion

:::
of

:::
the

:::::::
selected

::
σS:::::

value
::
in
::::

the
::::::
context

::
of

:::
the

:::::::::::
multi-model215

::::::::
ensemble

::::
used

::
in

:::
this

:::::
study

:::
can

:::
be

:::::
found

::
in

:::
the

::::::::::
supplement

::::::
(section

::::
S4).

2.6 Validation of the performance weighting

To investigate the skill of ClimWIP in weighting CMIP6 global mean temperature change and the effect of the different diagnos-

tic combinations (different relative importance of tasTREND) we apply a perfect model test
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Abramowitz and Bishop, 2015; Boé and Terray, 2015; Sanderson et al., 2017; Knutti et al., 2017b; Herger et al., 2018a, b; Abramowitz et al., 2019).

As a skill measure we use the continuous ranked probability skill score (CRPSS), a measure for ensemble forecast quality, de-220

fined as the relative error between the distribution of weighted models and a reference (Hersbach, 2000). Here, we define the

CRPSS as relative
::
use

:::
the

:::::::
relative

::::::
CRPSS

:
change between the unweighted and weighted cases (in %), with positive values

indicating a skill increase. The CRPSS is calculated separately for both SSPs and future time periods, since we expect to find

different skill for different projected climate states.

The first perfect model test is based only on the CMIP6 MME and focuses on evaluating the performance weighting
::::
only225

::::::
focuses

:::
on

:::
the

::::::
relative

::::
skill

::::::::::
differences

:::::
when

:::::::
applying

:::::::::::
performance

:::::::
weights

:::::
based

:::
on

:::::::
different

::::::::::::
combinations

::
of

::::::::::
diagnostics

(results are presented in section 3.1). We explain its implementation based on an example perfect model mj with only one

ensemble member for simplicity here: (i) the model mj is taken as pseudo-observation and removed from the CMIP6 MME;

(ii) the output from mj during the historical
::::::::
diagnostic

:
period (1980-2014) is used to calculate the performance diagnostics for

the remaining models (d′i 6=j); (iii) the generalised model-“observation” distances (Di6=j) and the performance weights (wi 6=j)230

are calculated and applied to the MME (excluding mj); (iv) the CRPSS is calculated
:
in

:::
the

::::::
target

::::::
periods

:
using the future

projections of mj as reference. This is done iteratively, using each model in CMIP6 MME in turn as pseudo-observation.

For perfect models with more than one ensemble member (mk
j ), all members are removed from the ensemble in (i), d′i 6=j is

calculated for each member separately in (ii) and then averaged, and the CRPSS is also calculated for each ensemble member

in (iv) and averaged.235

We note that a similar perfect model test is also an integral part of ClimWIP as it is used to estimate
::::
This

::::::::
approach

::
is

:::::::::
structurally

::::::
similar

::
to

:::
the

::::
one

::::
used

::
to

:::::::
calibrate

:
the performance shape parameter σD :

as
:::::::
integral

::::
part

::
of

::::::::
ClimWIP (described in

section 2.5), which introduces a small amount of circularity in this test. However, it is still valuable to investigate the skill of

the weighting method using this test to (i)
::
the

::::::
metric

:::
and

:::
aim

::
of

::::
this

::::::
perfect

:::::
model

:::
test

:::
are

:::::
quite

::::::::
different.

:
It
::
is

::::
used

::
to

:
show the

potential for an increase in skill through
:
a

:::
skill

::::::::
increase

::::::
through

:::
the

:::::::::::
performance weighting, as well as the risk of a decrease ,240

(ii) cross-check the
::::
based

:::
on

:::
the

:::::::
selected σD calculation, and (iii) compare different fractions of trend- versus not-trend-based

diagnostics, in order
:::
and to establish the most skilful combination

::
of

:::::::::
diagnostics.

The second perfect model test (section 3.2) is conceptually equivalent
::::::
similar, but pseudo-observations are

::::
now drawn from

CMIP5
::::::
instead

::
of

::::::
CMIP6. This test has the advantages that we can always use the full CMIP6 MME (without having to remove

any models) and that the
::
the

:
perfect models have not been used to estimate σD and can be considered independent, at least245

in a methodological sense. Note that they are not necessarily independent in a model sense
:
.
:::::
Even

::::::
though

:::
one

::::::
might

:::::
argue

:::
that

::::
also

:::
the

:::::::
CMIP5

:::::::::::::::::
pseudo-observations

:::
are

:::
not

::::
fully

::::::::::::
out-of-sample

:
as several CMIP6 models descend from

::
are

:::::::
related

::
to

CMIP5 models and might be structurally similar to their predecessors, which was the case for the CMIP5 and 3 generations
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(Knutti et al., 2013). However, there are also considerable differences between CMIP5 and 6 that arise from many years of

additional model development, a longer observational record to tune
:::::::
calribrate

:
to, and differing spatial resolutions. In addition,250

the emission scenarios that force CMIP5 and 6
:
in
:::
the

::::::
future (RCPs and SSPs, respectively) result in slightly different radiative

forcings (Forster et al., 2020) ; determining how these scenario families differ is currently an active area of research
:::
and

::::::
several

::::::
CMIP6

::::
have

::::
been

::::::
shown

::
to

::::
lead

::
to

::::::::::
considerably

:::::
more

::::::::
warming

::::
than

::::
most

::::::
CMIP5

::::::
models. We do not discuss these similarities

and differences
:::::::
between

:::
the

:::::
model

::::::::::
generations in detail here; instead we

::::::
simply use CMIP5 simply as a source of additional

::
for

:
pseudo-observations to evaluate the skill of ClimWIP for

:
in

:
weighting the CMIP6 MMEto improve the fit to a given .

:::
To255

::::
avoid

:::::
cases

::::
with

::::
the

::::::
highest

::::::::
potential

::
of

:::::::::
remaining

::::::::::
dependence

:::::::
between

::::::::::
generations

:::
we

:::::::
exclude

:::::::
CMIP6

::::::
models

::::::
which

:::
are

:::::
direct

::::::::::
predecessors

::
of

:::
the

:::::::::
respective CMIP5 model

::::
used

::
as

::::::
pseudo

:::::::::::
observations

::::
(see

::::
table

:::
S5

::
for

::
a
:::
list).

2.7 Validation of the independence weighting

To validate that the information in the diagnostics chosen for the independence weighting (tasCLIM and pslCLIM) can identify

models known to be similar, we use a hierarchical clustering approach based on Müllner (2011) and implemented in the Python260

SciPy package (www.scipy.org). We use the linkage function with the average method applied to the horizontally-resolved

distance fields between each pair of models
:::
(see

:::::::
section

::
S5

::
in

:::
the

::::::::::
supplement

:::
for

::::
more

:::::::
details). This approach is conceptually

similar to the work from Masson and Knutti (2011) and Knutti et al. (2013) and follows their example of showing similarity

as model “family trees”. The hierarchical clustering is not used in the model weighting itself; we use it here only to show

that qualitative information about model similarity can be inferred from model output using the two chosen diagnostics and to265

compare it to the results from the independence weighting.

The independence weighting (denominator in equation (1)) quantifies the similarity information extracted from the pairwise

distance fields via the independence shape parameter (σS ; see section 2.5). The independence weighting estimates where two

models fall on the spectrum from completely independent to completely redundant and weights them accordingly. In order to

test this approach, we successively add artificial “new” models into the CMIP6 MME: for an example model with two members270

(m1
j and m2

j ), we remove the first member and add it as additional model (mM+1). In an idealized case, where all models are

perfectly independent from each other and all ensemble members of a model are identical, we would expect the weight of the

member that remains (m2
j ) to go down by a factor 1/2, while the weight of all other models would stay the same. However, in

a real MME, where there is internal variability and complex model inter-dependencies exist, we would not necessarily expect

such simple behaviour; several other models might also be (rightfully) affected by adding such a duplicate while the effect on275

the m2
j would be smaller (see section 4.2)

9
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Figure 1. Continuous ranked probability skill score (CRPSS)
::
for

:::
the

:::::::::
performance

::::::::
weighting

:
based on a leave-one-out perfect model test

with CMIP6 for (a) mid-century and (b) end-of-century temperature change relative to 1995-2014. The x-axis shows different combinations

of the two diagnostic groups (see section 2.4) ranging from only not-trend based (0% tasTREND) to only trend-based (100% tasTREND).

:::::
Values

:::
not

:::::::
summing

::
to

::::::
100% is

:::
due

::
to

:::::::
rounding

::
in

:::
the

::::
labels

::::
only.

3 Evaluation of the weighting in the perfect model test

3.1 Leave-one-out perfect model test with CMIP6

We start by calculating the performance weights in
::
the

:::::::::
diagnostic

::::::
period

::::::::::
(1980-2014)

::
in

:
a pure model world and without using

the independence weighting. In this first step we focus on the evaluation of the performance weighting
::::::
relative

:::
skill

::::::::::
differences280

when using different combinations of diagnosticsand on calculating the ideal performance shape parameters (σD). Figure 1

shows the distribution of the CRPSS (with positive values indicating an increase in projection skill due to the weighting

and vice versa; see section 2.6) evaluated for
:::
two the mid- and end-of-century

::::
target

:
periods, the two SSPs, and for different

combinations of diagnostics. The diagnostics range from only not-trend based (0% tasTREND ; using only tasANOM , tasSTD

, pslANOM , and pslSTD
::
+

:::::::::::::
25% tasANOM

::
+

:::::::::::
25% tasSTD

:
+
::::::::::::::
25% pslANOM

::
+

:::::::::::
25% pslSTD

::
=

:::::
100%) to only tasTREND285

based (100% tasTREND). Overall, all diagnostic combinations tend to increase median skill compared to the unweighted

projections, but there is a considerable range of CRPSS values and they can be negative. In evaluating the different cases we

hence focus on two important aspects of the CRPSS distribution: (i) the median as best estimate of expected relative skill

change and (ii) the 5th and 25th percentiles in particular if they are negative. Negative CRPSS values indicate a worsening

of the projections compared to the unweighted case. Since the goal of the weighting is to improve the projections based on290

performance and dependence of the models, the risk of negative CRPSSs should be minimised.

We find the σD-values to be correctly chosen
::::::::
calibrated

:
by the method in order to limit the risk for a strong skill decrease

(CRPSS is close to zero or positive for the 25th percentile in almost all cases). For the mid-century period, the median skill

10
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Figure 2. Time series of temperature change (relative to 1995-2014) for unweighted (gray) and weighted (colored) CMIP6 mean (lines) and

likely (66%) range (shading) as well as the CMIP5 models serving as pseudo-observations (dashed lines). Shown are the cases wich
:::::
which

lead to (a) the largest decrease in skill (CMIP5 pseudo-observation: CanEMS2
:::::::::::
MIROC-ESM) and (b) to the largest increase (MPI-ESM-LR)

for SSP5-8.5 in the end-of-century
::::
target period. Note that no inference on the performance of the CMIP5 models can be drawn from this

figure.
::::::::
Diagnostic

:::::
period

::::
refers

::
to
:::
the

::::::::
1980-2014

::::::
period,

:::::
which

::::::
informs

::
the

:::::::
weights;

::
the

:::::
target

::::::
periods

::
to

::::::::
2041-2060

:::
and

:::::::::
2081-2100.

increases by about 10% to 20% across both SSPs and all
::
up

::
to

:::::::::::::
25% depending

:::
on

::::
SSP

:::
and

:
combination of diagnostics. The

magnitude of potential negative CRPSSs in a “worst-case” scenario (5th percentile), however, is better constrained using a295

balanced combination of diagnostics (e.g., 50% tasTREND). In the end-of-century period, the median skill is more variable

(mainly due to the selected performance shape parameters σD; see table S1), with combinations that include both trend and

not-trend diagnostics again performing best.

Using 50% tasTREND and 50% anomaly- and variance-based diagnostics (tasANOM, tasSTD, pslANOM,
:::::
about

::::::::::::::
13% tasANOM,

:::::::::::
13% tasSTD,

::::::::::::::
13% pslANOM,

::::
and

:::::
13% pslSTD) optimises the combination of median CRPSS increases and avoidance of300

possible negative CRPSSs; we therefore use this combination to calculate the weights for the rest of the analysis. Note that

the two SSPs and time periods have slightly different σD values (ranging from 0.35 to 0.58; table S1), leading to slightly

differing weights even though the historical information is the same. This arises from differences in confidence when applying

the method for different targets. However, since the σD values are found to be so similar we use the mean value from the two

SSPs and time periods in the following for simplicity, hence σD = 0.43. This does not have a strong influence on the results305

but simplifies their presentation and interpretation.

3.2 Perfect model test using CMIP5 as pseudo-observations

We now use each of the 27 CMIP5 models in turn as pseudo-observation and include both the performance and independence

parts of the method. For all considerations in this section we use the CMIP5 merged historical and RCP runs corresponding to

the CMIP6 historical and SSP runs, i.e., RCP2.6 to SSP1-2.6 and RCP8.5 to SSP5-8.5. This allows an evaluation of the skill310
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of the
:::
full

:
weighting method applied to the full CMIP6 MME in the future. Figure 2 shows two cases selected to lead to the

largest decrease (figure 2a) and increase (figure 2b) in the CRPSS for SSP5-8.5 in the end-of-century period when applying

the weights. The figures reveal
::::
This

::::::
reveals an important feature of the weighting: if the unweighted MME is already close to

the “truth” the risk for a skill decrease is highest (
::::::::::
constraining

:::::::
methods

:::
in

:::::::
general:

::::
there

::
is
::
a
:::
risk

::::
that

:::
the

::::::::::
information

:::::
from

::
the

::::::::
historical

::::::
period

:::::
might

:::
not

::::
lead

::
to
::
a
::::
skill

:::::::
increase

::
in

:::
the

::::::
future.

::
In

:::
the

::::
case

::::::
shown

::
in figure 2a ). In other words, using the315

CMIP5 model CanESM2, which happens to be close to the unweighted CMIP6 MME mean , as
::::::::
weighting

:::::
based

:::
on pseudo-

observations to weigh CMIP6 tends to pull the CMIP6 MME mean
::::
from

::::::::::::
MIROC-ESM

::::
shifts

:::
the

::::::::::
distribution

::::::::::
downwards,

:::::
while

:::::::::
projections

::::
from

::::::::::::
MIROC-ESM

:::
end

:::
up

:::::::
warming

:::::
more

::::
than

:::
the

::::::::::
unweighted

::::
mean

:::
in

::
the

::::::
future.

::::
This

::::::
reflects

:::
the

:::::::::
possibility

::::
that

:::::::::
information

::::::
drawn

::::
from

::::
real

::::::::
historical

::::::::::
observations

::::::
might

:::
not

:::
lead

::
to
:::
an

:::::::
increase

::
in

:::::::::
projection

::::
skill

::
in

::::
some

::::::
cases.

::::
Here

:::::
cases

::
of

:::::::::
decreasing

::::
skill

:::::
appear

:::
for

:::::
about

:::::::
15% of

:::::::::::::::::
pseudo-observations.

:
320

:::
The

::::::
largest

::::
skill

:::::::::
increases,

::
in

::::
turn,

:::::
often

::::::
comes

::::
from

:::::::::::::::::
pseudo-observations

::::::
rather

:::
far away from the pseudo-observational

“truth”. In the reverse case
::::::::::
unweighted

:::::
mean.

:
It
::::::
seems

:::
that, if the “truth” is

::::::::::::::::
pseudo-observations

::::::
behave

:
very different from the

MME mean – e.g., the CMIP5 model MPI-ESM-LR being rather different from the CMIP6 MME mean –, the potential for a

skill increase is highest (figure 2b).
:::::
model

::::::::
ensemble

::
in

:::
the

::::::::
historical

::::::
period,

::::
there

::
is

:
a
:::::
good

::::::
chance

:::
that

::::
they

::::
will

:::::::
continue

::
to

:::
do

::
so

::
in

:::
the

::::::
future.

:::
One

::::::::::
explanation

:::
for

:::
this

:::::
could

:::
be

:
a
:::::::::
systematic

:::::::::
difference

:::::::
between

:::
the

::::::
models

::
in

:::
the

::::::::
ensemble

::::
and

:::
the

::::::
pseudo325

:::::::::
observation

::::
due

::
to,

:::::
e.g.,

:
a
:::::::
missing

::::::::
feedback

::
or

::::::::::
component.

:
An important cautionary takeaway is thus to not only maximise

median
:::::
mean skill increase when setting up the method, as the cases with highest skill might come from rather “unrealistic”

pseudo-observations (i.e., the ones on the tails of the model distribution, like
:
).

::::
This

::
is illustrated in figure 2 and figure S1

::
S2

::
in

:::
the

::::::::::
supplement

::::
(e.g.,

:::::
using

:::
the

:::::::
CMIP5

::::::
GFDL

::
or

:::::
GISS

:::::::
models

::
as

:::::::
pseudo

::::::::::
observations). However, in many cases we do

not necessarily expect the real climate to follow such an extreme trajectory but rather be closer to the unweighed
::::::::::
unweighted330

MME mean (in part because real observations tend to be used in model development and tuning). It is thus important to use

a balanced set of multiple diagnostics
:::
and

:::
not

:::::
only

:::::::
optimise

:::
for

::::::::
maximal

:::::::::
correlation

:::
in

::::::::
choosing

:::
σD, which might make

the highest possible skill increases unattainable, but – maybe more importantly – guard against even more substantial skill

decreases.

::::::
Finally,

::
it

::
is

::::::::
important

::
to

::::
note

::::
that

:::
the

::::
skill

::
of

:::
the

:::::::::
weighting

:::
for

:
a
:::::
given

::::::::::::::::
pseudo-observation

::::
also

:::::::
depends

:::
on

:::
the

:::::
target.

:::
In335

::::::
isolated

:::::
cases

::::
that

:::
can

:::::
mean

::::
that

:::
the

:::::::::
weighting

::::
leads

:::
to

::
an

:::::::
increase

:::
in

::::
skill

:::
for

:::
one

::::
SSP

:::::
while

::
it
:::::
leads

::
to

::
a
:::::::
decrease

:::
in

:::
the

::::
other

:::::
(e.g.,

::::::::::::::
IPSL-CM5A-LR

::
as

:::::::::::::::::
pseudo-observation)

:::
or

::
to

::
an

:::::::
increase

:::
in

::
on

::::
time

::::::
period

::::
and

::
to

:
a
::::::::

decrease
::
in

:::
the

:::::
other

:::::
(e.g.,

:::::::::::::::
CSIRO-Mk3-6-0). An overview of the weighting based on each of the 27 CMIP5 models can be found in figure S1

:::
S2 in the

supplement.

To look into the skill change more quantitatively, figure 3a shows the skill distribution of weighting CMIP6 to predict each340

of the pseudo-observations drawn from CMIP5 for both
:::::
target time periods and scenarios.

:::
We

::::
note

:::::
again

:::
that

:::
for

::::
each

:::::::
CMIP5

::::::::::::::::
pseudo-observation

::::::
directly

::::::
related

::::::
CMIP6

:::::::
models

::
are

::::::::
excluded

::::
(see

::::
table

:::
S5

::
for

::
a
::::
list). Compared to the leave-one-out perfect

model test with CMIP6 shown in figure 1 the increase in median CRPSS is lower and the risk for negative CRPSSs is slightly

higher. This is not unexpected for a test sample , which has not been used for training (i.e., the estimation of the σD-value)

and
:::::
which

:
is structurally different from CMIP6 in several aspects (such as forcing scheme and maximum amount of warming).345
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Figure 3. (a) Similar to figure 1 but using 27 CMIP5 models as pseudo-observations and showing only the 50% tasTREND case. (b) Map

of median of CRPSS values for 2041-2060 under SSP5-8.5

But the setup still achieves a median CRPSS increase of about 10% to 20%
::::::::::
12% to 22%, with the risk of

::
for

:
a skill reduction

being mostly confined to less than 25%, clearly showing
:::::::
confined

::
to

:::::
about

::::::
15% of

:::::
cases

:::
and

::
to

::
a
::::::::
maximum

::::::::
decrease

::
of

:::::
about

:::::
25%.

::::
This

::::::
clearly

::::::
shows that ClimWIP can be used to provide reliable estimates of future global temperature change and

related uncertainties from the CMIP6 MME.

Finally, we consider the question of whether there are regional patterns in the skill change by investigating a map of median350

CRPSSs for SSP5-8.5 in the mid-century period in figure 3b (see figure S2 in the supplement for the other cases). Note that

each CMIP6 model is still assigned only one weight, but the CRPSS is calculated at each grid point separately. The skill

increases almost everywhere with the northern hemisphere having a slightly higher amplitude. A notable exception is the

North Atlantic, where weighting leads to a slight decrease in median skill. Indeed, this is the only region where the unweighted

CMIP6 mean underestimates the warming from CMIP5. Weighting the CMIP6 ensemble leads to a slight strengthening of the355

underestimation in this region, while it reduces the difference almost everywhere else.

In summary, weighting CMIP6 in a perfect model test using five different diagnostics to establish model performance and

two diagnostics for independence shows an increase in
:
a

::::
clear

:::::::
increase

::
in

::::::
median

:
skill compared to the unweighted distribution

for the vast majority of cases and consistent over both investigated scenarios and time periods. Looking into the geographical

distribution reveals an increase in skill almost everywhere, with some decreases found in the Southern Ocean, particularly in360

SSP1-2.6 (figure S2). Importantly, skill increases almost everywhere over land, thus benefiting assessments of climate impacts

and adaptation where people are affected most directly.
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4 Weighting CMIP6 projections of future warming based on observations

So far we have selected a combination of diagnostics, which leads to the highest increase in median skill while minimising the

risk for a skill decrease based on an out-of-sample perfect model test with CMIP6 in section 3.1. We also argued that we use365

the same shape parameters (which determine the strength of the weighting) for all cases, namely σS = 0.54 for independence

and σD = 0.43 for performance. In section 3.2 we then evaluated this setup by using
::
27 pseudo-observations drawn from the

CMIP5 MME. In this section we now calculate weights for CMIP6 based on observed climate and validate the effect of the

independence weighting.

We use observational surface air temperature and sea level pressure estimates from the ERA5 and MERRA2 reanaly-370

ses to calculate the performance diagnostics (tasANOM, tasSTD, tasTREND, pslANOM, pslSTD). The combination of two

reanalysis products allows to account for observational uncertainty, which has been found to be important for robust weighting

in earlier work by Brunner et al. (2019) and Lorenz et al. (2018). As independence diagnostics we continue to use model-model

distances in tasCLIM and pslCLIM.

4.1 Calculation of weights for CMIP6375

Figure 4 shows the combined performance and independence weights assigned to each CMIP6 model by ClimWIP when

applied to the target of global temperature change. Three general regimes can be identified: (i) models which represent historical

observations better than average receive relative weights mostly between
::
In

:::::::
addition

::::
also

:::
the

:::::::::
individual

:::::::::::
performance

::::
and

:::::::::::
independence

:::::::
weights

:::
are

::::::
shown.

:::
All

:::::
three

:::::
cases

:::
are

::::::::::
individually

::::::::::
normalised.

::::::::
Applying

::::
the

::::::::
combined

:::::::
weight,

:::::
about

:::
half

:::
of

::
the

:::::::
models

::::::
receive

:::::
more

::::::
weight

::::
than

:::
in

:
a
::::::
simple

:::::::::
arithmetic

:::::
mean

::::
and

:::::
about

::::
half

::::::
receive

::::
less.

::::
The

::::
best

::::::::::
performing

::::::
model,380

::::::::::::
GFDL-ESM4,

::::
has

:::::
about

::::
four

::::
times

:::::
more

::::::::
influence

::::
than

::
it

:::::
would

::::
have

:::::::
without

::::::::
weighting

::::::
(about

::::
0.13

:::::::::
compared

::
to

::::
0.03

::
in

:::
the

:::
case

::::
with

:::::
equal

::::::::::
weighting).

:::
The

:::::
three

:::::
lowest

::::::::::
performing

:::::::
models,

::::::::::::
MIROC-ES2L,

:::::::::
CanESM5,

::::
and

::::::::::::::::::
HadGEM3-GC31-LL,

::
in

::::
turn

::::::
receive

:::
less

::::
than

:
1and 2 (with a maximum of about 4), (ii)models which represent historical observations slightly less well, but

can still be considered skillful representations of the climate system, receive relative weights mostly between 1 and 0.5, and

(iii)models which can be considered less skillful based on their past performance receive weights of less than 0.2.
::
/20

:::
of

:::
the385

::::
equal

:::::::::
weighting

:::::
(about

:::::::
0.001).

::::::
Indeed,

::::::
several

:::::
recent

:::::::
studies

::::
have

:::::
found

::::
that

::::::
models

:::::
which

:::::
show

:::::
more

:::::
future

:::::::
warming

::::
per

:::
unit

::
of

::::::::::
greenhouse

:::
gas

:::
are

::::
less

:::::
likely

::::
based

:::
on

::::::::::
comparison

:::
with

::::
past

:::::::::::
observations

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Jiménez-de-la Cuesta and Mauritsen, 2019; Nijsse et al., 2020; Tokarska et al., 2020).

::::::::
Consistent

:::::
with

::::
their

:::::::
findings

::::::
models

::::
with

::::
high

:::::
TCR

::::::
receive

::::
very

:::
low

:::::::::::
performance

::::
(and

:::::::::
combined)

:::::::
weights

:::::
(label

:::::::
colours

::
in

:::::
figure

::
4).

:::::::
Among

:::
the

:::
five

::::::
lowest

::::::
ranking

:::::::
models

:::
four

:::::
have

:
a
::::
TCR

::::::
above

:::::::::
2.5 °C and

::
all

::::::
models

::::
with

:::::
TCR

:::::
above

::::::::::::
2.5 °C receive390

:::
less

::::
then

:::::
equal

:::::::
weight.

::::
The

::::
eight

:::::::
highest

:::::::
ranking

:::::::
models,

::
in

::::
turn,

:::::
have

::::
TCR

::::::
values

:::::::
ranging

:::::
from

:::::::::::::::::
1.5 °C to 2.5 °C and

:::
lie,

::::::::
therefore,

:::::
rather

::
in

:::
the

::::::
middle

::
of

:::
the

:::::::
CMIP6

::::
TCR

::::::
range.

:::
See

:::::
table

::
S2

::
in
:::

the
::::::::::

supplement
:::
for

::
a

::::::::
summary

::
of

::
all

::::::
model

:::::::
weights

:::
and

::::
TCR

::::::
values.

:

In addition
::
to

::
the

:::::::::
combined

::::::::
weighting, figure 4 also shows the pure performance weights . The relative differences

:::::::::::
independence

:::
and

:::::::::::
performance

:::::::
weights

:::::::::
separately.

::::
We

::::::
discuss

::::::
model

::::::::::::
independence

:::
in

:::::
more

:::::
detail

::
in

::::
the

::::
next

:::::::
section.

::::
For

:::
the

::::::
model395
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Figure 4. Combined independence-performance weights for each CMIP6 model (line with dots) and
:::
was

:::
well

::
as
:
pure performance weights

(squares) relative to equal weighing
:::
and

::::
pure

::::::::::
independence

::::::
weights

::::::::
(triangles). Weights smaller than 0.2 times

::
All

::::
three

::::
cases

:::
are

:::::::::
individually

::::::::
normalised

:::
and

:::
the equal weighting are only

::::
each

::::
model

:::::
would

::::::
receive

::
in

:
a
:::::
normal

::::::::
arithmetic

::::
mean

::
is
:
shown as their approximate combined

weight
:::
for

:::::::
reference (fractions in the right bottom corner

:::::
dashed

:::
line). The

::::
labels

:::
are

::::::
coloured

:::
by

::::
each

:::::
models

::::
TCR

:::::
value:

:::::::
> 2.5°C

:
-
::::

red,

:::::
> 2°C

:
-
::::::
yellow,

:::::::
> 1.5°C

:
-
:::::
green,

:::
and

:::::::
≤ 1.5°C

:
-
::::
blue.

::::
The number of ensemble members per model is shown in brackets after the model

namein the x-axis labels.

::::::::::
performance

:::::::::
weighting,

:::
the

:::::::
relative

::::::::
difference

:
to the combined weights are

::::::::
weighting

::::
(i.e.,

:::
the

::::::::
influence

::
of

:::
the

::::::::::::
independence

:::::::::
weighting)

::
is mostly below 50%, with the MIROC model family being one notable exception. Both MIROC models are very

independent, which shifts MIROC6 from a below-average model (based on the pure performance weight; black square in fig-

ure 4) to an above-average model in the combined weight (black dot) effectively more than doubling its performance weight.

For MIROC-ES2L the scaling due to independence is similarly high(not visible in figure 4), but its total weight is still domi-400

nated by the very low performance weight. In the next section we investigate if these independence weights indeed correctly

represent the complex model inter-dependencies in the CMIP6 MME and down-weight models which are highly dependent on

other models appropriately.

4.2 Validation of the independence weighting

To test if model inter-dependence can correctly be inferred from model output in general, we first take a quantitative approach,405

somewhat different to the model (independence) weighting itself.
::::::::
Focusing

::
on

:::
the

::::::::::::
independence

:::::::
weights

::
in

:::::
figure

::
4
:::
one

::::
can

::::::
broadly

::::::::::
distinguish

::::
three

::::::
cases:

:::
(i)

::::::::
relatively

:::::::::::
independent

:::::::
models,

:::
(ii)

:::::::
clusters

::
of

:::::::
models

:::::
which

::::
are

:::::
quite

:::::::::
dependent,

::::
and
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Figure 5. Model “family tree ” for all 33 CMIP6 models used in this study similar to Knutti et al. (2013).
:::::
Models

::::::::
branching

::::::
further

::
to

::
the

:::
left

:::
are

::::
more

:::::::::
dependent,

:::::
models

::::::::
branching

::::::
further

:
to
:::

the
::::
right

:::
are

::::
more

::::::::::
independent.

:
Based on global, horizontally resolved tasCLIM

and pslCLIM in the period 1980-2014.
::
The

:::::::::::
independence

::::
shape

::::::::
parameter

:::
σS :

is
::::::::

indicated
::
as

:::::
dashed

::::::
vertical

::::
line,

::
an

::::::::
estimation

::
of

::::::
internal

:::::::
variability

::
as
::::

grey
:::::::
shading. Labels with the same colour indicate models with obvious dependencies such as shared components or same

origin (models with no clear dependencies are labelled in black).Weak relations such as remote “ancestors” are not colored together (e.g.,

BCC-CSM2-MR and CESM2).
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Figure 6. Similar to figure 4 but removing one variant
:::::::::::
initial-condition

::::::::
ensemble

::::::
member from (a) MIROC6 and (b) MPI-ESM1-2-HR and

adding it as separate model when calculating the independence weights (the “new” model is not shown in the plot). Models with obvious

dependencies to the “new” model
:::
have

::::
bold

:::::
labels (same as in

:::::::
equivalent

::
to
:
figure 5)have bold labels.

::
The

::::::
change

::
in

:::
the

:::::::
combined

::::::
weight

:::::
relative

::
to

:::
the

::::::
original

:::::
weight

::
is

:::::
shown

::
as

:::
blue

::::
bars

::::
using

:::
the

::::
right

::::
axis.
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:::
(iii)

:::::::
models

:::
for

:::::
which

:::
the

::::::::::::
independence

:::::::::
weighting

::::
does

:::
not

::::::
really

::::::::
influence

:::
the

:::::::::
weighting.

:::
To

::::::::
visualise

:::
and

:::::::
discuss

:::::
these

::::
cases

:::::::::
somewhat

::::::::::::
quantitatively

:::
we

:::::
show

:
a
:::::::
CMIP6

::::::
model

::::::
family

:::
tree

:::::::
similar

::
to

:::
the

:::::
work

:::
by

:::::::::::::::::::::::::
Masson and Knutti (2011) and

::::::::::::::::
Knutti et al. (2013).410

Using the same two diagnostics, namely horizontally resolved global temperature and sea level pressure climatologies (from

1980-2014) we apply a hierarchical clustering approach (section 2.7). Figure 5 shows the resulting “family tree ”
:::::
family

::::
tree of

CMIP6 models similar to the work by Masson and Knutti (2011) and Knutti et al. (2013). Models
:
In

::::
this

:::
tree

::::::
models

::::::
which

:::
are

::::::
closely

::::::
related

::::::
branch

::::::
further

::
to

:::
the

:::
left,

:::::
while

::::
very

::::::::::
independent

::::::
model

:::::::
clusters

:::::
branch

::::::
further

::
to
:::
the

:::::
right.

::::
The

:::::
mean

:::::::
distance

:::::::
between

:::
two

::::::::::::::
initial-condition

::::::::
members

::
of

:::
the

:::::
same

::
as

::
an

:::::::::
estimation

:::
for

:::
the

:::::::
internal

:::::::::
variability

::
in

:::
the

::::::::::
generalised

:::::::
distance

::
is415

:::::::
indicated

:::
as

::::
grey

:::::::
shading.

::::::
Model

::::::
which

::::
have

::
a
:::::::
distance

::::::
similar

:::
to

:::
this

:::::
value

:::::
(e.g.,

:::
the

::::
two

:::::::::
CanESM5

::::::
model

::::::::
versions)

:::
are

:::::::
basically

:::::::::::::::
indistinguishable.

::::
The

:::::::::::
independence

:::::
shape

:::::::::
parameter

::::
used

:::::::
through

:::
the

:::::::::
manuscript

:::::::::::
(σS = 0.54)

::
is

:::::
shown

:::
as

::::::
dashed

::::::
vertical

::::
line.

:
A
:::::::::::::

comprehensive
:::::::::::

investigation
:::

of
:::
the

::::::::
complex

::::::::::::::::
inter-dependencies

::::::
within

:::
the

:::::::::::
multi-model

::::::::
ensemble

::
in

::::
use

:::
and

:::::::
further

:::::::
between

::::::
models

:::::
from

:::
the

::::
same

:::::::::
institution

::
or

::
of

:::::::
similar

:::::
origin

::
is

::::::
beyond

:::
the

::::::
scope

::
of

:::
this

:::::
study

::::
and

:::
will

:::
be

::::::
subject

::
of

::::::
future420

:::::
work.

::::
Here

:::
we

::::
limit

::::::::
ourselves

::
to
::::::::

pointing
:::
out

::::::
several

::::
base

:::::::
features

::
of

:::
the

:::::::::::
output-based

:::::::::
clustering,

:::::
which

:::::
serve

::
as

::::::::::
indications

:::
that

::
it

:
is
::::::
skilful

::
in

:::::::::
identifying

:::::::::::::
inter-dependent

:::::::
models.

:::
The

::::::
labels

::
of

::::::
models with the same origin or

::::
with known shared compo-

nents are marked in the same colour , as this is
:
in

:::::
figure

::
5.
::::::
These

:::
two

::::::
factors

:::
are the most objective measure for a priori model

dependence we have. The information about the model components is taken from each models
:::::::
model’s description page on the

ES-DOC explorer (https://es-doc.org/cmip6/) as listed in table S3
::
S4 in the supplement.425

Figure 5 clearly shows that clustering models based on the selected diagnostics performs well:
::::::
models

::::
with

::::::
shared

::::::::::
components

::
or

::::
with

:::
the

::::
same

:::::
origin

:::::::::
(indicated

::
by

:::
the

:::::
same

::::::
colour)

:::
are

::::::
always

:::::::
grouped

::::::::
together.

:::::::
Looking

:::
into

::
a
::
bit

:::::
more

:::::
detail

:::
we

::::
find,

:::
for

:::::::
example,

::::
that

::::::
closely related models such as low and high resolution versions (MPI-ESM-2-LR and MPI-ESM-2-HR; CNRM-

CM6-1 and CNRM-CM6-1-HR) or versions with only one differing component (CESM2 and CESM2-WACCM; INM-CM5-0

and INM-CM4-8; both differing only in the atmosphere) are detected as being very similar. Both MIROC models, which have430

been identified as very independent based on figure 4are again ,
::
in
:::::
turn,

::
are

:
found to be very far away from each other and even

further away from all other models in the CMIP6 MME.

To investigate if the independence weighting correctly identifies and weights models based on their degree of inter-dependence

::::::::
translates

:::::
model

:::::::
distance

::::
into

::::::
weights

:
we now look at two models as examples: one model that performs well and is relatively

independent (MIROC6) and another that also performs well but is more dependent (MPI-ESM1-2-HR). Each has multiple en-435

semble members; we remove one member from each and add it to the MME as an additional model as detailed in section 2.7.

In the first case (figure 6a; MIROC6 which is among the least dependent models), the original weight is reduced by almost

1/2, which is close to what we would expect in the idealised case. All other models are unaffected by adding a duplicate

of MIROC6, even the other model from the same center, MIROC-ES2L which differs in atmospheric resolution and cumulus

treatment (Tatebe et al., 2019; Hajima et al., 2019). Based on the “family tree” shown in figure 5 this behaviour is not surprising:440

the two MIROC models are not only identified as the most independent models in the CMIP6 MME but also as very independent
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from each. While some of the components and parameterizations are similar, updates in parameterizations and in the tuning of

the parameters appear to be sufficient here to create a model that behaves quite differently.

The second case (figure 6b; MPI-ESM1-2-HR which is among the most dependent models) shows a very different picture.

The strongest effect on the original weight is found for the copied model itself, which is reduced by about 0.8
::::
20%, but also445

several other models are affected: MPI-ESM1-2-LR (reduced by 0.86), AWI-CM-1-1-MR (0.9), NESM3 (0.93), MRI-ESM2-0

(0.94), and CAMS-CSM1-0 (0.94). Looking into the these models in more detail, we conclude that the inter-dependencies

detected by our method can be traced to shared components in most cases: MPI-ESM1-2-LR is just the low resolution version

of MPI-ESM1-2-HR (run with a T63 atmosphere instead of T127 and a 1.5° ocean instead of 0.4°), AWI-CM-1-1-MR and

NESM3 share the atmospheric (ECHAM6.3) and similar land (JSBACH3.x) components, and CAMS-CSM1-0 shares a similar450

atmospheric (ECHAM5) component, while MRI-ESM2-0 does not have any obvious dependencies. Information about the

models can be found in their reference publications (Mauritsen et al., 2019; Gutjahr et al., 2019; Semmler et al., 2019; Yang

et al., 2020; Chen et al., 2019; Yukimoto et al., 2019) and on the ES-DOC explorer, which provides detailed information about

all model used in this study. The links to each models information page can be found in table S3
::
S4

:
in the supplementary

material.455

4.3 Applying weights to CMIP6 temperature projections and TCR

Figure 7 shows a timeseries of unweighted and weighted projections based on a weak (SSP1-2.6) and strong (SSP5-8.5) climate

change scenario. For both scenarios a clear shift in the mean towards less warming is visible, which is also reflected in the

upper uncertainty bound. Notably, however, the lower bound hardly changes, leading to a reduction in projection uncertainty

in total. This becomes even clearer when investigating the two 20-year periods, reflecting mid- and end-of-century conditions460

(figure 8a and table S2
::
S3).

Based on these results, warming exceeding 5 °C by the end of the century is very unlikely even under the strongest climate

change scenario SSP5-8.5. The mean warming for this case is shifted downward to about 3.7 °C and the 66% (likely) and 90%

ranges are reduced by 12% and 30%, respectively. For SSP1-2.6 in the end-of-century period as well as both SSPs in the mid-

century period, reductions in the mean warming of about 0.1 °C
:::::::::::::
0.1 °C to 0.2 °C are found. The likely range is reduced by about465

30%
:::::::::::
20% to 30% in these three cases. A summary of all

::::::
weights

:::
and

::::::::
warming

:::::
values

:::
for

:::
all

::::::
models

::
as

::::
well

::
as

::
all

:
statistics can

be found in table
::::
tables S2

:::
and

::
S3

:
in the supplement. Recent studies that use historical temperature trend as an observational

constraint for future warming lead to similar conclusions, with lower constrained warming compared to unconstrained (both in

the mean and upper percentiles of the distributions) (e.g., Tokarska et al., 2020; Nijsse et al., 2020)
:::::::::::::::::::::::::::::::::::::
(e.g., Nijsse et al., 2020; Tokarska et al., 2020).

To investigate the influence of remaining internal variability in our combination of diagnostics on the weighting we also470

perform a bootstrap test. Selecting only one random member per model (for models with more than one ensemble member)

we calculate weights and the corresponding unweighted and weighted temperature change distributions. This is repeated 100

times, providing uncertainty estimates for both the unweighted and weighted percentiles. The mean values of the weighted

percentiles taken over all 100 bootstrap samples are very similar to the values from the weighting based on the full MME

(including all ensemble members; see figure S3) confirming the robustness of our approach.475
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Figure 7. Timeseries of temperature change (relative to 1995-2014) for unweighted (gray) and weighted (colored) CMIP6 mean (lines) and

likely (66%) range (shading). Three observational datasets are also shown in black; note that BEST is not used to inform the weighting and

is only shown for comparison here.

We also apply weights to TCR estimates in figure 8b. For four models included in the weighting of temperature change we do

not yet have all information available to estimate TCR (FGOALS-g3, CanESM5-CanOE, FIO-ESM-2-0, MCM-UA-1-0); these

are omitted in figure 8b. For the remaining 29 models we find a
:::::
finding

:::
an unweighted mean TCR value of about 2 °C with a

likely range of 1.6 °C to 2.6 °C
:::::::::::::
1.6 °C to 2.5 °C. Weighting by historical model performance and independence constrains this

to 1.9 °C (1.6 °C to 2.1 °C
:::::::::::::
1.6 °C to 2.2 °C), a reduction of 46%

::::
36% in the likely range. These values are consistent with re-480

cent studies based on emergent constraints which estimate the likely range of TCR to be 1.5 °C to 2.2 °C
:::::::::::::
1.3 °C to 2.1 °C (Nijsse

et al., 2020) and 1.2 °C to 2.0 °C (Tokarska et al., 2020). They are also consistent but substantially more narrow than the likely

range from the fifth assessment report of the IPCC (IPCC, 2013) based on CMIP5: 1 °C to 2.5 °C.

Figure 8b clearly shows that almost all models with higher than equal weights lie within the likely range, and only one model

lies above it (KACE-1-0-G
:::::::::::
FIO-ESM-2-0). This is a strong indication that TCR values beyond about 2.5 °C are unlikely when485

weighting based on several diagnostics and when accounting for model independence. The weighting also largely reconciles

CMIP6 with 5 by giving less weight to some of the models in CMIP6 that warm most strongly.
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Figure 8. (a) Unweighted (gray) and weighted (colors) temperature change (relative to 1995-2014) for both periods and scenarios. (b)

Unweighted (gray) and weighted (green) Transient Climate Response (TCR). The dots show individual models as labelled, with the dot size

indicating the weight. The horizontal dot position is arbitrary.

5 Discussion and Conclusions

We have used the Climate model Weighting by Independence and Performance (ClimWIP) method to constrain projections

of future global temperature change from the CMIP6 multi-model ensemble. Based on a leave-one-out perfect model test, a490

combination of five global, horizontally-resolved diagnostic fields (anomaly, variance, and trend of surface air temperature and

anomaly and variance of sea level pressure) was selected to inform the performance weighting. The skill of weighting based on

this selection was tested and confirmed in a second perfect model test using CMIP5 models as pseudo-observations. Our results

clearly show the usefulness of this weighting approach in translating model spread into reliable estimates of future changes

and in particular into uncertainties that are consistent with observations of present day climate and observed trends.495

We also discussed the remaining risk for decreasing skill compared to the raw distribution which is a crucial question in

all weighting or constraining methods. We show the importance of using a balanced combination of climate system features

(i.e., diagnostics) relevant for the target to inform the weighting to minimise the risk for skill decreases. This guards against

the possibility of a model “accidentally” fitting observations for a single diagnostic while being far away from them in several

others (and hence possibly not providing a skilful projection of the target variable).500

By adding copies of existing models into the CMIP6 multi-model ensemble we verified the effect of the independence

weighting, showing that models get correctly down-weighted based on an estimate of dependence derived from their output.

To inform the independence weighting we used two global, horizontally resolved fields (climatology of surface air temperature

21



and sea level pressure) which we showed to allow a clear clustering of models with obvious inter-dependencies using a CMIP6

“family tree”.505

From these tests we conclude that ClimWIP is skilful in weighting global mean temperature change from CMIP6 using the

selected setup. We hence use it to calculate weights for each CMIP6 model and apply them in order to obtain probabilistic

estimates of future changes. Compared to the unweighted case these results clearly show that the CMIP6 models which lead

to the highest warming are less probable, confirming earlier studies (e.g., Tokarska et al., 2020; Nijsse et al., 2020). We find

a weighted mean global temperature change (relative to 1995-2014) of 3.7 °C with a likely (66%) range of 3.1 °C to 4.6 °C510

by the end of the century when following SSP5-8.5. With ambitious climate mitigation (SSP1-2.6) a weighted mean change of

1 °C (likely range: 0.7 °C to 1.4 °C) is projected for the same period.

On the policy level, this highlights the need for quick and decisive climate action to achieve the Paris climate targets. For

climate modeling on the other hand, this approach demonstrates the potential to narrow the uncertainties in CMIP6 projections,

particular on the upper bound. The large investments in climate model development have so far not led to reduced model spread515

in the raw ensemble, but the use of climatological information and emergent transient constraints has the potential to provide

more robust projections with reduced uncertainties, that at the same time are more consistent with observed trends, thus

maximizing the value of climate model information for impacts and adaptation.
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Author contributions. LB, ALM, and RK were involved in conceiving the study. LB did the analysis and created the plots substantially520

supported by AGP. LB wrote the manuscript with contributions from all authors. The ClimWIP package was implemented by LB and RL;

AGP wrote the script used to create tables S4 and S6.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. The authors thank Martin B. Stolpe for providing the TCR values
:
as
::::
well

::
as

:::::
Martin

::
B.

:::::
Stolpe and Katarzyna B. Tokarska

for helpful discussions and comments on the manuscript. The EUCP project is funded by the European Commission through the Horizon525

2020 Programme for Research and Innovation: Grant Agreement 776613. Ruth Lorenz was funded by the European Union’s Horizon 2020

Research and Innovation program: Grant Agreement 641816 (CRESCENDO). Flavio Lehner is
:::
was supported by a Swiss NSF Ambizione

Fellowship (Project PZ00P2_174128). This material is partly based upon work supported by the National Center for Atmospheric Research,

which is a major facility sponsored by the National Science Foundation (NSF) under Cooperative Agreement No. 1947282, and by the

Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department530

of Energy’s Office of Biological & Environmental Research (BER) via NSF IA 1844590. This study was generated using Copernicus Climate

22

https://github.com/lukasbrunner/ClimWIP.git


Change Service Information 2020 from ERA5. The authors thank NASA for providing MERRA2 and Berkeley Earth for providing BEST.

We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and

promoted CMIP5 and 6. We thank the climate modeling groups for producing and making available their model output, the Earth System

Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP5 and 6 and ESGF.535

:
A
:::
list

::
of

::
all

::::::
CMIP6

::::
runs

:::
and

:::
their

::::::::
references

:::
can

:::
be

::::
found

::
in

::::
table

::
S6

::
in
:::
the

:::::::::
supplement.

:
We thank all contributors to the numerous Python

packages which were crucial for this work, in particular the xarray project (http://xarray.pydata.org).
::::

The
::::::
authors

::::
thank

::::
two

:::::::::
anonymous

:::::::
reviewers

::
for

::::
their

::::::
helpful

::::::::
comments

::
on

:::
our

::::
work.

23

http://xarray.pydata.org


References

Abramowitz, G. and Bishop, C. H.: Climate model dependence and the ensemble dependence transformation of CMIP projections, J. Clim.,540

28, 2332–2348, https://doi.org/10.1175/JCLI-D-14-00364.1, 2015.

Abramowitz, G., Herger, N., Gutmann, E., Hammerling, D., Knutti, R., Leduc, M., Lorenz, R., Pincus, R., and Schmidt, G. A.: ESD Reviews:

Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing, Earth Syst. Dyn., 10, 91–105,

https://doi.org/10.5194/esd-10-91-2019, https://www.earth-syst-dynam.net/10/91/2019/, 2019.

Amos, M., Young, P. J., Hosking, J. S., Lamarque, J.-F., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bekki, S., Deushi, M., Jöckel,545

P., Kinnison, D., Kirner, O., Kunze, M., Marchand, M., Plummer, D. A., Saint-Martin, D., Sudo, K., Tilmes, S., and Yamashita, Y.:

Projecting ozone hole recovery using an ensemble of chemistry-climate models weighted by model performance and independence, At-

mospheric Chemistry and Physics Discussions, 2020, 1–26, https://doi.org/10.5194/acp-2020-86, https://www.atmos-chem-phys-discuss.

net/acp-2020-86/, 2020.

Andrews, T., Andrews, M. B., Bodas-Salcedo, A., Jones, G. S., Kuhlbrodt, T., Manners, J., Menary, M. B., Ridley, J., Ringer, M. A., Sellar,550

A. A., Senior, C. A., and Tang, Y.: Forcings, Feedbacks, and Climate Sensitivity in HadGEM3-GC3.1 and UKESM1, Journal of Advances

in Modeling Earth Systems, 11, 4377–4394, https://doi.org/10.1029/2019MS001866, 2019.

Annan, J. D. and Hargreaves, J. C.: On the meaning of independence in climate science, Earth System Dynamics, 8, 211–224,

https://doi.org/10.5194/esd-8-211-2017, 2017.

Bishop, C. H. and Abramowitz, G.: Climate model dependence and the replicate Earth paradigm, Climate Dynamics, 41, 885–900,555

https://doi.org/10.1007/s00382-012-1610-y, 2013.

Boé, J.: Interdependency in Multimodel Climate Projections: Component Replication and Result Similarity, Geophysical Research Letters,

45, 2771–2779, https://doi.org/10.1002/2017GL076829, http://doi.wiley.com/10.1002/2017GL076829, 2018.

Boé, J. and Terray, L.: Can metric-based approaches really improve multi-model climate projections? The case of summer temperature

change in France, Climate Dynamics, 45, 1913–1928, https://doi.org/10.1007/s00382-014-2445-5, 2015.560

Brunner, L., Lorenz, R., Zumwald, M., and Knutti, R.: Quantifying uncertainty in European climate projections using combined performance-

independence weighting, Environmental Research Letters, 14, 124 010, https://doi.org/10.1088/1748-9326/ab492f, http://dx.doi.org/10.

1038/ngeo3017, 2019.

Brunner, L., Hauser, M., Lorenz, R., and Beyerle, U.: The ETH Zurich CMIP6 next generation archive : technical documentation,

https://doi.org/10.5281/zenodo.3734128, 2020a.565

Brunner, L., McSweeney, C., Befort, D. J., O’Reilly, C., Booth, B., Harris, G., Lowe, J., Benassi, M., Coppola, E., Nogherotto, R., Hegerl,

G. C., Knutti, R., Lenderink, G., de Vries, H., Qasmi, S., Ribes, A., and Undorf, S.: Quantifying uncertainty in projections of future

European climate: a multi-model multi-method approach, Journal of Climate, 2020b.

C3S: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, https://doi.org/10.24381/cds.f17050d7, accessed:

26.3.2020, 2017.570

Chen, X., Guo, Z., Zhou, T., Li, J., Rong, X., Xin, Y., Chen, H., and Su, J.: Climate Sensitivity and Feedbacks of a New Coupled

Model CAMS-CSM to Idealized CO 2 Forcing: A Comparison with CMIP5 Models, Journal of Meteorological Research, 33, 31–45,

https://doi.org/10.1007/s13351-019-8074-5, 2019.

Cowtan, K.: The Climate Data Guide: Global surface temperatures: BEST: Berkeley Earth Surface Temperatures, https://climatedataguide.

ucar.edu/climate-data/global-surface-temperatures-best-berkeley-earth-surface-temperatures, last modified 09 Sep 2019, 2019.575

24

https://doi.org/10.1175/JCLI-D-14-00364.1
https://doi.org/10.5194/esd-10-91-2019
https://www.earth-syst-dynam.net/10/91/2019/
https://doi.org/10.5194/acp-2020-86
https://www.atmos-chem-phys-discuss.net/acp-2020-86/
https://www.atmos-chem-phys-discuss.net/acp-2020-86/
https://www.atmos-chem-phys-discuss.net/acp-2020-86/
https://doi.org/10.1029/2019MS001866
https://doi.org/10.5194/esd-8-211-2017
https://doi.org/10.1007/s00382-012-1610-y
https://doi.org/10.1002/2017GL076829
http://doi.wiley.com/10.1002/2017GL076829
https://doi.org/10.1007/s00382-014-2445-5
https://doi.org/10.1088/1748-9326/ab492f
http://dx.doi.org/10.1038/ngeo3017
http://dx.doi.org/10.1038/ngeo3017
http://dx.doi.org/10.1038/ngeo3017
https://doi.org/10.5281/zenodo.3734128
https://doi.org/10.24381/cds.f17050d7
https://doi.org/10.1007/s13351-019-8074-5
https://climatedataguide.ucar.edu/climate-data/global-surface-temperatures-best-berkeley-earth-surface-temperatures
https://climatedataguide.ucar.edu/climate-data/global-surface-temperatures-best-berkeley-earth-surface-temperatures
https://climatedataguide.ucar.edu/climate-data/global-surface-temperatures-best-berkeley-earth-surface-temperatures


Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate change projections: the role of internal variability, Clim. Dyn.,

38, 527–546, https://doi.org/10.1007/s00382-010-0977-x, http://link.springer.com/10.1007/s00382-010-0977-x, 2012.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model

Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geoscientific Model Development, 9, 1937–1958,

https://doi.org/10.5194/gmd-9-1937-2016, https://www.geosci-model-dev.net/9/1937/2016/, 2016.580

Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G., Caldwell, P., Collins, W. D., Gier, B. K., Hall, A. D., Hoffman, F. M.,

Hurtt, G. C., Jahn, A., Jones, C. D., Klein, S. A., Krasting, J. P., Kwiatkowski, L., Lorenz, R., Maloney, E., Meehl, G. A., Pendergrass,

A. G., Pincus, R., Ruane, A. C., Russell, J. L., Sanderson, B. M., Santer, B. D., Sherwood, S. C., Simpson, I. R., Stouffer, R. J., and

Williamson, M. S.: Taking climate model evaluation to the next level, Nature Climate Change, 9, 102–110, https://doi.org/10.1038/s41558-

018-0355-y, http://dx.doi.org/10.1038/s41558-018-0355-y, 2019.585

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler,

P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.: Evaluation of Climate Models, in: Climate Change 2013:

The Physical Science Basis. Contribution of Working Group I to the Fifth Assess- ment Report of the Intergovernmental Panel on Climate

Change, edited by Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.,

Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.590

Forster, P. M., Andrews, T., Good, P., Gregory, J. M., Jackson, L. S., and Zelinka, M.: Evaluating adjusted forcing and model spread for

historical and future scenarios in the CMIP5 generation of climate models, Journal of Geophysical Research Atmospheres, 118, 1139–

1150, https://doi.org/10.1002/jgrd.50174, 2013.

Forster, P. M., Maycock, A. C., McKenna, C. M., and Smith, C. J.: Latest climate models confirm need for urgent mitigation, Nature Climate

Change, 10, 7–10, https://doi.org/10.1038/s41558-019-0660-0, 2020.595

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R.,

Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G. K., Koster, R.,

Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and

Zhao, B.: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2), Journal of Climate, 30, 5419–5454,

https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.600

Gettelman, A., Hannay, C., Bacmeister, J. T., Neale, R. B., Pendergrass, A. G., Danabasoglu, G., Lamarque, J., Fasullo, J. T., Bailey, D. A.,

Lawrence, D. M., and Mills, M. J.: High Climate Sensitivity in the Community Earth System Model Version 2 (CESM2), Geophysical Re-

search Letters, 46, 8329–8337, https://doi.org/10.1029/2019GL083978, https://onlinelibrary.wiley.com/doi/abs/10.1029/2019GL083978,

2019.

Giorgi, F. and Coppola, E.: Does the model regional bias affect the projected regional climate change? An analysis of global model projec-605

tions: A letter, Climatic Change, 100, 787–795, https://doi.org/10.1007/s10584-010-9864-z, 2010.

Giorgi, F. and Mearns, L. O.: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM sim-

ulations via the "Reliability Ensemble Averaging" (REA) method, Journal of Climate, 15, 1141–1158, https://doi.org/10.1175/1520-

0442(2002)015<1141:COAURA>2.0.CO;2, 2002.

Gleckler, P. J., Taylor, K. E., and Doutriaux, C.: Performance metrics for climate models, J. Geophys. Res. Atmos., 113, 1–20,610

https://doi.org/10.1029/2007JD008972, 2008.

GMAO: MERRA-2 tavg1_2d_slv_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4, https://

disc.gsfc.nasa.gov/api/jobs/results/5e7b68e9ed720b5795af914a, accessed: 25.3.2020, 2015a.

25

https://doi.org/10.1007/s00382-010-0977-x
http://link.springer.com/10.1007/s00382-010-0977-x
https://doi.org/10.5194/gmd-9-1937-2016
https://www.geosci-model-dev.net/9/1937/2016/
https://doi.org/10.1038/s41558-018-0355-y
https://doi.org/10.1038/s41558-018-0355-y
https://doi.org/10.1038/s41558-018-0355-y
http://dx.doi.org/10.1038/s41558-018-0355-y
https://doi.org/10.1002/jgrd.50174
https://doi.org/10.1038/s41558-019-0660-0
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1029/2019GL083978
https://onlinelibrary.wiley.com/doi/abs/10.1029/ 2019GL083978
https://doi.org/10.1007/s10584-010-9864-z
https://doi.org/10.1175/1520-0442(2002)015%3C1141:COAURA%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015%3C1141:COAURA%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015%3C1141:COAURA%3E2.0.CO;2
https://doi.org/10.1029/2007JD008972
https://disc.gsfc.nasa.gov/api/jobs/results/ 5e7b68e9ed720b5795af914a
https://disc.gsfc.nasa.gov/api/jobs/results/ 5e7b68e9ed720b5795af914a
https://disc.gsfc.nasa.gov/api/jobs/results/ 5e7b68e9ed720b5795af914a


GMAO: MERRA-2 statD_2d_slv_Nx: 2d,Daily,Aggregated Statistics,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4, https:

//disc.gsfc.nasa.gov/api/jobs/results/5e7b648f4900ab500326d17e, accessed: 25.3.2020, 2015b.615

Golaz, J. C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., Abeshu, G., Anantharaj, V., Asay-Davis, X. S.,

Bader, D. C., Baldwin, S. A., Bisht, G., Bogenschutz, P. A., Branstetter, M., Brunke, M. A., Brus, S. R., Burrows, S. M., Cameron-Smith,

P. J., Donahue, A. S., Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M., Foucar, J. G., Fyke, J. G., Griffin, B. M., Hannay, C.,

Harrop, B. E., Hoffman, M. J., Hunke, E. C., Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones, P. W., Keen, N. D., Klein, S. A., Larson,

V. E., Leung, L. R., Li, H. Y., Lin, W., Lipscomb, W. H., Ma, P. L., Mahajan, S., Maltrud, M. E., Mametjanov, A., McClean, J. L., McCoy,620

R. B., Neale, R. B., Price, S. F., Qian, Y., Rasch, P. J., Reeves Eyre, J. E., Riley, W. J., Ringler, T. D., Roberts, A. F., Roesler, E. L.,

Salinger, A. G., Shaheen, Z., Shi, X., Singh, B., Tang, J., Taylor, M. A., Thornton, P. E., Turner, A. K., Veneziani, M., Wan, H., Wang, H.,

Wang, S., Williams, D. N., Wolfram, P. J., Worley, P. H., Xie, S., Yang, Y., Yoon, J. H., Zelinka, M. D., Zender, C. S., Zeng, X., Zhang, C.,

Zhang, K., Zhang, Y., Zheng, X., Zhou, T., and Zhu, Q.: The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard

Resolution, Journal of Advances in Modeling Earth Systems, 11, 2089–2129, https://doi.org/10.1029/2018MS001603, 2019.625

Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., Von Storch, J. S., Brüggemann, N., Haak, H., and Stössel, A.: Max Planck

Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP), Geoscientific Model

Development, 12, 3241–3281, https://doi.org/10.5194/gmd-12-3241-2019, 2019.

Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A.,

Takata, K., Ogochi, K., Watanabe, S., and Kawamiya, M.: Description of the MIROC-ES2L Earth system model and evaluation of its630

climate–biogeochemical processes and feedbacks, Geoscientific Model Development Discussions, 5, 1–73, https://doi.org/10.5194/gmd-

2019-275, 2019.

Hawkins, E. and Sutton, R.: The Potential to Narrow Uncertainty in Regional Climate Predictions, Bulletin of the American Meteorological

Society, 90, 1095–1108, https://doi.org/10.1175/2009BAMS2607.1, http://journals.ametsoc.org/doi/10.1175/2009BAMS2607.1, 2009.

Herger, N., Abramowitz, G., Knutti, R., Angélil, O., Lehmann, K., and Sanderson, B. M.: Selecting a climate model subset to optimise key635

ensemble properties, Earth Syst. Dyn., 9, 135–151, https://doi.org/10.5194/esd-9-135-2018, 2018a.

Herger, N., Angélil, O., Abramowitz, G., Donat, M., Stone, D., and Lehmann, K.: Calibrating Climate Model Ensembles for Assessing

Extremes in a Changing Climate, J. Geophys. Res. Atmos., 123, 5988–6004, https://doi.org/10.1029/2018JD028549, 2018b.

Hersbach, H.: Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems, Weather and Forecast-

ing, 15, 559–570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2, http://journals.ametsoc.org/doi/abs/10.1175/640

1520-0434%282000%29015%3C0559%3ADOTCRP%3E2.0.CO%3B2, 2000.

IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovern-

mental Panel on Climate Change [Stocker,, 9, Cambridge University Press, 2013.

Jiménez-de-la Cuesta, D. and Mauritsen, T.: Emergent constraints on Earth’s transient and equilibrium response to doubled CO2 from post-

1970s global warming, Nature Geoscience, 2015, https://doi.org/10.1038/s41561-019-0463-y, 2019.645

Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M.,

Kushner, P., Lamarque, J. F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein,

M.: The community earth system model (CESM) large ensemble project : A community resource for studying climate change in the

presence of internal climate variability, Bulletin of the American Meteorological Society, 96, 1333–1349, https://doi.org/10.1175/BAMS-

D-13-00255.1, 2015.650

Knutti, R.: The end of model democracy?, Clim. Change, 102, 395–404, https://doi.org/10.1007/s10584-010-9800-2, 2010.

26

https://disc.gsfc.nasa.gov/api/jobs/results/ 5e7b648f4900ab500326d17e
https://disc.gsfc.nasa.gov/api/jobs/results/ 5e7b648f4900ab500326d17e
https://disc.gsfc.nasa.gov/api/jobs/results/ 5e7b648f4900ab500326d17e
https://doi.org/10.1029/2018MS001603
https://doi.org/10.5194/gmd-12-3241-2019
https://doi.org/10.5194/gmd-2019-275
https://doi.org/10.5194/gmd-2019-275
https://doi.org/10.5194/gmd-2019-275
https://doi.org/10.1175/2009BAMS2607.1
http://journals.ametsoc.org/doi/10.1175/2009BAMS2607.1
https://doi.org/10.5194/esd-9-135-2018
https://doi.org/10.1029/2018JD028549
https://doi.org/10.1175/1520-0434(2000)015%3C0559:DOTCRP%3E2.0.CO;2
http://journals.ametsoc.org/doi/abs/10.1175/1520- 0434%282000%29015%3C0559%3ADOTCRP%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520- 0434%282000%29015%3C0559%3ADOTCRP%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520- 0434%282000%29015%3C0559%3ADOTCRP%3E2.0.CO%3B2
https://doi.org/10.1038/s41561-019-0463-y
https://doi.org/10.1175/BAMS-D-13-00255.1
https://doi.org/10.1175/BAMS-D-13-00255.1
https://doi.org/10.1175/BAMS-D-13-00255.1
https://doi.org/10.1007/s10584-010-9800-2


Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. A.: Challenges in combining projections from multiple climate models, Journal

of Climate, 23, 2739–2758, https://doi.org/10.1175/2009JCLI3361.1, 2010.

Knutti, R., Masson, D., and Gettelman, A.: Climate model genealogy: Generation CMIP5 and how we got there, Geophysical Research

Letters, 40, 1194–1199, https://doi.org/10.1002/grl.50256, 2013.655

Knutti, R., Rugenstein, M. A., and Hegerl, G. C.: Beyond equilibrium climate sensitivity, Nature Geoscience, 10, 727–736,

https://doi.org/10.1038/NGEO3017, http://dx.doi.org/10.1038/ngeo3017, 2017a.
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