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S1 Summary

This supplementary material includes additional method details, as well as tables and figures supporting the findings presented

in the main paper.

– Section S2: Additional information for the calculation of performance diagnostics

– Section S3: Additional information for the performance shape parameter (σD) calibration5

– Section S4: Additional information for the independence shape parameter (σS) calibration

– Section S5: Additional information for the hierarchical clustering

– Section S6: Additional tables

– Table S1: Table of performance shape parameter (σD) values as calculated by the weighting method.

– Table S2: Table of weights, TCR, and warming per model.10

– Table S3: Table of temperature and TCR statistics for the unweighted and weighted distributions.

– Table S4 [external .csv file]: List of all CMIP6 models and ensemble members used in this study as well as their

institutions and DOIs.

– Table S5 [external .csv file]: List of all CMIP5 models used in the study.

– Table S6 [external .csv file]: List of all CMIP6 files used in the study including version date and tracking ID for15

tractability. Model issues are constantly updated and reported on the ES-DOC Errata page (https://errata.es-doc.

org/static/pid.html). They can be accessed by searching for the tracking ID. For multiple version dates with the

same tracking ID (in cases where more than one file exists for a given setting) the most recent version date is

relevant.
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– Section S7: Additional figures20

– Figure S1: Schematic of the performance shape parameter calibration.

– Figure S2: Extended figure 2 showing all CMIP5 models.

– Figure S3: Extended figure 3b showing all four combinations of scenarios and time periods.

– Figure S4: Extended figure 8a showing distributions from a bootstrap approach.

S2 Additional information for the calculation of performance diagnostics25

For a variable Xt
l which depends on a rolling horizontal index l = l (lat, lon) and a time index t the time aggregations are

calculated as follows. Climatology:

XCLIM
l =

1

t2 − t1

t2∑
t=t1

(
Xt

l

)
, (1)

Anomaly:

XANOM
l =XCLIM

l −
∑
l

(
wlX

CLIM
l

)
, (2)30

with
∑

lwl = 1 being the area weights for each grid cell. Trend:

XTREND
l = TRENDt2

t=t1

(
Xt

l

)
, (3)

with the TREND operator extracting the linear trend between t1 and t2 using ordinary least squares. Standard deviation:

XSTD
l = STDDEVt2

t=t1

(
Xt

l − t ∗XTREND
l

)
, (4)

with the STDDEV operator calculating the temporal standard deviation (1/(N − 1)
∑N

l (xl − x̄)2)1/2 from (temporally)35

de-trended data. A diagnostic is then calculated as the area weighted root-mean-squared error between a model and the obser-

vations:

d=

√∑
l

wl

(
XAGG, Model

l −XAGG, Obs
l

)2
, (5)

with AGG denoting one of the time aggregations (CLIM, ANOM, TREND, or STD). So far we have used a notation which

skipped some dependencies of d (and X) for simplicity. For the next steps we will generalise it to include the dependence on40
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the model index i and the initial-condition member index k, hence d= dki . Like stated in equation (2) in the main paper, a

mean diagnostic per model i is then given by:

d′i =

∑K
k d

k
i

Ki
(6)

Finally, consider multiple diagnostics indicated by the index a, which denotes the combination of variable X and time

aggregation AGG (e.g., tasCLIM), hence d′i = d′ai . The generalised distance Di is then given as the weighted mean of the45

diagnostics, where each diagnostic is normalised by its median over all models:

Di =
∑
a

wad
a
i

MEDIANi (dai )
, (7)

with
∑

awa = 1 being the weights for each diagnostic (see, e.g., figure 1 in the main paper).

S3 Additional information for the performance shape parameter (σD) calibration

The performance shape parameter σD is a constant that translates the observation-model distances into model weights (via50

equation (1) in the main paper). While different approaches exist to estimate this parameter, we here use a target specific

calibration. This means that we use model information from the target period (which in our case is in the future) during the

estimation process in order to avoid overconfident weighted projections for the selected target. Therefore, models can receive

different weights for different targets (such as mid-century temperature change under SSP1-2.6 change versus end-of-century

temperature change under SSP5-8.5) even though the same diagnostics are used in the historical period. This reflects the55

different levels of confidence based on the properties of the target we are interested in. Crucially, however, the rank of the

models (i.e., the order from best to worst model in the ensemble) is the same in every case and only the “strength” of the

weighting differs.

A schematic of the performance shape parameter (σD) calibration is shown in figure S1. A range of different sigma values

are tested iteratively (ranging from 20 % to 200 % of the median of the generalised model-observation distance Di) and the60

smallest value (i.e., strongest weighting) for which 80 % of perfect models fall within the 10-90 percentile range of the weighted

target distribution is selected (Knutti et al., 2017). The σD values for all combinations of diagnostics and targets investigated

in the main paper are summarised in table S1.

S4 Additional information for the independence shape parameter (σS) calibration

The independence shape parameter σS is a constant that translates the model-model distances into weights (via equation (1)).65

Similar to σD different approaches exist to determine an ideal value for σS (see, e.g., Lorenz et al., 2018; Brunner et al., 2019;

Merrifield et al., 2020). Pragmatically speaking, the aim is to make sure that initial-condition ensemble members of a model are
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Multi-model ensemble

Remove all members of

model mj from the ensemble

Iterate over sigmas

Iterate over models

Calculate the distances di 6=j to

this model (for each diagnostic)

Average initial-condition member

distances (Eq. (2) in the main paper)

Calculate the generalized dis-

tance Di 6=j and the weights per

model for a given sigma (Eq. (1))

Test if the removed model mj lies

in the 80 % range of the weighted

distribution in the target period

Test if the above is true

for at least 80 % of models

Select the smallest sigma for

which the above is fulfilled

Figure S1. Schematic of the performance shape parameter calibration
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Table S1. Model performance shape parameter σD for different target periods (sub-tables), SSPs (rows), and trend importance (columns) as

well as the respective mean values. The mean value of 50% highlighted in bold font is used throughout the manuscript.

2041-2060 0% 33% 50% 66% 100% Mean

SSP126 0.64 0.60 0.58 0.63 0.93 0.68

SSP585 0.47 0.37 0.35 0.31 0.29 0.36

Mean 0.55 0.48 0.46 0.47 0.61 0.52

2081-2000 0% 33% 50% 66% 100% Mean

SSP126 0.55 0.44 0.39 0.42 0.32 0.42

SSP585 0.47 0.37 0.39 0.67 1.20 0.62

Mean 0.51 0.40 0.39 0.55 0.76 0.52

Mean 0% 33% 50% 66% 100% Mean

SSP126 0.60 0.52 0.48 0.52 0.62 0.55

SSP585 0.47 0.37 0.37 0.49 0.74 0.49

Mean 0.53 0.44 0.43 0.51 0.68 0.52

recognised as copies (see figure 6 and corresponding discussion in the main paper), partly dependent models receive reduced

weighting based on their similarity to other models in the ensemble and independent models are identified as such. To estimate

σS we here follow the approach detailed in section 3 of the appendix of Brunner et al. (2019).70

The resulting value we find is σS = 0.54. To put this in context we briefly look into the composition of the multi-model

ensemble used: it consists of 33 different models with up to 50 realisations and a total of 129 runs. The median of the generalised

distance between two initial-condition ensemble members of the same model (which differ only due to internal variability) is

about 0.12. The median of the generalised distance between two models (including models from the same institutions) is about

1.09. Looking at only two initial-condition ensemble members of the same model (M = 1,2), which we here take to have the75

typical distance (0.12), the pure independence weighting becomes (derived from equation (1) in the main paper):

wind
i =

1

1 +
∑M

j 6=i e
−
(
Sij
σS

)2 =
1

1 + e−( 0.12
0.54 )

2 =
1

1 + 0.952
= 0.512, (8)

which is close to 1
2 which we would expect for the idealised case. The independence weight for two different models taken

to have the typical distance (1.09), in turn, becomes

wind
i =

1

1 + e−( 1.09
0.54 )

2 =
1

1 + 0.017
= 0.983, (9)80
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which would identify them as mostly independent. As mentioned in the main paper it is important to remind ourselves

that the definition of independence used here does not hold in a purely statistical sense. It rather aims at reducing obvious

inter-dependencies between models based on their output while assuming that the majority of models (after averaging initial-

condition members) is mostly independent.

S5 Additional information for the hierarchical clustering85

Here a short description of the hierarchical clustering used for creating the CMIP6 “family tree” in figure 5 of the main

manuscript is given. We use an implementation from the Python SciPy package (https://docs.scipy.org/doc/scipy/reference/

generated/scipy.cluster.hierarchy.linkage.html), which is based on work by Müllner (2011).

Consider an example distance matrix of four models A, B, C, and D with distances: A-B: 1, A-C: 3, A-D: 6, B-C: 2, B-D:

5, and C-D: 6. The first cluster is formed by the two models with the smallest distance A and B. Since we use the “average”90

method the distance of this cluster to the remaining models is the average of this elements: AB-C: 2.5 (mean of A-C and

B-C) and AB-D: 5.5. The next cluster is formed by the now two closest “clusters” AB-C. This process is repeated until all

models are connected. For figure 5 in the main paper the models then are sorted by decreasing number of branches from top to

bottom. This sorting does not change the results and is only done for visual reasons; the order of models in the initial clusters

is arbitrary.95
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S6 Additional tables

Table S2. List of CMIP6 models used including their weight, Transient Climate Response (TCR), and warming relative to the 1995-2014

baseline. The colours are locked to the values. Weights are coloured relative to equal weighting (which is about 0.03): x0.5 to x1.5 (white),

up to x2 (lightest red), x2.5, x3, x3.5, and above (darkest red); equivalent for models with less than equal weight. TCR is coloured equivalent

to figure 4 in the main paper and the values are taken from Tokarska et al. (2020), updated for more models.

2041-2060 2081-2100

Model Weight TCR SSP1-2.6 SSP5-8.5 SSP1-2.6 SSP5-8.5

ACCESS-CM2 0.0499 2.11 °C 1.62 °C 2.08 °C 1.89 °C 4.85 °C

ACCESS-ESM1-5 0.0358 1.95 °C 1.15 °C 1.80 °C 1.34 °C 3.98 °C

AWI-CM-1-1-MR 0.0436 2.07 °C 0.92 °C 1.46 °C 0.92 °C 3.62 °C

BCC-CSM2-MR 0.0354 1.5 °C 0.98 °C 1.69 °C 0.89 °C 3.31 °C

CAMS-CSM1-0 0.0507 1.75 °C 0.60 °C 1.03 °C 0.68 °C 2.51 °C

CanESM5-CanOE 0.0019 2.64 °C 1.54 °C 2.55 °C 1.62 °C 5.82 °C

CanESM5 0.0013 2.66 °C 1.50 °C 2.51 °C 1.59 °C 5.79 °C

CESM2-WACCM 0.0106 1.98 °C 1.28 °C 1.93 °C 1.50 °C 4.78 °C

CESM2 0.0140 2.06 °C 1.21 °C 1.98 °C 1.43 °C 4.74 °C

CNRM-CM6-1-HR 0.0218 2.47 °C 1.46 °C 1.94 °C 1.71 °C 4.76 °C

CNRM-CM6-1 0.0170 2.13 °C 1.12 °C 1.74 °C 1.39 °C 4.87 °C

CNRM-ESM2-1 0.0192 1.92 °C 1.14 °C 1.76 °C 1.47 °C 4.46 °C

EC-Earth3-Veg 0.0092 2.61 °C 1.08 °C 1.80 °C 1.30 °C 4.40 °C

EC-Earth3 0.0079 2.49 °C 1.08 °C 1.70 °C 1.26 °C 4.43 °C

FGOALS-f3-L 0.0630 2.06 °C 0.88 °C 1.52 °C 0.88 °C 3.57 °C

FGOALS-g3 0.0069 1.57 °C 0.44 °C 1.26 °C 0.48 °C 2.76 °C

FIO-ESM-2-0 0.0643 2.24 °C 1.01 °C 1.69 °C 1.03 °C 4.32 °C

GFDL-ESM4 0.1287 1.61 °C 0.78 °C 1.29 °C 0.79 °C 3.11 °C

GISS-E2-1-G 0.0862 1.8 °C 1.16 °C 1.64 °C 1.22 °C 3.40 °C

HadGEM3-GC31-LL 0.0011 2.51 °C 1.52 °C 2.43 °C 2.00 °C 5.46 °C

INM-CM4-8 0.0142 1.32 °C 0.65 °C 1.34 °C 0.61 °C 2.90 °C

INM-CM5-0 0.0430 1.39 °C 0.75 °C 1.38 °C 0.68 °C 2.81 °C

IPSL-CM6A-LR 0.0224 2.31 °C 1.21 °C 1.96 °C 1.31 °C 4.97 °C

KACE-1-0-G 0.0347 2.19 °C 1.61 °C 2.26 °C 1.81 °C 4.62 °C

MCM-UA-1-0 0.0328 1.94 °C 0.86 °C 1.58 °C 0.93 °C 3.63 °C

MIROC6 0.0378 1.55 °C 0.81 °C 1.28 °C 0.81 °C 3.17 °C

MIROC-ES2L 0.0014 1.55 °C 1.02 °C 1.56 °C 0.97 °C 3.38 °C

MPI-ESM1-2-HR 0.0524 1.65 °C 0.66 °C 1.16 °C 0.67 °C 3.02 °C

MPI-ESM1-2-LR 0.0401 1.84 °C 0.64 °C 1.19 °C 0.60 °C 3.09 °C

MRI-ESM2-0 0.0189 1.65 °C 1.08 °C 1.77 °C 1.03 °C 3.68 °C

NESM3 0.0072 2.79 °C 1.07 °C 1.93 °C 1.03 °C 4.17 °C

NorESM2-MM 0.0223 1.34 °C 0.84 °C 1.40 °C 0.87 °C 3.32 °C

UKESM1-0-LL 0.0045 2.75 °C 1.77 °C 2.62 °C 2.08 °C 5.86 °C
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Table S3. Overview of statistics from figure 8.

SSP1-2.6 2041-2060 Mean Median 66 % range 90 % range

Unweighted 1.07 1.08 0.75 - 1.50 0.61 - 1.61

Weighted 0.96 0.92 0.67 - 1.18 0.62 - 1.61

Change -0.11 -0.16 -32.00 -0.99

SSP5-8.5 2041-2060 Mean Median 66 % range 90 % range

Unweighted 1.73 1.70 1.29 - 2.08 1.17 - 2.55

Weighted 1.54 1.55 1.20 - 1.80 1.08 - 2.13

Change -0.19 -0.15 -24.05 -23.91

SSP1-2.6 2081-2100 Mean Median 66 % range 90 % range

Unweighted 1.17 1.03 0.68 - 1.62 0.60 - 1.98

Weighted 1.01 0.92 0.68 - 1.33 0.60 - 1.84

Change -0.16 -0.11 -30.85 -10.14

SSP5-8.5 2081-2100 Mean Median 66 % range 90 % range

Unweighted 4.05 3.98 3.09 - 4.87 2.76 - 5.82

Weighted 3.63 3.50 3.05 - 4.41 2.73 - 4.85

Change -0.42 -0.48 -23.60 -30.16

TCR Mean Median 66 % range 90 % range

Unweighted 2.01 1.98 1.55 - 2.51 1.35 - 2.74

Weighted 1.90 1.89 1.60 - 2.21 1.37 - 2.48

Change -0.11 -0.09 -36.46 -20.14
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S7 Additional figures
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Figure S3. Same as figure 3b but for all four combinations of SSPs and time periods.
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Figure S4. Unweighted (gray) and weighted (colors) temperature change for both periods and scenarios. The wide boxes show the same

distributions as in figure 8a in the main paper based on all ensemble members. The larger narrow boxes show the median over all 100

bootstrap members. The tiny boxes show the uncertainty for each percentile.
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