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Abstract. Specific differential phase Kdp is one of the most important polarimetric radar variables, but the variance σ2(Kdp),

regarding the errors in the calculation of the range derivative of differential phase shift φdp:::
Φdp, is not well characterized

due to the lack of a data generation model. This paper presents a probabilistic method based on Gaussian mixture model for

Kdp estimation at X-band frequency. The Gaussian mixture method can not only estimate the expected values of Kdp by

differentiating the expected values of φdp:::
Φdp, but also obtain σ2(Kdp) from the product of the square of the first derivative of5

Kdp and the variance of φdp:::
Φdp. Additionally, ambiguous φdp :::::

phase and backscattering differential phase shift are corrected

via the mixture model. The method is qualitatively evaluated with a convective event of a bow echo observed by the X-

band dual-polarization radar in the University of Missouri. It is concluded that Kdp estimates are highly consistent with the

gradients of φdp::::
Φdp in the leading edge of the bow echo, and large σ2(Kdp) occurs with high variation of Kdp. Furthermore,

the performance is quantitatively assessed by three-year
:::::::
two-year

:
radar-gauge data, and the results are compared to linear10

regression model. It is clear that Kdp-based rain amounts have good agreement with the rain gauge data, while the Gaussian

mixture method gives improvements over linear regression model, particularly for far ranges.

Copyright statement.

1 Introduction

Apart from radar reflectivity (ZH ) and differential reflectivity (ZDR), polarimetric radars also measure
:::::
obtain differential phase15

shift (φdp :::
Φdp) to reflect the forward scattering property of hydrometeor scatterers (Seliga and Bringi, 1978; Sachidananda and

Zrnić, 1986). Its range derivative, also called specific differential phase (Kdp), has some advantages over ZH and ZDR (Zrnić

and Ryzhkov, 1996), including insensitivity to attenuation, clutter, partial beam blockage and radar absolute calibration. The

specific differential phase has played a key role in various meteorological applications—such as hydrometeor classification

(Lim et al., 2005; Park et al., 2009), raindrop size distribution retrieval (Bringi et al., 2002; Williams et al., 2014) and quantita-20

tive precipitation estimation (Ryzhkov et al., 2005; Cifelli et al., 2011)—since Kdp is a phase variable independent of ZH and

ZDR and almost linearly proportional to rain rate.
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A linear regression model has been developed to deriveKdp from the slope of the range profile of φdp :::
Φdp for S-band radars.

In Hubbert et al. (1993), φdp :::
Φdp:is first processed by a light filter that attenuates the φdp :::

Φdp:magnitudes within a scale of 375

m by 10 dB, and then heavily smoothed in 1.5 km by 10 dB. An iterative filtering technique is used for eliminating non-zero

backscattering differential phase shift (Hubbert and Bringi, 1995). The filtered φdp :::
Φdp:measurements are finally fitted into a

first-order polynomial to estimate the φdp :::
Φdp:slope in a given window. Liu et al. (1993) supply the accuracy of mean Kdp as5

±0.25 deg km−1 using 128 pulses, while Aydin et al. (1995) indicate that the accuracy is within ±0.5 deg km−1 for a heavy

rainfall event using 64 pulses. On the other hand, Ryzhkov and Zrnić (1996) produce two kinds of Kdp for S-band radars:

one is obtained over 16 range gates (2.4 km) for ZH ≤40 dBZ, and the other is produced over 48 gates (7.2 km) for ZH>40

dBZ. Negative Kdp is incorporated into the rain rate algorithm to avoid bias in low rain rate. The analyses of 15 storms show

that the standard error of Kdp is 0.04~0.10 deg km−1 for heavily filtered Kdp and 0.12~0.30 deg km−1 for lightly filtered10

Kdp using either 128 or 64 pulses.
:::::
Under

:::
the

::::::::
complex

::::::
terrain,

:::
the

::::
Kdp:::::::

retrieval
:::::::::
algorithm

:::::
needs

::
to

::
be

::::::::
modified

::
to

::::::
obtain

:::
the

:::::::
accurate

::::::
rainfall

::::
rate.

::::::::::::::::::
Vulpiani et al. (2012)

:::
has

::::::
opened

::::
new

::::::::
scenarios

::
for

:::
the

::::::::::
operational

::::
Kdp :::::::::

processing
::
in

:::
the

:::::
Italian

:::::::
C-band

::::
radar

::::::::
network. In addition, Gorgucci et al. (1999) note the radial smoothing introduces bias in nonuniform rain with high ZH

variation by simulation studies
:::
that

:::
the

::::::::::
nonuniform

:::::::
rainfall

::::
path

:::::::
produces

:::::
large

:::::
errors

:::
in

:::
the

::::
Kdp ::::::::

estimates,
:::::
while

:::
the

::::::
errors

:::::::
increase

::
as

:::
the

::::
radar

:::::::::
reflectivity

::::::
varies

::
in

:::::::::
dimensions.15

X-band dual-polarization radars have drawn increasing attention in the radar meteorology community in recent years on

account of low cost, fine resolution and high sensitivity to light precipitation (Chandrasekar et al., 2012; Lim et al., 2013;

Berne and Krajewski, 2013; Kalogiros et al., 2014; Oue et al., 2016). In the literature, X-band algorithms have been proposed

forKdp estimation. For example, the linear regression method is adapted for the X-band radar data, and used to retrieve rainfall

(Matrosov et al., 2006). The ambiguous φdp :::
Φdp:is naturally corrected by examining the complex values of the range profiles20

of φdp :::
Φdp exponentials, and Kdp is then estimated by a regularization framework based on a cubic spline smoothing (Wang

and Chandrasekar, 2009). In this method, the bias and variance are adjustable through the smoothing parameter, giving high

spatial resolutions of Kdp estimates. Comparing to S-band frequency, the φdp :::
Φdp:measurements at X-band frequency are

affected by backscattering differential phase shift δco. Nevertheless, the constraints of Kdp−ZH −ZDR and δco−ZDR can

be used to improve the estimation of Kdp and δco (Otto and Russchenberg, 2011; Reinoso-Rondinel et al., 2018). Algorithms25

of linear programming (Giangrande et al., 2013) and Kalman filter (Schneebeli et al., 2014) have also been applied to the Kdp

estimation, yielding good performance for rainfalls and snowfalls.
:
It
::
is
:::::::::
noticeable

:::
that

:::
the

:::::::
Kalman

::::
filter

:::::::
method

:::::::::
minimizes

:::
the

:::::::
Gaussian

:::::
error

:::::::
function

::
to

:::::
obtain

:::
the

:::::
mean

::::::
profile

::
of

:::::
Kdp.

:
It
:::::
gives

:
a
:::::::::
significant

:::::::::::
improvement

:::
on

:::
the

::::
Kdp :::::

mean,
::::::::::
particularly

::
in

::
the

::::::::::
small-scale

:::::::
structure

::::
with

:::::
high

:::::
peaks.

:

The recent algorithms are focused on the improvement of estimating the mean Kdp, whereas its variance
(
σ2(Kdp)

)
is not30

well characterized due to the lack of a data generation model. The Kdp variance is often assumed to be a constant inherited

from the φdp variance
(
σ2(φdp)

)
:::
Φdp:::::::

variance
:::::::::

(
σ2(Φdp)

)
:
leading to large relative errors for low Kdp with a fixed path length.

In this study, we propose a probabilistic method based on Gaussian mixture model for Kdp estimation at X-band frequency.

The Gaussian mixture method can not only estimate the expected values of Kdp by differentiating the conditional expectation

of φdp::::
Φdp, but also yield σ2(Kdp) by regarding the errors in the calculation of the first derivative of φdp. The results are35
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compared to a standard linear regression method and validated using rain gauge data.
::::
Φdp. It is found that σ2(Kdp) is closely

related to the square of the first derivative of Kdp and σ2(φdp):::::::
σ2(Φdp), while large σ2(Kdp) is associated with high variation

of Kdp estimates.
::::
When

:::::::::
compared

::
to

:::
the

:::::::
existing

::::::::
methods,

:::
our

::::::
method

::::::::
considers

:::
the

:::::
joint

:::::::::
probability

::::::
density

::::::::
function

::
of

:::
the

:::
data

::
as
:::
the

:::::::::
non-linear

::::::::
Gaussian

:::::::
mixture,

:::::::
leading

::
to

:::::
better

::::::::::
performance

:::
for

:::
the

::::::::::
multimodal

::::
data.

::::
The

::::
Kdp :::::::

variance
:::
can

:::
be

::::
used

::
to

:::::::
calculate

:::
the

::::::::
variances

::
of

::::
ZH ,

:::::
ZDR :::

and
::::
rain

::::
rate,

:::
and

::
to

:::::
study

:::
the

:::::::::
streamflow

::::::
trends

::
in

:::
the

::::::::::
hydrological

::::::
model.

:
5

The paper is organized as follows. Section 2 provides background information about Kdp and the Gaussian mixture model.

Section 3 describes the radar and gauge data. Section 4 presents the methodology. We first remove the residual clutter using data

masks (section 4.1), and then derive the joint probability density function to estimate the expected value of φdp and σ2(φdp)

:::
Φdp::::

and
:::::::
σ2(Φdp):(section 4.2). Next, we correct the ambiguous φdp ::::

phase
:
and δco via the mixture model (section 4.3). Last,

we calculate the expected value and variance of Kdp (section 4.4), and improve the Kdp profile by reducing σ2(Kdp) (section10

4.5). To evaluate the algorithm, section 5 gives a case study and a comparison between radar and gauge. Section 6 summarizes

the paper.

2 Background

The specific differential phase is the first derivative of differential phase shift φdp :::
Φdp:along the radar range, giving a way to

estimate Kdp by radar measurement of φdp :::
Φdp. Furthermore, the probability density function of φdp :::

Φdp can be modelled as15

a Gaussian mixture, which is often obtained via an expectation-maximization (EM) approach. Therefore, the
:::
The

:
mean and

variance of the Gaussian mixture may lead to the improvement of the Kdp estimation.

In this section, we introduce the physical interpretation of Kdp and the regression model for estimating Kdp. Since the

Gaussian mixture is adopted as the data generation model, we also give a brief description of mathematical definition of the

Gaussian mixture model and the EM approach.20

2.1 Specific differential phase (Kdp)

For linear polarization, Kdp is proportional to the integral of the raindrop size distribution and the real part of the difference of

forward scattering amplitudes at orthogonal polarizations. It is mathematically formulated as

Kdp =
0.18λ

π

∞∫
0

N(D) · < [fhh (0,D)− fvv (0,D)]dD (deg km-1), (1)

where λ is radar wavelength in millimeters,D is raindrop size in millimeters,N(D) is size spectrum in m-3mm-1, fhh,vv(0,D)25

is forward scattering amplitudes at horizontal and vertical polarizations, respectively.

By considering the Rayleigh-Gans scattering from identical and horizontally-oriented oblate spheroids, such as raindrops,

the forward scattering amplitudes are proportional to the inverse square of radar wavelength, i.e., fhh,vv(0,D)∝ 1/λ2, leading

to the fact that Kdp is inversely proportional to radar wavelength, i.e., Kdp ∝ 1/λ. Therefore, the values of Kdp at X-band

are often larger than that at S-band by a factor of 3, indicating that X-band radar can provide better Kdp data than S-band30
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radar when retrieving the rainfall rate. The conclusion is still valid even if the Mie effect is taken into account (Bringi and

Chandrasekar, 2001; Chandrasekar et al., 2006).

However, Kdp cannot be detected by polarimetric radar directly, whereas its integral φdp :::
Φdp:is measurable. Hence, Kdp

can be estimated as the range derivative of the profile of φdp:::
Φdp, i.e., Kdp =

∆φdp

2∆r :::::::::::
Kdp =

∆Φdp

2∆r ,where r is the radar range

in kilometers. An alternative approach to estimating Kdp is to apply a regression fit to the profile of φdp::::
Φdp, and the first5

order polynomial is usually considered as the fitting function (Balakrishnan and Zrnić, 1990; Ryzhkov and Zrnić, 1995).

Subsequently, if the φdp :::
Φdp measurements are equally spaced in range by ∆r, Kdp is then estimated by

Kdp =

∑n
i=1

[
φdp (ri)− φ̄dp

]
[6i− 3(n+ 1)]

n(n− 1)(n+ 1)∆r

∑n
i=1 Φdp (ri)

[
i− (n+1)

2 ∆r
]

1
6n(n− 1)(n+ 1)∆r2

::::::::::::::::::::::::

, (2)

where n is the number of gates, and φ̄dp is the mean value of φdp within the n radar gates. Equation (2) shows that the accuracy

of Kdp estimates is determined by the number of gates (n), and the accuracy of φdp:::
Φdp. By assuming σ2(φdp) :::::::

σ2(Φdp) is10

relatively stable for all gates along a ray and noting that φdp(ri):::::::
Φdp(ri) is the only variable in Eq. (2), σ2(Kdp) is formulated

as

σ2 (Kdp) =
3 σ2 (φdp)

∆r2 [n(n− 1)(n+ 1)]

σ2 (Φdp)
1
3∆r2 [n(n− 1)(n+ 1)]
:::::::::::::::::::

. (3)

In Eq. (3), σ2 (Kdp) is proportional to σ2 (φdp):::::::
σ2 (Φdp), which is related to the spectrum width, cross-correlation coefficient,

and the dwell time (Sachidananda and Zrnić, 1986; Hubbert et al., 1993), and inversely proportional to n3.
::::
This

::::::
method

::::
has15

::::
been

::::::
widely

::::
used

::
in

:::
the

::::::
existing

:::::
radar

::::::
system

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cifelli et al., 2018; Chandrasekar et al., 2018; Chen et al., 2017c, b)

:
.
:::
The

::::::
details

::
of

:::
the

::::::::::::::
regression-based

::::::::
estimation

:::
of

:::
Kdp:::

are
:::::
given

::
in

:::::::::::::::::::::::::::
Bringi and Chandrasekar (2001)

:::
and

::::::::
Appendix

:::
A.

Moreover, it is notable that the backscattering phase shift is not negligible at X-band, thus the total propagation phase shift(
φ̂dp

)
consists of φdp :::::

(Ψdp) ::::::
consists

::
of

::::
Φdp and the backscattering differential phase, δco, i.e., φ̂dp = φdp + δco:::::::::::::

Ψdp = Φdp + δco.

The backscattering phase shift is often showed as a sudden jump over one or few range gates in a monotonically increasing20

φ̂dp::::
Ψdp profile of rain (May et al., 1999a), with a value much larger than standard deviation σ (φdp) ::::::

σ (Ψdp). The presence of

δco over a small number of consecutive gates can be eliminated by a simple filter (Hubbert and Bringi, 1995).

The specific differential phase is a unique polarimetric variable in terms of statistical errors in the rain rate estimation, since

it is the range derivative of the phase measurement φdp:::
Φdp. The errors in the calculation of the first derivative also needs to be

taken into account. In this study, we consider a Gaussian mixture as the data generation model, which plays an important role25

in the estimation of Kdp and σ2(Kdp).

2.2 Gaussian mixture model

The Gaussian mixture is a statistical model for data probability density estimation, assuming that the data points are generated

by a mixture of a finite number of Gaussian distributions associated with their weights (McLachlan and Peel, 2000; Sung,

2004). It is expressed
:::::::::
Intuitively,

:
it
::
is

::::
used

:::
to

:::::
model

:::
the

::::::::::
multimodal

::::
data,

::::
with

:::::
each

::::::::
Gaussian

:::::::::
component

::::::::::::
corresponding

::
to

::
a30
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:::::::::::
subpopulation

:::
of
:::

the
:::::
data.

:::
The

::::::::::::
mathematical

::::::::::
formulation

:
is
:::::
given

:
as

f(z) =

m∑
i=1

wiN (z;µi,Σi) , (4)

where m is the number of components in the Gaussian mixture, wi is a weight with
∑m
i=1wi = 1, and N (z;µi,Σi) is the

ith Gaussian distribution with mean µi and covariance Σi, i.e.,N (z;µi,Σi) =
∣∣(2π)kΣi

∣∣−1/2
exp

[
− 1

2 (z−µi)TΣ−1
i (z−µi)

]
,

where k is the data dimension.5

It is prevalent to use an Expectation–Maximization (EM) algorithm to estimate the parameters, w, µ, and Σ, by constructing

the lower bound of log-likelihood based on Jensen inequality (Dempster et al., 1977). The EM algorithm is divided into two

steps, namely, an expectation (E) step and a maximization (M) step. In the E step, a degree of membership toward to the jth

cluster is calculated, i.e.,

Qij = p
(
y(i) = j|x(i);w,µ,Σ

)
, (5)10

where i is the ith data with a total number of n data points, and y is a latent variable that determines the corresponding cluster.

Here, Q gives a tight lower bound for the log-likelihood, equivalent to maximizing the expectation. In the M step, the exact

form of the lower bound based on Jensen inequality is expressed as

L(w,µ,Σ) =
∑
i

∑
j

Qij log
exp

[
− 1

2 (xi−µ)TΣ−1(xi−µ)
]
wj√

|(2π)kΣ|Qij
. (6)

By maximizing the lower bound with respect to each parameter, wj , µj , and Σj are updated as (Petersen and Pedersen, 2012)15

wj =

∑
iQ

i
j

n
, (7)

µj =

∑
iQ

i
jx

(i)∑
iQ

i
j

, (8)

Σj =

∑
iQ

i
j(x

(i)−µj)(x(i)−µj)T∑
iQ

i
j

, respectively. (9)

Notably, the M step increases the log-likelihood monotonically, and the covariance retains positive definite with sufficiently

large data samples. Finally, the E step and M step are iteratively operated until the log-likelihood converges to a value with20

the difference between two successive steps below a certain threshold. In addition, the EM algorithm requires a specification

of the number of clusters, m, prior to the E and M steps, and an inappropriate choice of m may lead to meaningless values of

the parameters. To tackle this problem, the Bayesian information criterion is often calculated to select the optimal m, while a

Dirichlet process may also be used to model a prior probability to construct an infinite Gaussian mixture.

One of interpretations of the Gaussian mixture is to view each distribution as a cluster with a Gaussian probability density,25

while the individual data point is attributed to a specific cluster or a weight toward the cluster, regarded as unsupervised

learning (Hastie et al., 2009). The clustering procedures based on Gaussian mixture have been applied to the identification of

storm structure (Veneziano and Villani, 1996), and the particle identification at S-band (Wen et al., 2015, 2016b, 2017) and
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X-band (Wen et al., 2016a) frequencies. Furthermore, the Gaussian mixture model can be extended to fit a set of unknown

parameters in the prior probability of the Bayesian framework, forming a Bayesian Gaussian mixture model (Li et al., 2012).

The prior is then multiplied with the known conditional probability of data given the parameters to be estimated, yielding the

posterior probability with a new set of parameters. The expectation of the posterior is often used to retrieve the conditional

mean of the new parameters based on least square criteria.5

For the regression problem, the characteristics of the Gaussian mixture imply that the direct modeling of a regression function

is very difficult. Nevertheless, the joint probability of the measurements and the estimated parameters may be modeled as a

Gaussian mixture, leading to a regression function derived from the joint density model. Due to the asymptotic consistency of

a Gaussian mixture model, it is capable of estimating a general density function in Rn in any shape (Sung, 2004). Moreover,

the speed of calculating unknown parameters within a Gaussian mixture linearly depends on the number of the training data10

points, and the computation of the outputs is independent of the size of the training data. Consequently, regression based on

a Gaussian mixture can be achieved very rapidly, compared to Gaussian process regression that grows with the data size. In

addition, the Gaussian mixture can also be used to solve the regression problem with multiple dimensions, and a subset of

dimensions can be selected to handle the missing data (Wen et al., 2015).

3 Data15

As part of the Missouri Experimental Project to Stimulate Competitive Research (EPSCoR), an X-band dual-polarization

radar in the University of Missouri (MZZU) was deployed at the South Farm Research Center (38.906◦N, 92.269◦W) in the

midwest of America in the summer of 2015. The details of the radar characteristics are described in Simpson and Fox (2017).

The primary objective is to provide the observations of precipitation near the surface by means of low-cost and fine-scale

X-band radar, and to fill the observational gaps of the S-band radar network in Saint Louis (KLSX), Kansas City (KEAX),20

and Springfield (KSGF). Within the MZZU radar coverage, the Hinkson Creek located near Columbia, MO, flows through a

catchment basin and eventually merges into the Missouri river, forming a typical urban watershed (Hubbart and Zell, 2013).

The radar can provide timely flash flooding warning for the Hinkson Creek watershed and surrounding areas.

In this study, we analyze the data collected by the X-band MZZU dual-polarization radar. The maximum detectable
:::::::::::
unambiguous

range of the MZZU radar is 94.64 km with a resolution of 260 m in range and 1◦ in azimuth. During the observational periods,25

the radar operates in a volumetric scanning mode of nine elevations at 0.8◦, 2◦, 3◦, 4◦, 5◦, 6◦, 7◦, 8.5◦, and 10◦, updated every

4 minutes. The raw radar data are organized and processed by an open-source software package called Python ARM Radar

Toolkit (Py-ART: Helmus and Collis, 2016). Moreover, to validate the Kdp estimation algorithm, we also use the data from

tipping-bucket rain gauges in the Missouri Mesonet weather station network, including Bradford Farm (38.897◦N, 92.218◦W),

Sanborn Field (38.942◦N, 92.320◦W), Auxvasse (39.089◦N, 91.999◦W), and Williamsburg (38.907◦N, 91.734◦W). The hori-30

zontal distances between the rain gauges and the radar center are 4.4 km, 6.0 km, 30.8 km, and 46.2 km, respectively. The first

elevations at Bradford and Sanborn may be affected by ground clutter, since the radar beams are very close to the ground, with

heights of 314.6 m and 336.9 m
:::
ASL, respectively, and therefore the

:::::::
including

:::
the

:::::
radar

:::::
tower.

:::::::::
Therefore,

:::
the second elevation

6



at 2◦ is selected for validation. In contrast, the first elevations at Auxvasse and Williamsburg reach about 723.8 m and 999.0

m
::::
ASL, which are less contaminated by ground clutter. Furthermore, the point measurement of rain gauge is different from

the volumetric measurement of radar, imposing additional errors on the comparison between radar and gauge (Anagnostou

et al., 1999). The radar-based rain rate is then derived by averaging Kdp over three successive range gates and three successive

azimuthal rays with a total of 9 values centered over each gate in order to obtain good consistency between the instruments. In5

addition, the rain gauges are carefully calibrated in terms of instrumentation failure, clogging, and other discrepancies between

the devices (Simpson and Fox, 2017), and well documented to provide long-term data for rainfall observations.

Table 1 summarizes the characteristics of rainfalls observed at Bradford, Sanborn, Auxvasse and Williamsburg between

April 2016 and June 2018. It is clear that the hourly rain amounts are dominated by light rain, with similar means of 2.0–2.1

mm at the four sites, indicating uniformly distributed rainfalls within the experimental region. On the other hand, the standard10

deviations of Bradford and Williamsburg are 3.5 mm and 3.7 mm, respectively, a little larger than that of 3.3 mm at Sanborn

and Auxvasse. Moreover, Sanborn gives the highest hourly rain amount, the lowest total rain amount, and the second lowest

duration out of the four sites, due to the effects of urban heat island (Hubbart et al., 2014). The second highest maximum

hourly rain amount is recorded at Williamsburg, however, the total rain amount and duration are also the highest among the

four sites, implying that convective rain is the most frequent at Williamsburg. In contrast, stratiform rain is more common15

at Bradford, since the gauge records the lowest maximum hourly rain amount and duration, and the second total hourly rain

amount. In addition, it can be seen that Auxvasse also provides useful data for the comparisons between gauges and between

radar and gauge, though the statistics are all ranked in the middle of the four sites. Overall, the rain gauge data at Bradford,

Sanborn, Auxvasse and Williamsburg are representative and sufficiently large, leading to a valid dataset for testing the Kdp

and Kdp-based rain amounts.20

4 Kdp estimation
::::::::
retrieval

As discussed in section 2, the joint probability density function (PDF) based on a Gaussian mixture can be used to derive the

regression model for Kdp estimation. The Gaussian mixture method (GMM) not only estimates the expected values of Kdp by

differentiating the conditional expectation of φdp::::
Φdp, but also gives an estimation of Kdp variance by regarding the errors in

the calculation of the first derivative of φdp :::
Φdp. In this section, we describe GMM for the Kdp estimation using MZZU radar25

data. Figure 1 illustrates the flowchart of GMM (Fig. 1.b), comparing to that of the linear regression model (LR; Fig. 1.a).

From the chart of LR in Fig. 1.a, we can see that after the radar measurements are collected, the φdp :::
Ψdp:

is unfolded, and

then the clutter is removed. After these corrections, an iterative filtering method is applied to the φdp :::
Ψdp:profile. An adaptive

method is finally used to estimate the Kdp profile according to the values of ZH . The Gaussian mixture model, on the other

hand, processes φdp::::
Ψdp differently. First of all, the clutter is masked out according to the thresholds of ZH and the variation of30

φdp:::
Ψdp. Secondly, the range measurements r and processed φdp :::

Ψdp:
are fitted into a Gaussian mixture to yield the joint PDF,

while a smoothed φdp profile and the variances
::
the

::::
Ψdp:::::

mean
::::
and

:::
the

::::
Ψdp :::::::

variance
:
are obtained by taking the first raw and

second central moments of the conditional PDF of φdp :::
Ψdp:

given r. Thirdly, some specific clusters in the Gaussian mixture
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PDF are adjusted to solve the issues, such as ambiguous φdp::::::::
problems

::
of

:::::::::
ambiguous

::::
Ψdp and backscattering differential phase

shift δco ::
in

:::::
order

::
to

:::::
derive

:::
the

::::
PDF

:::
of

:::
Φdp. Fourthly, a raw Kdp profile is calculated from the first derivative of the expected

values of φdp:::
Φdp, and the associated variances are obtained via a Taylor series expansion. Finally, the raw Kdp profile is

smoothed, and consequently, the variances are reduced. In addition, new φdp::::
Φdp with lower variances can be re-constructed

from the Kdp estimates.5

4.1 Data masking

The presence of clutter in the φdp ::::
Ψdp measurements may severely affect the Kdp estimation, producing significantly large

variations on the estimates. It is well known that the effect of clutter can be reduced by applying a spectrum filter to the time-

series data (e.g., May and Strauch, 1998; Hubbert et al., 2009). However, some residual clutter echoes are still shown on the

radar measurements including φdp::::
Ψdp (Wen et al., 2017). Therefore, the clutter needs to be well handled in GMM, prior to10

the deviation of the regression model based on the joint PDF.

In LR, the clutter is often eliminated by some criteria based on φdp ::::
Ψdp or ρhv . For instance, we use the thresholds of local

standard deviation of φdp :::
Ψdp less than 10◦ to classify valid points. Further, ten consecutive range gates of valid points signify

the beginning of a rain cell, and five consecutive gates of invalid points finish the associated rain cell. Overall, the thresholds

give a fairly good performance on the MZZU radar, however, the clutter may be incorrectly identified in the regions of high15

reflectivity or for the clutter-contaminated weather echoes
:::::
echoes

::::::
mixed

:::
by

:::::::
weather

:::
and

::::::
clutter, which are often associated

with large φdp :::
Ψdp:

variation.

In contrast, GMM adopts sophisticated procedures, as depicted in Figure 2. It is clear that there are five stages in the data

masking, beginning with the input of raw φdp ::::
Ψdp and ending with masked data. At the first stage, the raw data are fitted

to a Gaussian mixture initialized by the k-means clustering, while the covariance is set to be diagonal for simplicity. The20

clusters with no more than 5 points are promptly masked out, before they pass to the second stage. Stages two, three and

four of the process all involve the clusters. At the second stage, the clusters are validated according to two sets of thresh-

olds with respect to mean reflectivity. For the MZZU radar, the ratio of the standard deviations, σ(φdp)/σ(r)
:::::::::::
σ(Ψdp)/σ(r),

less than 14.2◦ km−1, and σ(φdp):::::::
σ(Ψdp) less than 4.1◦ are used for Z

:::
ZH less than 41 dBZ. To reduce the effect of hail

contamination
::::::::::::::
mis-classification

::
in
:::
the

::::
hail

::::::
regions, the thresholds are increased for higherZ

::
ZH , resulting in σ(φdp)/σ(r)< 47.9◦ km−125

and σ(φdp)< 6.3◦
:::::::::::::::::::::::
σ(Ψdp)/σ(r)< 47.9◦ km−1

::::
and

::::::::::::
σ(Ψdp)< 6.3◦. Next, the entire φdp :::

Ψdp:profile is divided into multiple

rain cell segments by considering the gaps between two consecutive clusters. Similar to the first stage, the segments con-

taining no more than 5 points are excluded from the output of masked data. Following this, the dominant is determined

for each segment by comparing the the weight accumulations of weather and clutter clusters. For a clutter segment with

mean height below 200 m, the clusters within the segment are re-evaluated by thresholds of σ(φdp)/σ(r)< 2.0◦ km−1 and30

σ(φdp)< 0.8◦
::::::::::::::::::::::
σ(Ψdp)/σ(r)< 2.0◦ km−1

:::
and

:::::::::::::
σ(Ψdp)< 0.8◦, on the other hand, the clusters in a weather segment are re-

examined using σ(φdp)/σ(r)< 34.7◦ km−1 and σ(φdp)< 6.1◦
:::::::::::::::::::::::
σ(Ψdp)/σ(r)< 34.7◦ km−1

:::
and

::::::::::::
σ(Ψdp)< 6.1◦. This step can

efficiently identify the clutter-contaminated weather echoes, which are often associated with large variances. At the last stage,

some isolated points along the azimuth are obscured in the final results.
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Figure 3 illustrates two examples for data masking, including a convective case (Fig. 3
:
.a) and a stratiform case (Fig. 3

:
.b).

The data points in the two cases show steadily increasing trends related to anisotropic media along the wave propagation path.

However, between 1.3 and 15 km at an azimuth of 252◦ in the convective case (Fig. 3.a), the data present significant fluctuations

with the minimum value at about a few hundredths π rad
::
0◦

:
but the maximum value at π rad

::::
180◦. Since the dynamic range

of φdp :::
Ψdp:

is from 0 to 180◦ for the MZZU radar, the measurements near the ground are likely to be the clutter returns,5

verifying the results of data masking. After 15 km, the φdp :::
Ψdp:

points start from about π/4 rad
:::
50◦

:
and go all the way up

to π rad
::::
180◦. Notwithstanding this trend, the points sharply decrease to a few hundredths π rad

:::::
about

:::
10◦

:
at about 40 km,

indicating the occurrence of ambiguous φdp ::::
phase

:::::::
folding. The data masking can effectively detect the ambiguous φdp:::::

phase

::::::
folding, and provide valid masked data for deriving the joint PDF. On the other hand, the weather echoes are more frequently

observed at 1◦ in azimuth in the stratiform case (Fig. 3
:
.b). By taking a closer inspection on the φdp::::

Ψdp data, we can discern10

that the points largely fluctuate between 40 and 80 km due to low signal-to-noise ratio. In LR, these points may be incorrectly

discarded based on σ(φdp) ::::::
σ(Ψdp) thresholds, leading to some missing data in the stratiform regions. In contrast, the data

masking accurately identifies weather echoes characterized by a number of vertically-oriented density ellipses. The continuous

and uniformly-distributed regimes are consistent with the physical interpretation of stratiform precipitation. In addition, the

data masking is also sensitive to sudden jumps at the beginning of the φdp :::
Ψdp data, which may be caused by δco.15

4.2 φdp::::
Ψdp:

density estimation

In the previous section, it is shown that the φdp :::
Ψdp profile varies along the range r. It rises quickly for horizontally-oriented

anisotropic scatterers, and conversely, it falls steadily for vertically-oriented particles
::::::::::::::::::
(Marzano et al., 2010). To estimate the

relationship between r and φdp :::
Ψdp, we consider r as an independent variable, denoted as x, and φdp :::

Ψdp:
as a dependent

variable, denoted as y. If the minimization of mean square error is required, the regression function is obtained by taking the20

average value of y at fixed x, equivalent to estimating the expected values of y conditioned on x, i.e.,

ȳ(x) = E(y|x) =

∫
yp(y|x,β) dx, (10)

where β is a set of unknown variables, for example, β = (m,w,µ,Σ) for the mixture model. Since the Gaussian mixture can

be used to model any shapes of probability density with a rapid speed, the (x,y) points are then assumed to follow a joint PDF

of Gaussian mixture, as defined in Eq. (4). Moreover, the properties of the multivariate Gaussian distribution in each cluster25

determine the Gaussianity of the marginal distribution of either variable and the conditional distribution of one variable given

the other (Bishop, 2006). Therefore, the conditional PDF of y given x is expressed as

p(y|x,β) =

m∑
i=1

w
y|x
i N

(
y;µ

y|x
i ,Σ

y|x
i

)
, with (11)

µ
y|x
i = µyi + Σyxi (Σxxi )−1(x−µxi ), (12)

Σ
y|x
i = Σyyi −Σyxi (Σxxi )−1Σxyi , (13)30

w
y|x
i =

fi(x)

f(x)
=

wiN (x;µxi ,Σ
xx
i )∑m

j=1wjN (x;µxj ,Σ
xx
j )

, (14)
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where wi, µi = (µxi ,µ
y
i )T and Σi =

Σxxi Σxyi

Σyxi Σyyi

 are obtained by the EM algorithm. In Eq. (14), f(x) is the marginal

PDF of x with the parameters identical to the mixture, and fi(x) is the weighted marginal PDF of each cluster, i.e., f(x) =∑m
i=1 fi(x). By substituting Eq. (11) into Eq. (10) and noting the linearity of the mathematical expectation, the expected value

of y conditioned on x is then obtained as

E(y|x) =

m∑
i=1

fi(x)

f(x)
(aix+ bi), with (15)5

ai = Σyxi (Σxxi )−1, (16)

bi = µyi −Σyxi (Σxxi )−1µxi , (17)

and the conditional variance is given as (see Appendix B)

σ2(y|x) =

m∑
i=1

w
y|x
i

[
Σ
y|x
i +

(
µ
y|x
i

)2
]
−

(
m∑
i=1

w
y|x
i µ

y|x
i

)2

. (18)

Equations (15) and (18) play an important role in the joint PDF-based regression analysis, called the regression and skedastic10

functions (Spanos, 1999). In Eq. (15), it can be seen that the regression function in GMM consists of multiple linear kernels,

which is similar to LR. However, the weighting function wy|xi is not determined by the local structure but the marginal PDF

of global data x. Comparing to LR, GMM is more flexible to capture the data information, while it still retains a finite set of

parameters. Moreover, Eq. (18) readily estimates the point-wise variances σ2(y|x) that characterize the random errors in the

measurements, whereas these errors σ(φdp):::::::
σ(Ψdp) are often considered as constant

::::
small

::::
and

:::::
stable

::::::
values in LR.15

Figure 4 compares the φdp::::
Ψdp profiles given by Eqs. (15) and (18) with that obtained by LR. Figure 4.a gives the same

example as Fig. 3.a, but the EM algorithm is configured differently. In the φdp ::::
Ψdp density estimation, the mixture with full

covariance yields density ellipses of random shapes. Furthermore, the algorithm repeats the fitting procedures three times to

avoid the local maxima of the log-likelihood. Meanwhile, the choice of the cluster number relies on the Bayesian information

criterion calculated for each m, starting at 10 clusters. It can be seen that the mixture composed by density ellipses well20

characterizes the data points, since the root-mean-square error is small relative to the expected values. Between 15 and 35

km, the narrow ellipses result in φdp :::
Ψdp:

with a rising trend consistent with LR. On the other hand, the mixture has very

small variances, giving a high confidence for the fitted parameters. From 35 km, the ellipses become wider, and the associated

variances increase due to low signal-to-noise ratio at the edge of radar echoes. What is notable, however, is that the φdp::::
Ψdp

profile dramatically increases to a large value, whereas LR remains a relatively steady trend. It indicates the importance of the25

φdp::::
Ψdp unfolding for the φdp :::

Ψdp:
density estimation.

Figure 4.b presents another example of the density estimation. It is clear that the φdp ::::
Ψdp profiles produced by GMM and

LR both rise considerably along the range, and the trends for the two methods are very similar with a strong correlation of

0.998. The profile starts at about 1 rad
:::
50◦, and remains relatively stable before rising dramatically between 35 and 55 km. By

65 km, φdp::::
Ψdp has more than doubled, and then, there is a steady increase for φdp reaching about 2.3 rad

:::
Ψdp::::::::

reaching
:::::
about30

::::
130◦ at the end of the profile, which is around 1.3 rad

:::
70◦ up on the ranges of 0 and 35 km, and 0.3 rad

:::
10◦ more than recorded

10



at the ranges of 55 and 65 km. If we examine φdp::::
Ψdp measured at X-band frequency, we can see that some points fall out of

the error bars
::::
dash

::::
lines

:
corresponding to one standard error (i.e., 95% interval). Most notably, between 18 and 20 km, the φdp

:::
Ψdp:profile shows a sudden slump, indicating the occurrence of backscattering differential phase shift

::
δco. In conclusion, the

expected value and the variance of φdp :::
Ψdp:

can be obtained from the joint PDF, but the mixture needs to be tuned in terms of

φdp::::
Ψdp unfolding and δco elimination

:
in

:::::
order

::
to

:::::
obtain

:::
the

::::
PDF

:::
of

:::
Φdp.5

4.3 φdp::::
Ψdp:

unfolding and δco elimination

According to the continuity and consistency of φdp ::
the

:::::
phase

:
data, we can discern that some issues exist in the density es-

timation, such as ambiguous φdp ::::
Ψdp and δco. Since φdp :::

Ψdp:
is an range accumulative measurement of propagation phase,

depending on the initial φdp(0)
:::::
Ψdp(0). The measurements may exceed the dynamic range of 0–180◦ when the wave propagates

through a rain medium. This situation is even more significant at X-band frequency than S-band due to the inverse relation10

of the wavelength and the rate of phase shift. Nevertheless, it can be noted that φdp :::
Ψdp:

gives a non-negative trend along the

range for rain, and therefore, the ambiguous φdp :::
Ψdp:

may be corrected accordingly (Wang and Chandrasekar, 2009).

In LR, φdp :::
Ψdp:

is first averaged over a small window for weather data, and a linear fit is then performed to obtain the

increment for the range gate next to the window. In the following stage, a reference is predicted by summing up the average

and the increment, and compared to the observed value at the same gate. If the difference between the predicted and observed15

values is larger than 90◦, the observed φdp ::::
Ψdp is then increased by 180◦. Finally, the correction process is iteratively operated

until the last gate.

On the other hand, the φdp :::
Ψdp:

unfolding is more straightforward in GMM. After
::::::
Figure

:
5
::::::
shows

:::
the

::::::::
flowchart

::
of

:::
the

::::
Ψdp

::::::::
unfolding

:::
and

:::
the

:::
δco::::::::::

elimination.
:::::
After

::::::::
obtaining

:::
the

::::
PDF

::
of

::::
Ψdp,

:::
the

:::::
initial

::::
step

::
of the initial stage of generating the mixture,

:::
Ψdp:::::::::

unfolding
::::::
selects the density ellipses corresponding to more than

:::
with

::
at
:::::
least 6 data pointsare transformed into the next20

stage, which compares the
:
.
:::::
Next,

:::
the

::::::
second

::::
step

::::::::
calculates

:::
the

:::::::::
difference

::
of

:::
the

:
means µi of

:::::::
between

:::
the

:
two consecutive

density ellipses along the range. At this point, the mixture
::::
PDF

::
of

::::
Ψdp:

is ready to be corrected for ambiguous φdp. The
::::
Ψdp.

::
In

:::
the

::::
final

::::
step,

:::
the

:
mean of the latter density ellipse is finally added up 180◦, if the former mean is larger than the latter one

by 80◦.

As illustrated in Fig. 4.a, the profile φdp reaches π rad
:::
Ψdp:::::::

reaches
::::
180◦

:
at about 38 km, and then becomes ambiguous25

between 38 and 42 km. In LR, the φdp :::
Ψdp:values at these locations are interpolated according to the trend of the previous few

gates, and the maximum value is π rad
::::
180◦. In contrast, the corrected density ellipses in GMM show an upward trend between

38 and 42 km, while the φdp :::
Ψdp:

profile reaches a maximum value of about 3.5 rad
::::
195◦, indicating the effectiveness of the

φdp::::
Ψdp unfolding in the region of heavy rain.

In addition to ambiguous φdp:::
Ψdp, the estimation of the joint PDF may also be affected by non-zero δco, which

:
is
:::::::
defined30

::
as

:::
the

:::::
phase

:::::::::
difference

:::::::
between

:::
the

:::::::::
horizontal

::::
and

::::::
vertical

:::::::::::
polarizations

:::::
upon

:::
the

::::::::::::
backscattering

:::
of

:::
the

:::::::
particles

::
in
::

a
:::::
radar

::::::::
resolution

:::::::
volume.

::::
This

:::::
effect occurs more frequently at X-band frequency than S-band due to Mie effects.

::::::::
scattering

:::::::::::::::::
(Trömel et al., 2013)

:
.
:::
The

:
δco is shown as a sudden phase change over a small number of gates in a monotonically increasing trend for rain.

According to this manifestation, the magnitude and gate number of the φdp :::
Ψdp:

perturbation can be used to eliminate δco

11



(Matrosov et al., 2002; Otto and Russchenberg, 2011; Trömel et al., 2013)
:::::::::::::::::::::::::::::::::::::::::::
(Matrosov et al., 2002; Otto and Russchenberg, 2011)

.

The linear regression model often adopts an iterative filter technique, which generates a new φdp :::
Φdp:profile from either

the raw data or the filtered one based on a threshold (Hubbert and Bringi, 1995). If the filtering alters the data by 4◦, the new

profile selects the filtered data, otherwise the raw data are remained. The new profile is then used as input in the next iteration5

until the convergence condition is satisfied.

In GMM
::
As

::::::
shown

::
in

::::
Fig.

:
5, the δco elimination is embedded into the process of the φdp ::::

Ψdp unfolding. For two consecutive

density ellipses, the latter density ellipse is removed if its mean is larger than the former one by 85◦. Prior to this step, the mean

of the first density ellipse in the mixture should be below 90◦ to reduce the δco effect at the first few gates. Since δco occurs

over a small number of range gates, a mixture pruning is also employed to remove the density ellipses with weights less than10

0.0501, equivalent to 2% of the data.

It is clear from Fig. 4.b that δco has occurred at multiple locations in the data. The φdp::::
Ψdp profile starts at a high value and

drops somewhat over the first two gates. Notably, there is a narrow gap between 18 and 20 km, which is non-zero δco. These

data are characterized by a density ellipse with a slightly decreasing trend in GMM, and the resulting expected values are

consistent with the filtered data in LR. Between 70 and 90 km, a few isolated points beyond the density ellipses are associated15

with δco. Both of the two methods can produce φdp :::
Φdp:following the main trend of the data, which suggests that the process

is effective for the δco elimination.

4.4 Kdp ::::::
density

:
estimation

As discussed in section 2.1, Kdp is the first derivative of φdp :::
Φdp with respect to the range r. According to the mean value and

dominated convergence theorems, the derivative of the expected value of φdp ::::
Φdp conditioned on r is equal to the expected20

value of the derivative of φdp :::
Φdp:with respect to r, i.e., Kdp (see Appendix C). Following the notation in section 4.2, we

denote Kdp as y′. Therefore, the expected value of Kdp is obtained by taking the derivative of Eq. (15), yielding

E (y′|x) =
1

f2(x)


m∑
i=1

m∑
j=1

fi(x)fj(x)

[(
x−µxj
Σxxj

− x−µxi
Σxxi

)
(aix+ bi) + ai

] . (19)

The variance of y′ conditioned on x can be approximated by the first-order Taylor series expansion (see Appendix D), i.e.,

σ2 (y′|x) = [E′′(y|x)]
2
σ2(y|x), (20)25

where σ2(y|x) is given in Eq. (18). By taking the derivative of Eq. (19), E′′(y|x) is expressed as

E′′(y|x) = 2

[
m∑
i=1

ai

(
w
y|x
i

)′]
+

m∑
i=1

(aix+ bi)
(
w
y|x
i

)′′
. (21)

From Eq. (C8) in Appendix C, it is clear that(
w
y|x
i

)′
=
gi(x)

f2(x)
=

1

f2(x)

m∑
j=1

fj(x)fi(x)

(
x−µxj
Σxxj

− x−µxi
Σxxi

)
, (22)
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where gi(x) is the summation term. Subsequently, the second derivative of wy|xi is given as(
w
y|x
i

)′′
=
g′i(x)f(x)− 2f ′(x)gi(x)

f3(x)
, where (23)

f ′(x) =−
m∑
j=1

(
x−µxj
Σxxj

)
fj(x), (24)

g′i(x) =

m∑
j=1

fj(x)fi(x)

(x−µxi
Σxxi

)2

−

(
x−µxj
Σxxj

)2

+
1

Σxxj
− 1

Σxxi

 . (25)

Equations (19) and (20) are the regression and skedastic functions for the Kdp estimation. In Eq. (19), it is clear that5

the expected value of Kdp can be divided into two components, including Eqs. (C7) and (C11). On one hand, Eq. (C7) is

related to the changing rate ai weighted by the marginal distribution of each cluster in the mixture, equivalent to a linearly

weighted combination of small portions of data. If a data point is dominated by a specific cluster, i.e., the weight of a cluster is

significantly larger than the others, Kdp is determined by the coefficients of the cross-correlation and auto-correlation of r, and

independent of the means and auto-correlation of φdp :::
Φdp, yielding a constant value within the dominated cluster. On the other10

hand, Eq. (C11) shows that the weighting function also contributes to theKdp estimates by considering the Gaussian derivative

of the φdp :::
Φdp estimates in two or three adjacent clusters along the range. The sign of Kdp is then determined by the marginal

means and variances of the clusters, weighted by the difference of their contributions to φdp::::
Φdp.

In Eq. (20), it can be seen that σ2(Kdp) is proportional to σ2(φdp):::::::
σ2(Φdp), which is similar to Eq. (3) in LR. However,

σ2(φdp) :::::::
σ2(Φdp) varies along the range due to the random errors of the φdp::::

Φdp estimates in GMM, whereas σ2(φdp) :::::::
σ2(Φdp)15

is stable in LR. In addition, the statistical errors with respect to signal processing may be included in Eq. (20) as an additive

term, independent of φdp:::
Φdp. Moreover, the radar gate spacing and gate number for the Kdp estimation are often fixed in Eq.

(3), indicating σ2(Kdp) is also constant
:::::
stable

:
in LR. In contrast, σ2(Kdp) in GMM is closely related to the first derivative of

Kdp in Eq. (20). As the changing rate of Kdp increases, the random errors associated with the Kdp estimates rise dramatically.

Figure 6.b illustrates Kdp and its variance estimated from φdp :::
Φdp in Fig. 6.a, which is the same case as given in Figs. 3.a20

and 4.a. It is apparent that theKdp estimates present a large fluctuation, while the associated variances are significant. In GMM,

Kdp starts from about 0.5 deg km−1, and then fluctuates between 17 and 20 km and between 24 and 42 km. In the profile,

there are six local peaks with the maximum at about 8.5 deg km−1. Meanwhile, the Kdp variances vary as the Kdp estimates

change. Between 15 and 17 km and between 20 and 24 km, the Kdp estimates stand at a value, leading to small Kdp variances

in these regions. When short excursions are present, such as that between 18 and 20 km, Kdp variances increase significantly25

due to the contribution of the first derivative of Kdp in Eq. (20). Furthermore, the large φdp :::
Φdp:variances between 35 and 42

km also result in an increase of the Kdp variances. In contrast, LR gives less fluctuation in Kdp estimates with two peaks at

about 20 and 34 km. The comparison of Kdp obtained by the two methods may suggest that a smoothing procedure is required

to reduce the significant variance in GMM.
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4.5 Kdp smoothing

As discussed previously, the Kdp variance is small for high Kdp, but relatively large for low Kdp. Therefore, an adaptive

estimation is adopted in LR. For radar reflectivity (ZH ) less than 20 dBZ, the gate number n in Eq. (2) is set as 15, while n is

8 for 20≤ ZH < 35 dBZ, and 2 for ZH ≥ 35 dBZ, respectively. On the other hand, GMM also applies an adaptive technique

based on finite impulse filter (FIR) to the expected values of Kdp in order to reduce the associated variances. Figure 7 shows5

the time responses of FIR
:::
the

:::
FIR

:::::
with

:::
the

:::::
cutoff

:::::::::
frequency

::
of

:::::
0.053

::::
and

:::
the

::::::::
Gaussian

:::::::
window

::
of

::::
28,

:::::
which

:::::
yield

:::
the

::::
best

::::::::::
performance

:::
for

:::
the

::::::
MZZU

:::::
radar. The impulse response (Fig. 7.a) is peaked at the center, and gradually decreases towards the

two ends. If a longer window is required, the cut-off bounds are extended accordingly. Furthermore, the step response (Fig.

7.b) gives the accumulation of the impulse response, indicating that the magnitudes around the center change faster than that

at the two ends.
:
If

::
a
:::::
longer

::::::::
window

::
is

:::::::
required,

::::
the

::::
order

:::
of

:::
the

::::
FIR

::
is

::::::::
increased

:::::::::::
accordingly. In this study, the length

:::
we10

::::::::
gradually

:::::::
increase

:::
the

::::
order

:::::::
number

::
to

::::::::
calculate

:::
the

::::::::
difference

::::::::
between

:::
the

::::
Kdp ::::::

profiles
::::::::
obtained

::
by

:::
the

::::
FIR

:::::
filters

::::
with

::::
two

:::::::
adjacent

::::
order

::::::::
numbers.

::::
The

:::::::
optimal

:::::
order of the FIR window is subject to

::::
filter

::
is

::::
then

:::
set

:::::
when

:::
the relative square error of

two adjacent iterations
:::
the

:::
two

:::::
Kdp ::

is
:::::
below

:::::
0.001. For profiles with sufficiently large data points, the window length

::::
order

::::::
number

:
is between 29 and 33 for the MZZU radar.

To obtain the reduced variance, we consider the filter as a number of weighting functions, denoted as hi(x), and subsequently,15

the smoothed data become

y =

n∑
i=1

hi ∗xi (26)

where y is a smoothed data point, xi is the original data within the smoothing window, and n is the window length. By taking

the variance on both sides of Eq. (26), we have

σ2(y) =

n∑
i=1

h2
iσ

2(xi). (27)20

Therefore, the variance of the smoothed data is the weighted sum of the variances of the original data within the smoothing

window. Since the FIR coefficients are much less than unity, σ2(y) is smaller than σ2(x) at the same gate. Furthermore, the

Kdp estimates with the reduced variances can be used to re-construct φdp :::
Φdp:to obtain smaller φdp :::

Φdp:variances. For a fixed

gate spacing ∆r, the re-constructed φdp::::
Φdp for the jth range gate is

φΦ
:

j
dp =

j∑
i=1

Ki
dp∆r, and (28)25

σ2(φΦ
:

j
dp) =

j∑
i=1

σ2(Ki
dp)∆r

2. (29)

The red curves in Figs. 6.a and 6.b illustrate the re-constructed φdp :::
Φdp:and the smoothed Kdp using FIR, respectively. The

smoothed Kdp in Fig. 6.b is more consistent with the LR results compared to the original Kdp produced by the GMM. In the

first few kilometers, the smoothed Kdp gradually rises, and then peaks at about 21 km. With no fluctuations, the smoothed Kdp

14



falls gradually, followed by a growth before reaching a plateau at 33 km. After a slight decrease between 33 and 36 km, Kdp

rises dramatically, which is very different from LR. Meanwhile, the variances are small at the beginning, but get larger as Kdp

is climbing up. Between 20 and 33 km, the Kdp estimates do not change very much, leading to small variances in this region.

But after 33 km, the variances begin to increase and retain large values until the end of the profile. Overall, the smoothed

Kdp is stable, producing a profile considerably consistent with LR, and the variances are significantly reduced comparing to5

the original data. In addition, the re-constructed φdp::::
Φdp (Fig. 6.a) constantly increases with few local fluctuations, while the

associated variances are smaller than the φdp::::
Φdp variances in GMM.

5 Evaluation

In this section, a case study is first presented to qualitatively analyze the storm structure and evolution based on Kdp . The

radar-gauge dataset is then used to provide a quantitative evaluation for the Kdp estimation in terms of root mean squared error10

(RMSE), normalized bias (NB) and Pearson correlation coefficient (ρRG), which are defined as

RMSE =

√∑N
i=1 (Ri−Gi)2

N
, (30)

NB =

∑N
i=1(Ri−Gi)∑N

i=1Gi
, (31)

ρRG =

∑N
i=1(Ri− R̄)(Gi− Ḡ)√∑N

i=1(Ri− R̄)2

√∑N
i=1(Gi− Ḡ)2

, (32)

where N is the sample size, Ri is the individual radar hourly rain amount, Gi is the gauge data, and R̄ and Ḡ are the sample15

means for radar and gauge, respectively. The radar hourly rain amount is calculated based on the CASA radar rainfall algo-

rithm(Wang and Chandrasekar, 2010; Chen and Chandrasekar, 2015).
:
,
:::::
which

::
is

::::
given

::
as
::::::::::::::::::::::::::::::::::::::::::::::::::::
(Wang and Chandrasekar, 2010; Chen and Chandrasekar, 2015)

R(Kdp) = 18.15K0.79
dp ,

::::::::::::::::::

(33)

:::::
where

::
R

::
is

:::
the

::::::::::::
instantaneous

:::
rain

::::
rate

::
in

::::
mm

::::
h−1.

::
It
::
is
:::::
noted

::::
that

:::
the

:::::
radar

::::::
collects

::::::::::::
instantaneous

::::::::::::
measurements

:::::
every

::::
4–520

:::::::
minutes,

:::::::
whereas

::::
RGs

::::::
obtain

:::
the

:::::::::::
precipitation

::::::::::::
accumulations

::::
over

:::
60

::::::::
minutes.

:::::::::
Therefore,

:
it
::

is
:::::::::

necessary
::
to

:::::::
average

::::::
12–15

:::::::::
consecutive

:::::
radar

:::::
scans

::
to

:::::
derive

:::
the

::::::
hourly

::::
rain

:::::::
amounts.

:

5.1 Case study

On 24 March 2016, a severe storm developed in central Missouri and moved eastward across Columbia, MO, causing strong

winds and heavy precipitation at the surface. When the storm became mature, the radars at Kansas City and St. Louis observed25

the storm structure at high levels, since each radar was about 150 km away from the storm. Notably, the Kansas City radar

showed positive and negative Doppler velocities in a small area (not shown), indicating the occurrence of a downburst. On
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the other hand, the MZZU radar illustrated a bow echo of ZH close to the radar center (Figs. 8.b). In addition to ZH , the

GMM-based Kdp (Figs. 8.d, e and f) was also obtained to investigate the storm structure near the surface.

Figure 8 illustrates that the convective storm evolves from a strong and large echo to a bow shape echo, and then dissipates

at far range. At 0304 UTC (Fig. 8.a), a cell with strong ZH moves into the radar area, while Kdp is moderate with a maximum

of about 3 deg km−1 (Fig. 8.d). As the cell is transforming to a bow shape, the radar echo becomes intensive, and forms a rain5

band with embedded convective cores (Fig. 8.b). It is clear to see thatKdp reaches over 10 deg km−1 in these core regions (Fig.

8.e), indicating very heavy precipitation at the surface. With the fast movement of the storm, the downburst has been weaken,

and the storm starts to dissipate (Fig. 8.c). At 0441 UTC, it can be seen that Kdp is gradually reduced at the far range, while its

maximum is much less than that at the mature stage.

In this storm, the bow echo is shown as a number of convective cores embedded in a rain band, while the downbursts10

occured at the leading edge near the echo center. The bow echo can be considered as a mesoscale convection with a horizontal

dimension of more than 60 km. To gain a further insight, Fig. 9 shows raw φdp :::
Φdp:and Kdp for the bow echo. In Fig. 9.a, raw

φdp :::
Φdp presents large gradients along the leading edge, rising from about 50◦ to over 140◦. Due to the sharp increase, φdp

:::
Φdp:exceeds the maximum dynamic range, leading to ambiguity in the areas of X:-20~-18 km and Y:12~18 km and X:-40~-23

km and Y:-8~-5 km. In addition, the echoes behind the convective cores occasionally vanish as a result of signal attenuation.15

Nevertheless, LR (Fig. 9.b) produces continuous Kdp by φdp :::
Φdp:unfolding and linear interpolation according to the trends of

the profiles, but some missing data still exist within the storm
:
,
:::
due

::
to
::::

low
::::::::::::
signal-to-noise

:::::
ratio. In contrast, GMM (Fig. 9.c)

corrects these data with the expected values derived from the joint PDF, and simultaneously obtains the statistical errors in the

production of Kdp. It is evident that the GMM method can efficiently handle the missing data via the mixture model, which

is another advantage over the LR model. Furthermore, the statistical errors are not very large in these areas, since the missing20

data are filled by the distribution of the entire data profile. Additionally, the GMMKdp estimates are generally a few deg km−1

higher than the LR ones, particularly for the regions of high ZH .

By taking a closer look at GMM Kdp, we can see that the bow echo is generally characterized by Kdp of above 2.5 deg

km−1, while five pockets of high Kdp are identified. In the bow head, the first pocket presents very high Kdp associated with

a rapid growth of φdp::::
Φdp. Behind this pocket, there is a region of negative Kdp, whereas LR generally yields positive values.25

It may be due to a reduction of cross-correlation coefficient caused by low signal-to-noise ratio, since the signals have been

significantly attenuated after propagating through the pocket. In the middle of the second and third pockets in the bow center,

LR and GMM both show lower Kdp comparing to the two pockets, while Kdp is substantially consistent with the gradient of

φdp::::
Φdp in the area. By considering the high ZH in Fig. 8, these moderate Kdp values may indicate less anisotropic scatterers,

such as small hail in the process of wet growth. Similarly, a hail signature with maximum ZH of above 66 dBZ and small Kdp30

of 1~2 deg km−1 can also be identified in the middle of the fourth and fifth pockets in the bow tail. Along with the expected

values of GMM Kdp, Fig. 9.d depicts the statistical errors σ(Kdp) in the calculation of the expected values. The five pockets

of high Kdp are generally associated with small σ(Kdp) of a few tenths deg km−1. However, the estimates behind the top four

pockets yield very large σ(Kdp) with a maximum above 10 deg km−1, and the expected values of Kdp are sometimes below 0

deg km−1, such as X:-25~-20 km and Y:11~20 km. In contrast, a region of high σ(Kdp) appears in front of the bottom pocket,35
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superimposed on the high ZH area associated with hail. In conclusion, the GMM Kdp estimates of high confidence give good

agreement with the gradients of φdp :::
Φdp:in the leading edge of the bow echo, while large σ(Kdp) are expected at the region of

high variation of the Kdp estimates.

::::::::
Moreover,

:::
the

::::::::::::
computational

::::
time

::
is

::::::
crucial

:::
for

:::
the

:::::::
real-time

::::::::::
application

::
of

:::
the

::::
Kdp :::::::

retrieval
:::::::::
algorithms.

:::
For

:::
the

::::
data

::
in

::::
Fig.

::
9,

::
the

::::::
GMM

:::::
takes

:::::
about

::::::::::
7.058/4.068

:::::::
seconds

::
to

::::::
process

:::
the

::::
Kdp:::::::::::

with/without
:::
the

::::
data

::::::::
masking,

:::::::
whereas

:::
the

:::
LR

:::::::
reduces

:::
the5

::::
time

::
to

:::::
about

:::::
2.037

:::::::
seconds.

::
It

::::::::
indicates

:::
that

:::
the

:::
LR

:::
has

:::
the

::::::::::
advantages

::
of

:::::::::
simplicity

:::
and

:::::::::
efficiency.

:::::::::::
Nevertheless,

:::
the

::::::
GMM

:::
can

:::::
obtain

:::::
more

::::::::::
information

::::
from

:::
the

:::::
radar

::::
data,

:::::
which

::
is
::::::
useful

:::
for

::
the

::::::
model

:::::::
studies.

5.2 Statistical analysis

In order to quantitatively evaluate the accuracy of GMM Kdp, hourly accumulated rain amounts are derived from the X-

band rainfall rate algorithm (Chen and Chandrasekar, 2015), and compared to the rain gauge data collected at Bradford,10

Sanborn, Auxvasse and Williamsburg between 1 April 2016 and 2 June 2018. The scatterplots presented in Fig. 10 illustrate

the comparison between GMM-based radar and gauge rain amounts, and the accompanying table (Table 2) gives RMSE, NB

and ρRG results obtained by GMM and LR.

Consistent with the data in Table 1, the rainfall at the four sites is predominately made up of light rain with hourly rain

amounts no more than 2.5 mm h−1. Nevertheless, according to Fig. 10, moderate rain with amounts between 2.6 and 8 mm15

h−1 gives a considerable contribution to the total rain events, followed by a small portion of heavy rain with amounts more

than 8 mm h−1. When we study the scatterplots and statistics for each of the four sites, it is apparent that Bradford (Fig. 10.a

:::
and

:
b) and Sanborn (Fig. 10.b

:
c

:::
and

:
d) are more concentrated on the red line than Auxvasse (Fig. 10.c

:
e
:::
and

:
f) and Williamsburg

(Fig. 10.d
:
g
:::
and

::
h), since Bradford and Sanborn are closer to the radar. Accordingly, RMSEs for Bradford and Sanborn (Table

2) are relatively small, about 13%~35% lower than Auxvasse and Williamsburg. Furthermore, it can be seen that Bradford and20

Sanborn show negative bias associated with negative NBs, indicating an underestimation of rain amounts by GMM Kdp. In

contrast, a slight overestimation may be concluded for Auxvasse and Williamsburg by considering the point trends and the

positive NBs. Additionally, Sanborn claims the highest ρRG out of the four sites, yielding the best consistency between radar

and gauge.

When compared to LR statistics as given in Table 2, it is clear that GMM improves the RMSEs, NBs and ρRG for Auxvasse25

and Williamsburg. Notably, the GMM-based NB for Auxvasse reaches a very small value of 0.04mm, one fifths of LR-based

NB. For Bradford, RMSE is reduced by GMM, but the absolute value of NB is slightly increased, while ρRG remains the same.

On the other hand, for Sanborn, the GMM-based RMSE, NB and ρRG get worse by a few hundredths of millimeters, which

may be due to the local complex terrain near the radar. Overall, the rain amounts deduced from
:::::
rainfall

::::::::
estimates

::
of

:
GMM Kdp

are highly consistent with the rain gauge data, and GMM gives
::::
give a better performance than

:::
that

::
of LR in terms of RMSE,30

NB and ρRG at the far ranges.

:
It
::
is
:::::
clear

:::
that

::::
the

:::
rain

:::::
rates

:::::
based

:::
on

:::
the

:::::
GMM

:::::
Kdp ::::

have
::
a

::::::::
moderate

::::::::::
consistency

::::
with

:::
the

::::
rain

:::::
gauge

:::::
data.

::
To

::::::::
improve

::
the

:::::::
results,

:::::
some

::::::::
advanced

::::
rain

:::
rate

::::::::::
algorithms

:::
can

:::
be

:::::::::
considered,

:::::
such

::
as

:::
the

:::::::
rain-ice

:::::::::
separation

::::::::
technique

::
in
::::

the
:::::::
IFloodS

::::::::
campaign

:::::::::::::::::
(Chen et al., 2017b)

:::
and

:::
the

:::::::::::
radar-gauge

::::::::::
comparison

:::::::
method

::
in

:::
the

:::::::
MC3E

::::::::
campaign

:::::::::::::::::::::
(Giangrande et al., 2014)

:
.
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:::::::::::
Nevertheless,

:::
the

::::::
GMM

:::
has

:::
the

:::::::::
advantage

::::
over

:::
the

:::::::
existing

::::::::
methods,

:::::
since

::
it

:::
can

:::::
yield

:::
the

::::::::
variance

::
of

:::::
Kdp.

:::::::::::
Furthermore,

::
the

::::::::
variance

::
of

::
R

:::
can

::::
also

::
be

:::::::
obtained

:::
by

:::
the

::::
Kdp ::::

mean
::::
and

:::
the

:::
Kdp::::::::

variance
::
via

:::
the

:::::::
R–Kdp:::::::

relation,
::::::
leading

::
to

:::
the

:::::::::
variability

::
in

:::
the

:::::
error

::::::::::::
characteristics

::
of

:::
R.

:::::
Thus,

::
the

::::::::
variances

::::
can

::
be

::::
used

::
to
:::::
study

:::
the

:::::::::
streamflow

::::::
trends

::
in

:::
the

::::::::::
hydrological

::::::
model.

:

6 Summary and discussions

In this study, we proposed a probabilistic method based on Gaussian mixture model to estimate the specific differential phase5

Kdp, which is the range derivative of differential phase shift φdp:::
Φdp. The Gaussian mixture method (GMM) not only obtained

the expected values of Kdp by differentiating the conditional expectation of φdp::::
Φdp, but also yielded the variance σ2(Kdp)

regarding the errors in the calculation of the first derivative of φdp :::
Φdp.

As an initial step of GMM, the data masking was performed to eliminate the the residual clutter in the φdp measurements

:::::::::::
measurements

:::
of

:::
the

::::
total

::::::::::
differential

:::::
phase

::::::
(Ψdp). The data of r and φdp :::

Ψdp:
were first fitted into a simplified Gaussian10

mixture to generate a number of clusters, which were validated against the two sets of the σ(φdp) and σ(φdp)/σ(r)
::::::
σ(Ψdp)

:::
and

:::::::::::
σ(Ψdp)/σ(r)

:
thresholds given by radar reflectivity ZH . The clusters were then combined to form the rain cell segments,

and the segments were classified by comparing the weight accumulations of weather and clutter clusters. Next, the clusters

within each segment were re-evaluated by the thresholds according to the segment types. Finally, the azimuthally isolated

points were masked out.15

Secondly, the joint PDF
:::::::::
probability

::::::
density

:::::::
function

::::::
(PDF)

:
was obtained by fitting the data of r and φdp :::

Ψdp:
into a mix-

ture model with full covariance, where the cluster number m, weight w, mean µ and covariance Σ were optimized via the

Expectation-Maximization (EM) algorithm. Subsequently, the PDF of φdp :::
Ψdp:

conditioned on r was also a mixture with

parameters related to the joint PDF. Finally, new φdp :::
the

::::
Ψdp:::::

mean
:
was estimated by the conditional expectation, and the

statistical errors σ2(φdp) :::::::
σ2(Ψdp) were given by the conditional variance, which was not always constant, but varied with w20

and the marginal PDF of r.

Thirdly, the ambiguous φdp::::
Ψdp and backscattering differential phase shift δco were corrected by examining the two adjacent

density ellipses in the mixture. On one hand, if the former density ellipse had a mean larger than the latter one by 80◦, the

latter mean was added to 180◦ for φdp :::
Ψdp:

unfolding. On the other hand, if the former mean was smaller than the latter one by

85◦, the latter density ellipse was removed as δco. Moreover, for δco elimination, the first density ellipse mean was assumed as25

below 90◦, while the density ellipses with small weights were also removed.

Fourthly, the joint PDF of r and φdp ::::
Φdp was used in the calculations of Kdp and σ2(Kdp). Since Kdp was the range

derivative of φdp:::
Φdp, the expected values of Kdp were then obtained via the derivative of the expected value of φdp:::

Φdp.

Moreover, by taking the first-order Taylor series expansion, σ2(Kdp) was the product of the square of the first derivative of

Kdp and σ2(φdp):::::::
σ2(Φdp), yielding non-constant values of σ2(Kdp).30

In the final step, the expected values of Kdp were smoothed to reduce the associated σ2(Kdp). An FIR filter was imple-

mented, and iteratively applied to the data to search for an optimal window length. Subsequently, the reduced σ2(Kdp) was
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obtained by the sum of the original σ2(Kdp) weighted by the FIR coefficient squares within the window. Additionally, new

φdp::::
Φdp were re-constructed from the smoothed Kdp, while σ2(φdp) ::::::

σ2(Φdp):was also reduced.

The experimental results with a severe storm observed by the X-band polarimetric radar in the University of Missouri

(MZZU) revealed the advantages of GMM. By studying the structure and evolution of a bow echo in the storm, it was concluded

that the GMM Kdp was consistent with the gradients of raw φdp :::
Φdp:along the leading edge of the bow echo, while large5

σ2(Kdp) occurred with high variation of Kdp. The GMM method produced results similar to the LR method, with the ability

to handle the missing data. Moreover, the hourly rain amounts based on Kdp were compared to the rain gauge data, showing

::::
fairly

:
good agreement between radar and gauge measurements. The rain amounts obtained by GMM Kdp gave improvements

over the linear regression model, particularly for the far ranges.

The potential applications of GMM Kdp and σ2(Kdp) include quantitative precipitation estimation (Cifelli et al., 2011;10

Chen et al., 2017a) and attenuation correction (Park et al., 2005). For quantitative precipitation estimation, the relationship

between Kdp and rain rate R is almost linear, since Kdp is about the fourth-order moment of raindrop size distribution,

and R is the 3.67th-order moment. As illustrated in Fig. 10, the R (Kdp) algorithm is consistent with the in situ measure-

ments. To further investigate the R errors, it is necessary to consider the Kdp errors in the calculation of the first deriva-

tive of φdp:::
Φdp. The standard deviation σ(Kdp) is then related to σ(R) by a factor of R/Kdp (Bringi and Chandrasekar,15

2001). In a similar manner, Kdp is linearly proportional to specific attenuation Ah :::
AH:

and specific differential attenuation

Ahv ::::
ADP:

(Bringi and Hendry, 1990). Therefore, the errors of radar reflectivity ZH and differential reflectivity ZDR may

also be proportional to σ(Kdp) after the attenuation correction, and eventually contribute to the R errors via R(ZH) and

R(ZH ,ZDR). In addition
::::::::
Moreover, the error estimates can be used to provide streamflow trends in hydrological model.

::
In

:::
the

:::::
future

:::::
study,

:::
the

::::::::
algorithm

:::
will

::::
also

::
be

::::::::
extended

::
to

:::::
other

::::::::::
frequencies,

::::
such

::
as

::::::
C-band

::::::::::::::::::::::::::::::::::
(Vulpiani et al., 2012; May et al., 1999b)20

:::
and

::::::
S-band

:::::::::::::::::::::::::::
(Bringi and Chandrasekar, 2001)

:
.
:::
The

:::::::::
thresholds

::
in

:::
the

::::
data

::::::::
masking,

:::
the

::::
Ψdp::::::::

unfolding
::::

and
:::
the

:::
δco::::::::::

elimination

:::
will

:::
be

:::::::
adjusted

::::::::
according

::
to

:::
the

:::::
radar

::::::::::::
specifications.

:::::::::::
Nevertheless,

:::
the

::::
steps

:::
for

:::
the

::::::::::
calculations

::
of

:::
the

:::::
PDFs

:::
of

:::
Ψdp::::

and
::::
Kdp

:::
will

::
be

:::::::::
remained.

Appendix A: Variance
:::::::::::::::
Regression-based

:::::::::
estimation

:
of φdp::::

Kdp

:::
Let

:::
the

::::
total

::::::::::
differential

:::::
phase

::::
Ψdp:::

be
::
y,
::::

and
:::
the

::::::
range

::::
gate

:
r
:::

be
:::
x.

:::
The

:::::
Ψdp ::::::

profile
::::
over

:::::
small

:::::
range

::::::::
segments

::::
can

:::
be25

:::::::::::
approximated

::
by

::
a
::::::::
first-order

::::::::::
polynomial,

:::
i.e,

:

y = β0 +β1x+ ε,
::::::::::::::

(A1)

:::::
where

:::
β0 :::

and
:::
β1:::

are
::::

the
::::::::::
coefficients

::
in

:::
the

::::::
linear

:::::::::::::
approximation,

:::
and

::
ε
::
is

:::
an

::::
error

::::::::
function.

::
It
::::

can
:::
be

:::::::
assumed

::::
that

::
ε

::
is

::::::::::
independent

:::
and

:::::::::
individual

:::::::::
distributed

::::
with

::::
zero

:::::
mean

:::
and

:::::::
variance

::
of

::::::::
σ2
ε = σ2.

:

::
In

:::
the

:::::
linear

:::::::::
regression,

:
it
::
is
::::
easy

::
to
::::
find

::::
that30

β1 =

∑
i(xi− x̄)(yi− ȳ)∑

i(xi− x̄)2
.

:::::::::::::::::::::

(A2)
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:::::
where

::̄
x

:::
and

:̄
y
:::
are

:::
the

::::::
means

::
of

::
x

:::
and

::
y

::
in

:::
the

:::::::
segment,

:::::::::::
respectively.

:::::
Since∑

i

(xi− x̄)(yi− ȳ) =
∑
i

(xi− x̄)yi−
∑
i

(xi− x̄)ȳ

::::::::::::::::::::::::::::::::::::::::::

(A3)

:::
and∑
i

(xi− x̄)ȳ = ȳ

(∑
i

xi−Nx̄

)
= ȳ(Nx̄−Nx̄) = 0,

::::::::::::::::::::::::::::::::::::::::::::

(A4)

::
we

:::::
have5

β1 =

∑
i(xi− x̄)yi∑
i(xi− x̄)2

,

::::::::::::::::

(A5)

:::::
where

::
N

::
is

:::
the

:::::::
number

::
of

:::
the

::::
gates

::
in
:::
the

::::::::
segment.

:
It
::
is
:::::
noted

::::
that

:::
the

:::::
range

::::
gate

:
r
::
is
:::::::
equally

::::::
spaced

::::
with

::
an

:::::::
interval

::
of

::::
∆r,

::::
Ψdp::

is
:::
the

:::::::
two-way

::::::::::
propagation

::::::
phase

::::
shift,

::::
and

:::
Kdp::

is
:::
the

::::::::
one-way

::::::
specific

::::::::::
differential

:::::
phase.

::::
The

::::
Kdp :

is
::::
then

:::::::::
estimated

::
by

:

Kdp =

∑n
i=1 Ψdp (ri)

[
i− (n+1)

2 ∆r
]

1
6n(n− 1)(n+ 1)∆r2

.

:::::::::::::::::::::::::::::::

(A6)10

::
At

:::::::
S-band,

:::
the

::::::::::::
backscattering

:::::::::
differential

:::::
phase

::::
shift

:::
δco ::

is
::::
often

:::::::::
negligible,

:::
and

::::
thus

::::
Ψdp:::

and
::::
Φdp:::

are
:::::::::::::
interchangeable,

:::::::
leading

::
to

:::
Eq.

:::
(2).

:

::
By

::::::
taking

:::
the

:::::::
variance

:::
on

::::
both

::::
sides

::
of

:::
Eq.

:::::
(A5)

:::
and

::::::
noting

:
ε
::
is

:::
the

::::
only

:::::::
variable,

:::
we

::::
have

:

σ2(β1)
:::::

= σ2

(∑
i(xi− x̄)(β0 +β1xi + ε)∑

i(xi− x̄)2

)
:::::::::::::::::::::::::::::

(A7)

=

∑
i(xi− x̄)2σ2

ε

[
∑
i(xi− x̄)2]

2

::::::::::::::

(A8)15

=
σ2∑

i(xi− x̄)2

::::::::::::

(A9)

::::::
Similar

::
to

:::
Eq.

:::::
(A6),

:::
we

::::
have

σ2 (Kdp) =
σ2 (Ψdp)

1
3∆r2 [n(n− 1)(n+ 1)]

. #

:::::::::::::::::::::::::::::::::

(A10)

Appendix B:
:::::::
Variance

:::
of

::::
Φdp

We consider the range r as an independent variable, denoted as x, and φdp :::
Φdp:as a dependent variable, denote as y. The joint20

distribution of z = (x,y) follows a Gaussian mixture as

p(z) =

m∑
i=1

wiN (z;µi,Σi), (B1)

20



where wi, µi and Σi are the weight, mean and covariance for each component, respectively. The probability of y conditioned

on x is also a Gaussian mixture with parameters wy|xi , µy|xi and Σ
y|x
i , leading to the conditional expectation as

E(y|x) =

∫
y

m∑
i=1

w
y|x
i N

(
y;µ

y|x
i ,Σ

y|x
i

)
dy, (B2)

=

m∑
i=1

w
y|x
i

∫
y N

(
y;µ

y|x
i ,Σ

y|x
i

)
dy, (B3)

=

m∑
i=1

wiµ
y|x
i . (B4)5

and the second-order moment as

E(y2|x) =

∫
y2

m∑
i=1

w
y|x
i N

(
y;µ

y|x
i ,Σ

y|x
i

)
dy, (B5)

=

m∑
i=1

w
y|x
i

∫
y2N

(
y;µ

y|x
i ,Σ

y|x
i

)
dy, (B6)

=

m∑
i=1

w
y|x
i

[
Σ
y|x
i +

(
µ
y|x
i

)2
]
. (B7)

Therefore, the conditional variance is expressed as10

σ2(y|x) = E(y2|x)− [E(y|x)]
2 (B8)

=

m∑
i=1

w
y|x
i

[
Σ
y|x
i +

(
µ
y|x
i

)2
]
−

(
m∑
i=1

w
y|x
i µ

y|x
i

)2

. # (B9)

Appendix C: Conditional expectation ofKdp

First, we need to show that the derivative of the expected value of random variable y as a function of random variable x is equal

to the expected value of the derivative of the expected value of y. By the definition, the derivative of y is expressed as15

E′[y(x)] = lim
h→0

1

h
{E[y(x+h)]−E[y(x)]} (C1)

= lim
h→0

E

[
y(x+h)− y(x)

h

]
(C2)

= lim
h→0

E {y′[τ(h)]} , (C3)

where τ(h) ∈ (x,x+h) exists by the mean value theorem. By assuming |y′[τ(h)]| ≤ Z, we can use the dominated convergence

theorem to obtain20

E′[y(x)] = E

{
lim
h→0

y′[τ(h)]

}
(C4)

= E [y′(x)] . (C5)
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According to the conclusion in Eq. (C5), the expected value of y′ is expressed as

E(y′|x) = E′(y|x) =

m∑
i=1

w
y|x
i

(
µ
y|x
i

)′
+

m∑
i=1

(
w
y|x
i

)′
µ
y|x
i . (C6)

Since
(
µ
y|x
i

)′
= ai and wy|xi = fi(x)

f(x) , the first term is equal to

m∑
i=1

w
y|x
i

(
µ
y|x
i

)′
=

m∑
i=1

ai
fi(x)

f(x)
. (C7)

Meanwhile, the second term is given as5

m∑
i=1

(
w
y|x
i

)′
µ
y|x
i =

m∑
i=1

f ′i(x)f(x)− fi(x)f ′(x)

f2(x)
(aix+ bi). (C8)

Based on the properties of Gaussian function, the derivatives of fi(x) and f(x) are expressed as

f ′i(x) =−x−µ
x
i

Σxxi
fi(x), and (C9)

f ′(x) =−
m∑
j=1

x−µxj
Σxxj

fj(x). (C10)

By substituting Eqs. (C9) and (C10) into Eq. (C8), the second term is transformed as10

m∑
i=1

(
w
y|x
i

)′
µ
y|x
i =

1

f2(x)

 m∑
i=1

m∑
j=1

(
x−µxj
Σxxj

− x−µxi
Σxxi

)
fi(x)fj(x)(aix+ bi)

 . (C11)

By substituting Eqs. (C7) and (C11) into Eq. (C6), we obtain

E (y′|x) =
1

f2(x)


m∑
i=1

m∑
j=1

fi(x)fj(x)

[(
x−µxj
Σxxj

− x−µxi
Σxxi

)
(aix+ bi) + ai

] #. (C12)

Appendix D: Variance ofKdp

The first-order Taylor expansion is defined as15

g(y) = g(θ) + g′(θ)(y− θ) + ε, (D1)

where θ = E(y) is the mean of random variable y, and ε is the sum of the higher-order Taylor series. By considering the

conclusion in Eq. (C5), it can be noted that the expected values of the coefficients associated with the derivatives in Eq. (D1)

are zeros if the series is expanded at the mean value of y. By taking mathematical expectations on both sides of Eq. (D1), it is

transformed as20

E[g(y)]≈ g(θ) + g′(θ)[E(y)− θ] (D2)

= g(θ). (D3)
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From Eqs. (D1) and (D3), the variance of g(y) is approximated as

σ2[g(y)]≈ E
{

[g(y)− g(θ)]2
}

(D4)

≈ E
{

[g′(θ)(y− θ)]2
}

(D5)

= g′(θ)2σ2(y) (D6)

Let g(y) be y′, and then we have5

σ2(y′|x) = [E′′(y|x)]2σ2(y|x). (D7)

From Eq. (B9), we can see that

σ2(y|x) =

m∑
i=1

w
y|x
i Σ

y|x
i +

m∑
i=1

w
y|x
i

(
µ
y|x
i

)2

−

(
m∑
i=1

w
y|x
i µ

y|x
i

)2

. (D8)

By taking the derivative of Eq. (C6), the second derivative of the expected value of y conditioned on x becomes

E′′(y|x) =

m∑
i=1

w
y|x
i (µ

y|x
i )′′+ 2

m∑
i=1

(µ
y|x
i )′(w

y|x
i )′+

m∑
i=1

µ
y|x
i (w

y|x
i )′′ (D9)10

= 2

m∑
i=1

ai(w
y|x
i )′+

m∑
i=1

(aix+ bi)(w
y|x
i )′′, (D10)

since (µ
y|x
i )′ = ai and (µ

y|x
i )′′ = 0. From Eq. (C8), the first derivative of the weighting function in the conditional probability

is(
w
y|x
i

)′
=

1

f2(x)

m∑
j=1

fj(x)fi(x)

(
x−µxj
Σxxj

− x−µxi
Σxxi

)
. (D11)

Let gi(x) be the summation term. The second derivative is then expressed as15 (
w
y|x
i

)′′
=
g′i(x)f(x)− 2f ′(x)gi(x)

f3(x)
, where (D12)

gi(x) =

m∑
j=1

fj(x)fi(x)

(
x−µxj
Σxxj

− x−µxi
Σxxi

)
. (D13)

According to the properties of Gaussian mixture, the first derivative of the marginal distribution of x is

f ′(x) =−
m∑
j=1

(
x−µj

Σj

)
fj(x). (D14)
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Similarly, the first derivative of g(x) if given as

g′i(x) =

m∑
j=1

[
−
x−µxj
Σxxj

(
x−µxj
Σxxj

− x−µxi
Σxxi

)
fj(x)fi(x)− x−µxi

Σxxi

(
x−µxj
Σxxj

− x−µxi
Σxxi

)
fj(x)fi(x) +

(
1

Σxxj
− 1

Σxxi

)
fj(x)fi(x)

]
(D15)

=

m∑
j=1

[(
x−µxi
Σxxi

−
x−µxj
Σxxj

)(
x−µxi
Σxxi

+
x−µxj
Σxxj

)
fj(x)fi(x) +

(
1

Σxxj
− 1

Σxxi

)
fj(x)fi(x)

]
(D16)

=

m∑
j=1

(x−µxi
Σxxi

)2

−

(
x−µxj
Σxxj

)2
fj(x)fi(x) +

(
1

Σxxj
− 1

Σxxi

)
fj(x)fi(x) (D17)

=

m∑
j=1

fj(x)fi(x)

(x−µxi
Σxxi

)2

−

(
x−µxj
Σxxj

)2

+
1

Σxxj
− 1

Σxxi

 . # (D18)5

Data availability. The MZZU radar data can be made available upon request to the authors. The rain gauge data are available online:

http://agebb.missouri.edu/weather/stations/index.php.

Author contributions. NF designed the experiment and provided the radar data, GW developed the Gaussian mixture model and prepared

the manuscript, GW and NF performed the validation, and NF and PM reviewed the paper.

Competing interests. The authors declare that they have no conflict of interest10

Acknowledgements. The authors would like to express our sincere thanks to the anonymous reviewers for their valuable comments and

suggestions. This work was supported by Missouri Experimental Project to Stimulate Competitive Research (EPSCoR) of National Science

Foundation, under Award Number IIA-1355406. Any opinions, findings, and conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of the National Science Foundation.

24



References

Anagnostou, E. N., Krajewski, W. F., and Smith, J.: Uncertainty Quantification of Mean-Areal Radar-Rainfall Estimates, Journal of Atmo-

spheric and Oceanic Technology, 16, 206–215, 1999.

Aydin, K., Bringi, V., and Liu, L.: Rain-rate estimation in the presence of hail using S-band specific differential phase and other radar

parameters, Journal of Applied Meteorology, 34, 404–410, 1995.5
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Figure 1. Flowcharts of Kdp estimation algorithms used in the MZZU radar: (a) linear regression model, and (b) Gaussian mixture method.
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Figure 2. Flowchart of data masking.
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Figure 3. Examples of data masking: (a) a convective case (azimuth 252◦), and (b) a stratiform case (azimuth 1◦). The blue points and

ellipses represent the clutter data and clusters, respectively, while the red color corresponds to the weather echoes.
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Figure 4. Examples of φdp :::
Ψdp density estimation: (a) a φdp :::

Ψdp:
unfolding case, and (b) a δco case. The blue points are the processed

φdp :::
Ψdp:

data, the green curve represents the φdp :::
Ψdp:

profile obtained by the linear regression model (LR), and the red curve indicates the

φdp :::
Ψdp:

profile produced by the Gaussian mixture method (GMM). The error bars
:::
dash

::::
lines

:
are the standard deviations, resampled at a

frequency of 0.2 Hz, while the colored ellipses show the components of the Gaussian mixture.
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Figure 5.
:::::::
Flowchart

::
of

:::
the

:::
Ψdp::::::::

unfolding
:::
and

:::
the

:::
δco :::::::::

elimination.
:::
The

:::
µ0::

is
::
the

:::::
mean

::
of

:::
the

:::
first

::::::
density

::::::
ellipse.

:::
The

::
µ1::::

and
::
µ2:::

are
:::
the

:::::
means

::
of

::
the

:::
two

::::::::
consective

::::::
density

::::::
ellipses

::::
along

:::
the

:::::
range.

:::
The

::
µ1::

is
:::
the

::::
mean

::
of

:::
the

:::::
former

::::
one,

:::
and

::
the

:::
µ2 :

is
:::
the

::::
mean

::
of

:::
the

::::
latter

::::
one.
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Figure 6. Examples of Kdp estimation: (a) φdp:::
Φdp, and (b) Kdp. The blue curves are the φdp :::

Φdp:
and Kdp estimates obtained by the

Gaussian mixture method (GMM), the green curves represent the estimates derived from the linear regression model (LR), and the red

curves indicate the reconstructed φdp :::
Φdp:

and smoothed Kdp profiles (FIR). The error bars
:::
dash

::::
lines are the standard deviations, resampled

at a frequency of 0.2 Hz.
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Figure 7. Responses of finite impulse filter: (a) Impulse response, and (b) step response.
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Figure 8. A case study for GMM: (a) raw ZH at the development stage (03:04 UTC), (b) raw ZH at the mature stage (03:39 UTC), and

(c) rawZH at the dissipation stage (04:41 UTC). (d), (e) and (f) are the same as (a), (b) and (c), respectively, but for Kdp. The data were

collected at a elevation of 0.85◦ by the MZZU radar between 0304 and 0441 UTC on 24 March 2016.
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Figure 9. Kdp estimation for the mature stage: (a) raw φdp:::
Ψdp, (b) LR-based Kdp, (c) GMM-based Kdp, and (d) GMM-based

σ(Kpd)
::::::
σ(Kdp). The data were collected at 0339 UTC on 24 March 2016.
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Figure 10. Comparison between hourly radar and gauge data derived from GMM Kdp :::
and

:::
LR

::::
Kdp. (a)

:::::
GMM Bradford, (b) Sanborn

:::
LR

::::::
Bradford, (c)

:::::
GMM

::::::
Sanborn,

:::
(d)

:::
LR

:::::::
Sanborn,

::
(e)

:::::
GMM

:
Auxvasse,

:::
(f)

:::
LR

::::::::
Auxvasse,

::
(g)

:::::
GMM

::::::::::
Williamsburg

:
and (d

:
h)

::
LR

:
Williamsburg.

The data were collected between 1 April 2016 and 2 June 2018.
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Table 1. Characteristics of hourly rain gauge data at Bradford, Sanborn, Auxvasse, and Williamsburg between April 2016 and June 2018.

Mean: mean values, Std: standard deviation, Max: maximum values, Total: sums of rain amounts, and Duration: sum of rainfall time.

Sites Mean (mm) Std (mm) Max (mm) Total (mm) Duration (h)

Bradford 2.1 3.5 38.1 2224.9 1080

Sanborn 2.0 3.3 43.7 2181.4 1082

Auxvasse 2.0 3.3 38.4 2284.3 1144

Williamsburg 2.1 3.7 40.1 2495.9 1191
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Table 2. Statistics for the comparison between radar and gauge. RMSE: root mean squared error, NB: normalized bias, ρRG: Pearson

correlation coefficient; LR: linear regression model, GMM: Gaussian mixture method.

Algorithm Sites RMSE (mm) NB(mm) ρRG

LR Bradford 2.87 -0.28 0.84

Sanborn 1.97 -0.08 0.89

Auxvasse 3.25 0.21 0.67

Williamsburg 3.55 0.20 0.70

GMM Bradford 2.71 -0.31 0.84

Sanborn 2.06 -0.13 0.88

Auxvasse 3.14 0.04 0.69

Williamsburg 3.20 0.14 0.76
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