
Interactive comment on “An efficient training scheme that improves the forecast skill of a
supermodel” by Francine Schevenhoven and Frank Selten.

Reply to reviewer Guannan Hu.

We would like to thank Guannan Hu for his very helpful comments. We revised our manuscript and will
give a pointwise reply to Guannan Hu’s comments below.

Major comments

1

Section 2 Training the supermodel: my understanding is that every time CPT takes place, it is counted
which model is closest to the truth. If we have done 100 times CPT, then we have 100 predictions, and
we count for each model in these 100 predictions, how often they have closest prediction to the truth. If I
understand correctly, there are several questions. First is CPT interval time should be shown (how often
does CPT take place?). Second is whether iterative method is necessary. What if increasing the training
timesteps or training the model from many different initial conditions. I think these two ways also make
the results converge.

The CPT step takes place every time step.
Increasing the number of training steps will not always give a better estimation for the weights. For
example, it can happen that during training the true trajectory cannot be followed anymore by the CPT
trajectory, the CPT trajectory can diverge from the true trajectory. In that case, the resulting weights
will probably not give a supermodel with an improved forecast quality. For the quasi-geostrophic model
we have started the training from many different initial points. In that case we train on a larger part of
the attractor. If the supermodel is closer to the truth than the initial imperfect models then adding the
supermodel as an extra imperfect model in a next iteration step enables the CPT trajectory to follow
the true trajectory more closely and fewer strong adjustments will be needed. Hence, this can result in
a better estimation of the weights.

2

Page 4, Table 1 if the parameter values for the imperfect models are all smaller or greater than standard
values, how well will the supermodel perform?

The supermodeling approach only works well if the imperfect models are on “opposite” sides of the truth.
We took this into account in the choice of the imperfections. The imperfect values of the parameters
and the number of imperfect models is based on the convex hull principle. In one dimension this convex
hull principle basically says that if there is one parameter value σ1 smaller than the true value σ and
one parameter value σ2 larger than the true value, there are positive weights w1, w2 such that a linear
combination w1σ1 + w2σ2 can be exactly equal to σ. In case of Lorenz63, the equations for ẋ, ẏ and ż
contain each only one parameter that appears linearly in the equation. Since we apply different weights
for the different equations for ẋ, ẏ and ż, per equation we need only two imperfect models to be able to
reconstruct exactly the true parameter value with positive weights. This convex hull principle can be
extended to more dimensions:

Definition. Let x1, ...,xk be vectors in Rn and let λ1, ..., λk be nonnegative scalars whose sum is unity.
(a) The vector

∑k
i=1 λix

i is said to be a convex combination of the vectors x1, ...,xk.
(b) The convex hull of the vectors x1, ...,xk is the set of all convex combinations of these vectors.

In this definition, the vectors xi, i ∈ 1, ...k represent the imperfect parameter values x per equation
i and λi, i ∈ 1, ...k the corresponding weights. This convex hull generalizes the ‘in between’ concept for
one dimension. To be able to reproduce the n-dimensional vector x, it has to lie inside the convex hull
of vectors x1,x2, ...,xk.
We can write this as a matrix-vector equation, where the last row indicates that the sum of the weights
has to be equal to 1 and the vector x represents the true parameter values:
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
x11 x21 · · · xn+1

1

x12 x22 · · · xn+1
2

...
...

. . .
...

x1n x2n · · · xn+1
n

1 1 · · · 1




λ1
λ2
...
λn
λn+1

 =


x1
x2
...
xn
1


For parameter vectors of size n, we have n + 1 constraints, since also the sum of the weights has to
equal 1. Hence we know that to be able to reproduce the true parameter vector x, for n parameters
that appear linearly in one differential equation for a state variable, n + 1 linearly independent vectors
of these parameters are needed which form a convex hull around the true parameter vector.
For the quasi-geostrophic model, the imperfect parameters do not appear linearly in the equations.
Therefore choosing the parameter perturbations such that they form a convex hull around the true
parameter values will not necessarily result in model that represents the truth. Nevertheless, in practice
we found that this approach worked well. In this case, choosing the imperfect parameter values on
opposite sides of the truth created “opposite” behaviour such that the imperfect models could compensate
for each other.

3

Page 10, Table 5 and page 4, Table 1: an important issue is how to set the parameter values of imperfect
models and how to decide the number of imperfect models. These problems are not touched in the article.
As shown in conclusion (page 13, line 8 and 9) the number of imperfect models is related to the number
of uncertain parameters. The uncertain parameters in Lorenz 63 and quasi-geostrophic model are both 3,
but imperfect models used to construct supermodel are 2 and 4, respectively. I wonder if the number of
imperfect modes depends on the degrees of freedom. As shown in Table 5 each two imperfect models have
a same parameter value, why? Is it possible to randomly select parameter values for imperfect models
with given error.

In the previous comment we explained how to set the parameter values of the imperfect models and how
to decide on the number of imperfect models. As you pointed out, we think it is important to touch
these problems in the article, therefore we will add an appendix that explains this.

4

Page 12, 4.3 Use of fewer imperfect models: I am interested in the difference between supermodel without
the worst imperfect model and supermodel without the best imperfect model. In such a way, it can be
clarified whether the accuracy of imperfect model affects the performance of supermodel. Clearly the
number of imperfect models influences the skill of the supermodel. While the relationship is unclear.
The differences between supermodel and truth as a function of number of imperfect models can used to
illustrate this relationship.

The number of imperfect models influences the skill of the supermodel. Since the number of imperfect
models is not generalizable for every model, because parameters will not always appear linearly in the
equations, we did not investigate the differences between the supermodel and truth as a function of
number of imperfect models.

Minor comments

1

Abstract, page 1, line 7 and 8 the supermodel obtained by the CPT training should not only compared to
the individual imperfect models, it is not the topic of this article. As indicated by the title the method
improves the supermodel, so the comparison should between the supermodels with different weights.

The scope of this paper is to show that a supermodel constructed by the CPT training can outperform
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individual imperfect models. Also it is shown that the CPT training has effect compared to a supermodel
with equal weights. It was not the purpose to compare the method with other methods that give a
weighted supermodel. We agree that the title is misleading, hence we changed it into: “An efficient
training scheme for supermodels”.

2

Introduction: I’m wondering if there are still other methods have been used to determine the weights
except the example in the second paragraph of page 2. And I also want to know the advantages of CPT,
since the multi-model ensemble method (MME) can also enlarge the state space.

There are no other examples of methods to determine the weights for a supermodel, to my knowledge.
In this study we use CPT to find optimal weights for a weighted supermodel. CPT generates new
trajectories in contrast to a Multi Model Ensemble (MME) approach that only combines trajectories
from an ensemble of models. CPT accomplishes this by continuing a trajectory from one model using
another model and creating hybrid trajectories this way that are trained to lie closer to the truth.
After training, the supermodel climate statistics are closer to the truth since trajectories more closely
follow true trajectories. In a MME approach, combining model statistics leads to improved estimates
of for instance the true mean state. But in the supermodel approach, not only is the mean state of the
supermodel closer to the truth but in addition the supermodel trajectories from which this mean state
is calculated are closer to observed trajectories. In a MME approach this is not the case. Combining
trajectories of different models leads to smoothing since weather systems and fronts are in different
locations.

3

Page 4, line 12: why choose deviation 30%?

The deviation of 30% in the imperfect parameter values is chosen because then the imperfect models
have completely different behaviour compared to the true model. For the Lorenz 63 model we showed
that even for this large deviation we are still able to construct a supermodel that reflects the truth quite
well.

4

Page 5, Figure 2 and page 7, Figure 3: I suggest figure of 3D-phase space.

Thank you for the suggestion but we think that a figure that shows more of the 3D structure will be less
clear than this figure.

5

Page 7, 3.1 Climate measures: I suggest using probability density function and autocorrelation function
to compare the supermodel and truth, not only the mean, standard deviation and covariance.

The supermodel constructed out of the imperfect Lorenz 63 models is again a Lorenz 63 model. Since
the supermodel parameters ρ, σ, β are very close to the true parameter values and since there is no
bifurcation for this system close by the true parameter values, it is to be expected that the supermodel
has an attractor that is very similar to the true attractor. To illustrate this, we only used mean, variance
and covariance, and since there are no significant differences between the two attractors, we did not use
any other statistical measures.

6

Page 9, Figure 5: (a) of Figure 5 is not necessary. I suggest combine (a) and (b) of Figure 5.

In the case of the forecast quality of the Lorenz 63 model,(a) and (b) of Figure 5 could be combined,
since there are not that many graphs. However, we used the same figures for the forecast quality of the
quasi-geostrophic model. For this model we had more graphs that cannot be merged into one figure, that
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would be unclear. Hence we chose to separate the figure for the forecast quality for the imperfect models
from the forecast quality for the supermodels for both Lorenz 63 and the quasi-geostrophic model.

7

Page 9, line 15 and page 10, line 1: in the experiments with Lorenz 63, the model 1 has two stable fixed
points and very different behavior compared to standard Lorenz 63 system. But it still contributes to form
supermodel.

For the quasi geostrophic model we chose more realistic imperfect models than for the Lorenz 63 system.
The Rossby radii of deformation are known quite well. Hence we chose imperfect parameter values that
cause quite different behavior compared to the truth (the imperfect models perform much poorer in our
short and long term measures than the true model) but this was accomplished by imperfect Rossby radii
that are not that far from the true values.

8

Page 11, Table 7: I suggest add tables for other height (200hPa, 500hPa) and in table supermodel with
same weights should be included.

We included the RMSE for a supermodel with equal weights and the RMSE for the supermodel con-
structed without the imperfect model with the poorest forecast quality and we added tables for 200hPa
and 500hPa. The supermodel with the equal weights performs better than imperfect model 1 and 2,
but worse than imperfect model 3 and 4 and the supermodel. The supermodel constructed without the
imperfect model with the poorest climate and forecast quality performs slightly better than the super-
model with equal weights, but the errors are significant compared to the perfect model. The supermodel
is also for the 200hPa and 500hPa level indistinguishable from the perfect model.

9

Page 11, line 1: what is the minimal time steps for training? If the training time steps increases, do the
weights change?

Already after integrating for half a day, the estimation of the weights is not that different from the final
weights, they differ around 10%. If the number of training steps is more than 3 days, the weights do
not significantly change, they differ a few percent but there is no structural deviation from the obtained
weights mentioned in this paper.

10

The supermodel with different weights performs better than supermodel with equal weights, but it requires
computational time. Increasing the number of imperfect models also improves the skill of the supermodel
with equal weights. So we need to compare in which way the computational demand is slower in certain
application.

Increasing the number of imperfect models can help to improve the quality of supermodel with equal
weights, but this does not necessarily have to be the case. We then have to decide which imperfect
parameters we will use, which also takes time. Running a supermodel that consist of more imperfect
models will also take more computational time. A supermodel with equal weights that consists of
the same amount of imperfect models as a supermodel with trained weights costs the same amount of
computation time. Training is relatively cheap and only has to be done once.
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