DLR.de • Chart 7 • Aeolus NWP impact assessment workshop • 17 June 2020

What drives the random errors?

- 1. Laser emit energy
 - \Rightarrow Lower than expected (factor 1-2)
 - ⇒ Negative trend
- 2. Optical signal throughput in receive path for atmospheric signal
 - \Rightarrow Lower than expected (factor 2-3)
 - ▷ Negative trend
- 3. Solar background noise
 - ⇒ Impact higher than expected due to lower atmospheric signal
 - Seasonal variation of solar background by factor 18: Rayleigh random errors of 7-8 m/s were obtained in summer months for polar regions

Orbital variation of Rayleigh solar background noise

Rayleigh winds are very sensitive to solar background noise with current low useful signal levels

This is a simulation, but tuned to actual L2B Rayleigh-clear random errors found

Given our current useful signal we have a lot to gain in wind random error from more signal, particularly in polar summer conditions