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Review #2

1 General comments5

The method is quite complicated and as such it would be amazing if the authors considered implementing it in a radar

toolkit such as for example Py-ART https://arm-doe.github.io/pyart/, which already contains a few retrieval methods.

[response] Indeed, the Gaussian mixture method is relatively complicated when compared to the linear regression method,

since it provides the variance ofKdp together with the meanKdp. It is not easy for all the readers to implement it via Anaconda

Python. Yes, we are very glad that the GMM is included in the Py-ART software package. We intend to make the codes available10

to the community soon. As we described in section 3 (Data), we developed the algorithm using Anaconda Python on RedHat

Linux 7, and used the Py-ART to get the inputs and outputs and draw our figures. We think it should be straightforward to

implement it in the Py-ART. Thus, the users can derive the best mean Kdp for QPE using the methods such as Vulpiani et al.

(2012) and Giangrande et al. (2013), and obtain the variance of Kdp for studying the propagation of uncertainty in the weather

or hydrological model using the Gaussian mixture method.15

2 Major comments

2.1. Section 4.3 and later : I think that you should use a different notation for the raw measured differential phase shift on

propagation and the filtered version with δco removed. Usually the notation Ψdp is used for the raw measurement and Φdp

for the filtered signal from which Kdp is estimated

[responses] Our notations were very ambiguous in the first manuscript. We have fixed this problem by denoting the data as20

Ψdp before the elimination of the backscattering differential phase shift, and as Φdp after it.

[changes] We have made a number of changes through the paper, for example:
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p.7, ln.20–30: From the chart of LR in Fig. 1.a, we can see that after the radar measurements are collected, the Ψdp is

unfolded, and then the clutter is removed. After these corrections, an iterative filtering method is applied to the Ψdp profile.

An adaptive method is finally used to estimate the Kdp profile according to the values of ZH . The Gaussian mixture model,

on the other hand, processes Ψdp differently. First of all, the clutter is masked out according to the thresholds of ZH and

the variation of Ψdp. Secondly, the range r and Ψdp are fitted into a Gaussian mixture to yield the joint PDF, while the Ψdp5

mean and the Ψdp variance are obtained by taking the first raw and second central moments of the conditional PDF of Ψdp

given r. Thirdly, some specific clusters in the Gaussian mixture PDF are adjusted to solve the problems of ambiguous Ψdp and

backscattering differential phase shift δco in order to derive the PDF of Φdp. Fourthly, a raw Kdp profile is calculated from the

first derivative of the expected values of Φdp, and the associated variances are obtained via a Taylor series expansion. Finally,

the raw Kdp profile is smoothed, and consequently, the variances are reduced. In addition, new Φdp with lower variances can10

be re-constructed from the Kdp estimates.

2.2. One major issue in an operational context is the computational cost of these more sophisticated Kdp retrieval tech-

niques. Mainly for this reason, the standard linear regression methods are still the norm. Could you discuss and provide

numbers for the computational cost of your method and maybe compare it with other methods?

[responses] It is true that the GMM takes more computation time than the LR. For the PPI data used in section 5, the LR takes15

about 1.47 seconds for phase unfolding on the PC, 0.458 seconds for Ψdp smoothing and 0.109 seconds for regression-based

Kdp estimation. In total, the LR takes about 2.037 seconds if we ignore the time used for the inputs and outputs. On the other

hand, the GMM uses 2.99 seconds for data masking, 2.348 seconds for Ψdp density estimation, 0.73 seconds for Ψdp unfolding

and δco elimination and 0.98 seconds for Kdp estimation. In total, we need 7.058 seconds for this case. If we skip the data

masking process, we need about 4.068 seconds, about twice than the LR. Nevertheless, the GMM can obtain more information20

from the radar data than the LR.

[changes] p.16, ln. 26–29: Moreover, the computational time is crucial for the real-time application of the Kdp retrieval

algorithms. For the data in Fig. 8, the GMM takes about 7.058/4.068 seconds to process theKdp with/without the data masking,

whereas the LR reduces the time to about 2.037 seconds. It indicates that the LR has the advantages of simplicity and efficiency.

Nevertheless, the GMM can obtain more information from the radar data, which is useful for the model studies.25

2.3. In the conclusion, I think it would be interesting to discuss if this method could be used as such for other frequencies

(C-band and S-band in particular) or if it would require some relevant tweaks.

[responses] We think the X-band is the most difficult among the three wavelengths, since it leads to the most significant

phase changes and backscattering differential phase shift (δco). The Gaussian mixture method can definitely be adapted to

C-band and S-band radars with a few modifications. For example, we need to adjust the thresholds for the textures used in the30

quality control. For CP2 radar (S-band), we need σ(Φdp)< 7.5◦ for weather echoes, while the threshold increases to 10◦ for

the CPOL radar (C-band), combined with the ρhv threshold. In a similar manner, we also need to adjust the thresholds for Ψdp

folding and δco elimination. Nevertheless, the steps for the calculations of the joint PDF of Ψdp and Kdp will be unchanged.

[changes] We have made a number of changes:
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p. 19, ln. 3–6: In the future study, the algorithm will also be extended to other frequencies, such as C-band (Vulpiani et al.,

2012; May et al., 1999) and S-band (Bringi and Chandrasekar, 2001). The thresholds in the data masking, the Ψdp unfolding

and the δco elimination will be adjusted according to the radar specifications. Nevertheless, the steps for the calculations of the

PDFs of Ψdp and Kdp will be remained.

3 Minor comments5

3.1. p2. l.11-12 : This sentence is not very clear and syntactically correct, please reformulate

[changes] It has been changed to

p.2, ln. 13–14: In addition, Gorgucci et al. (1999) note that the nonuniform rainfall path produces large errors in the Kdp

estimates, while the errors increase as the radar reflectivity varies in dimensions.

3.2. p2 : l.23 : Like the proposed method, the Kalman filter method also provides an estimate of the standard deviation of10

the retrieved KDP at X-band, it would be interesting to explain it in in broader detail as well as discuss the differences and

respective advantages of both methods.

[responses] The Kalman filter method is also an excellent method for the Kdp estimation, since it can simultaneously

obtain the Kdp, the attenuation-corrected ZH , the attenuation-corrected ZDR and δco. The method is then adapted to various

environmental conditions by considering Ψdp only. The Kalman filter method significantly increases the accuracy of the Kdp15

mean when compared to the linear regression method, and gives some improvements when estimating Kdp in the small-scale

storm structure. However, it is very difficult to compare the GMM to the Kalman filter without the original codes. From

Schneebeli et al. (2014), we can see that the primary difference is that the Kalman filter method assumes the error covariance

function follows a linear Gaussian distribution, whereas the GMM considers the joint PDF of r and Ψdp as a non-linear

Gaussian mixture. Thus, the GMM may have better performance when the data are multimodal. Moreover, the Kalman filter20

method derive a priori from the measured DSD, leading to some constraints on the particle types. In contrast, the GMM fits the

data to obtain the random errors of Ψdp data.

[changes] We have made a number of changes:

p.2, ln. 26–27: It is noticeable that the Kalman filter method minimizes the Gaussian error function to obtain the mean profile

of Kdp. It gives a significant improvement on the Kdp mean, particularly in the small-scale structure with high peaks.25

p.2, ln. 35–p.3 ln.1: When compared to the existing methods, our method considers the joint probability density function of

the data as the non-linear Gaussian mixture, leading to better performance for the multimodal data.

3.3. p11: l.3-5: I have trouble understanding this paragraph. I would suggest to reformulate to make it clearer, in partic-

ular the term "transformed into the next stage" is inappropriate.

[changes] This paragraph has been changed to30

p. 11, ln. 13–17: On the other hand, the Ψdp unfolding is more straightforward in GMM. Figure 5 shows the flowchart of the

Ψdp unfolding and the δco elimination. After obtaining the PDF of Ψdp, the initial step of the Ψdp unfolding selects the density

ellipses with at least 6 data points. Next, the second step calculates the difference of the means µi between the two consecutive
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density ellipses along the range. At this point, the PDF of Ψdp is ready to be corrected for ambiguous Ψdp. In the final step, the

mean of the latter density ellipse is finally added up 180◦, if the former mean is larger than the latter one by 80◦.

3.4. I would suggest to add another flowchart for the step φdp unfolding and δco estimation.

[changes] We have added a new flowchart in Fig. 5 for the steps of the Ψdp unfolding and the δco elimination.

3.5. p.13 l.17-18: It would be good to discuss why you choose this particular FIR filter. I am also not sure how the number5

of considered gates is defined.

[responses] In this paper, we create a base form of the FIR filter using a window method. The cut-off frequency (or Nyquist

frequency) is 0.053 and the window is generated by a Gaussian distribution with standard deviation of 28. These coefficients

yield the best performance for the MZZU radar when the iterative filtering is applied (Hubbert and Bringi, 1995). We then tune

the order of the FIR filter (gate number). For example, we select the gate number of 31 if the relative square error between10

the gate number of 31 and the gate number of 33 is below 0.001. The gate number frequently falls between 29 and 33 for the

MZZU radar.

[changes] We have made a number of changes:

p.13, ln. 31–32: Figure 7 shows the time responses of the FIR with the cutoff frequency of 0.053 and the Gaussian window

of 28, which yield the best performance for the MZZU radar.15

p.14, ln. 1–4: In this study, we gradually increase the order number to calculate the difference between the Kdp profiles

obtained by the FIR filters with two adjacent order numbers. The optimal order of the FIR filter is then set when the relative

square error of the two Kdp is below 0.001. For profiles with sufficiently large data points, the order number is between 29 and

33 for the MZZU radar.

3.6. p.16 l.8: It would be good to include one or two sentences that explain briefly this X-band rainfall rate algorithm.20

[changes] Yes, we have given the rain rate algorithm in this revision.

p. 15, ln. 6–9: The radar hourly rain amount is calculated based on the CASA radar rainfall algorithm, which is given as

(Wang and Chandrasekar, 2010; Chen and Chandrasekar, 2015)

R(Kdp) = 18.15K0.79
dp , (1)

when R is the instantaneous rain rate in mm h−1.25

3.7. Figures 4 and 5 should be visually improved. In particular the data points are too hard to see because of the error

bars. I would for example replace the error bars by thin lines located one each side of the plot. Also the limits of the y axis

could be adjusted.

[changes] We have updated Figs. 4 and 6 according to this comment.

3.8. Figure 9: It would be useful to also include the radar estimates derived from the LR Kdp.30

[changes] We have included the rain estimates derived from LR Kdp in Fig. 10 in this revision.
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