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Review #3

1 General comments5

1.1. It is not easy to provide a convincing validation of Kdp estimation, but some suggestions to improve it are provided

below (note than pages 2-14 describes the method, but only pages 14-16 are related to validation). More difficult is to get an

ultimate proof of the effectiveness of the method, but only a set of clues.

[response] We sincerely appreciate the reviewer’s efforts to give suggestions for the validation of the Gaussian mixture

method (GMM). We are also aware that the papers in atmospheric science often take 30% for the method description and 70%10

for the application and validation. Due to the length of the paper, we have to separate the materials into multiple papers, so this

paper is focused on the description of the Gaussian mixture method. We have also validated the method with case study and

statistical analysis using the MZZU radar data. It is noted that our study is not shown in a single paper, but in a series of papers.

1.2. The paper is correctly structured, but needs some improvement in order to be accepted for publication. The ac-

ceptance of the method will be depend also on practical aspects, such as the computational effort and robustness that,15

unfortunately are not considered in this manuscript.

[response] We are very glad that the reviewer pointed out the weakness of the paper, and we try hard to improve the paper

to meet the AMT standard. For the practical aspects including the computational effort and robustness, we will address these

issues in comment 2.2.

2 Major comments20

2.1. There is a problem in the use of symbols that affect the clarity of the manuscript. Kdp is estimated from the range

derivative of differential propagation phase Φdp, whereas the differential phase (usually indicated with Ψdp)that includes

the differential phase upon backscattering, that is not negligible at X band) is measured by radar. Moreover, in a paper
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about estimation methods, the estimated variable should be clearly distinct from the intrinsic variable. Usually, estimated

variables are indicated with a hat on top. Adopting these standard symbols (or another set of symbols authors could prefer)

would increase the readability of the manuscript.

[responses] It is absolutely true that the notations were ambiguous in the first manuscript. We have fixed this problem by

denoting the data as Ψdp before the backscattering differential phase shift (δco) elimination and as Φdp after it.5

[changes] We have made a number of changes through the paper, for example:

p.7, ln.20–30: From the chart of LR in Fig. 1.a, we can see that after the radar measurements are collected, the Ψdp is

unfolded, and then the clutter is removed. After these corrections, an iterative filtering method is applied to the Ψdp profile.

An adaptive method is finally used to estimate the Kdp profile according to the values of ZH . The Gaussian mixture model,

on the other hand, processes Ψdp differently. First of all, the clutter is masked out according to the thresholds of ZH and10

the variation of Ψdp. Secondly, the range r and Ψdp are fitted into a Gaussian mixture to yield the joint PDF, while the Ψdp

mean and the Ψdp variance are obtained by taking the first raw and second central moments of the conditional PDF of Ψdp

given r. Thirdly, some specific clusters in the Gaussian mixture PDF are adjusted to solve the problems of ambiguous Ψdp and

backscattering differential phase shift δco in order to derive the PDF of Φdp. Fourthly, a raw Kdp profile is calculated from the

first derivative of the expected values of Φdp, and the associated variances are obtained via a Taylor series expansion. Finally,15

the raw Kdp profile is smoothed, and consequently, the variances are reduced. In addition, new Φdp with lower variances can

be re-constructed from the Kdp estimates.

2.2. Aspects related to computational cost are neglected. Some figures about the computational efficiency of the method

need to be provided.

[responses] It is true that the computational time is important for the real-time application of the GMM. However, the time20

may vary for the PPIs. For example, the highest PPI in a volume takes less time than the lowest PPI, since it contains fewer

points. It is also true that GMM takes more time than the linear regression method (LR). For the PPI data used in section

5, the LR takes about 1.47 seconds for phase unfolding on the PC, 0.458 seconds for Ψdp smoothing and 0.109 seconds for

regression-based Kdp estimation. In total, the LR takes about 2.037 seconds if we ignore the time used for the inputs and

outputs. On the other hand, the GMM uses 2.99 seconds for data masking, 2.348 seconds for Ψdp density estimation, 0.7325

seconds for Ψdp unfolding and δco elimination and 0.98 seconds for Kdp estimation. In total, we need 7.058 seconds for this

case. If we skip the data masking process, we need about 4.068 seconds, about twice than the LR. Nevertheless, the GMM can

obtain more information from the radar data than the LR.

We intend to make our codes available to the community soon, so the readers may apply the algorithm to their radar and see

the computational time.30

[changes] We have made a number of changes:

p.16, ln. 26–29: Moreover, the computational time is crucial for the real-time application of theKdp retrieval algorithms. For

the data in Fig. 8, the GMM takes about 7.058/4.068 seconds to process theKdp with/without the data masking, whereas the LR

reduces the time to about 2.037 seconds. It indicates that the LR has the advantages of simplicity and efficiency. Nevertheless,

the GMM can obtain more information from the radar data, which is useful for the model studies.35
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2.3. Introduction is quite confusing. It recall several Kdp estimation methods (some of them are missing, such as Vulpiani

et. al. 2012, https://doi.org/10.1175/JAMC-D-10- 05024.1), but mixes general Kdp estimation methods with other methods

based on self-consistency of dual polarization measurements that are valid strictly in rain.

[responses] It is true that we missed the important paper about the Kdp estimation for the C-band radars. We have cited the

paper in the manuscript. Although the self-consistency relations may just be valid for rain, we respect the contributions to the5

X-band radars by the researchers who applied this technique to the Kdp processing. Thus, we still cite these papers in this

revision.

[changes] We have made a number of changes:

p.2, ln.11–12: Under the complex terrain, the Kdp retrieval algorithm needs to be modified to obtain the accurate rainfall

rate. Vulpiani et al. (2012) has opened new scenarios for the operational Kdp processing in the Italian C-band radar network.10

p.19, ln.3–4: In the future study, the algorithm will also be extended to other frequencies, such as C-band (Vulpiani et al.,

2012; May et al., 1999) and S-band (Bringi and Chandrasekar, 2001).

2.4. One of the advantages of GMM is that it can provide the variance associated the Kdp estimate. I think the authors

should explain why such result is important and how it can be used. Other methods, such as Kalman filter can provide the

variance of the estimate, but even linear regression can provide a standard error as the measure of the goodness of fitting.15

[responses] Indeed, the Gaussian mixture method has the advantage that it provides the variance of Kdp together with the

mean Kdp. Since the Kdp variance is nonconstant, it leads to the variability in the Kdp error characteristics. We can then use

the variance of Kdp to calculate the uncertainty of ZH and ZDR via the attenuation correction, and the uncertainty of R via

the R–Kdp relation. These uncertainties are useful for studying the streamflow trends in the hydrological model.

The Kalman filter method is also an excellent method for the Kdp estimation, since it can simultaneously obtain the Kdp,20

the attenuation-corrected ZH , the attenuation-corrected ZDR and δco. The method is then adapted to various environmental

conditions by considering Ψdp only. From Schneebeli et al. (2014), we can see that the primary difference is that the Kalman

filter method assumes the error covariance function follows a linear Gaussian distribution, whereas the GMM considers the

joint PDF of r and Ψdp as a non-linear Gaussian mixture. Thus, the GMM may have better performance when the data are

multimodal. Moreover, the Kalman filter method derive a priori from the measured DSD, leading to some constraints on the25

particle types. In contrast, the GMM fits the data to obtain the random errors of Ψdp data.

We will discuss the linear regression method in comment 2.5.

[changes] We have made a number of changes:

p.2, ln.34–p.3, ln.3: It is found that σ2(Kdp) is closely related to the square of the first derivative of Kdp and σ2(Φdp),

while large σ2(Kdp) is associated with high variation of Kdp estimates. When compared to the existing methods, our method30

considers the joint probability density function of the data as the non-linear Gaussian mixture, leading to better performance

for the multimodal data. The Kdp variance can be used to calculate the variances of ZH , ZDR and rain rate, and to study the

streamflow trends in the hydrological model.

p.2, ln.26–28: It is noticeable that the Kalman filter method minimizes the Gaussian error function to obtain the mean profile

of Kdp. It gives a significant improvement on the Kdp mean, particularly in the small-scale structure with high peaks.35
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2.5. The manuscript states that σ(Φdp) is constant. However, notoriously σ(Φdp) varies depending on SNR, width of

Doppler spectrum and copolar correlation coefficients that are not constant along the range.

[responses] We calculated the σ(Φdp) based on the work in Williams and May (2008) and Bringi and Chandrasekar (2001).

For the MZZU radar, it is equal to 2.61◦ by assuming 32 pulses, 1 m s−1 for Doppler spectrum and 0.98 for ρhv . It is true

that the SNR and Doppler spectrum may vary along the range, leading a variable σ(Φdp). However, in weather radar signal5

processing, the estimates of Φdp are obtained by averaging a number of continuous samples of the time-series data, yielding a

stable σ(Φdp). Sachidananda and Zrnic (1986) showed that σ(Φdp) is only a few degree. In theoretical work, we often assume

that σ(Φdp) is constant, since the signal processor normally does not output σ(Φdp).

[changes] We have made a number of changes.

p.2, ln.30–31: The Kdp variance is often inherited from the Φdp variance
(
σ2(Φdp)

)
leading to large relative errors for low10

Kdp with a fixed path length.

p.10, ln.12: whereas these errors σ(Ψdp) are often considered as small and stable values in LR.

p.13, ln.13: indicating σ2(Kdp) is also stable in LR.

3 Minor comments

3.1. Page 1: Line 10, raingauge data used for validation are relative to two years and 3 months, not three years.15

[changes] It has been changed to

p.1, ln.10: Furthermore, the performance is quantitatively assessed by two-year radar-gauge data, and the results are com-

pared to linear regression model.

3.2. Page 1: Line 15, please use different symbols for the measure differential phase shift and its component related to

propagation.20

[responses] As addressed in comment 2.1, we have fixed the notation problem in this revision.

3.3. Page 2: Line 5-6, "Therefore...". This is something to be demonstrated, it is not a consequence of the previous

statement.

[changes] If this comment means p.3, l.5–6, we have removed "Therefore".

3.4. Page 5: Line 25-30: Is there an implication of this sentence for Kdp estimation ?25

[responses] No, these sentences discussed the speeds for fitting a Gaussian mixture using the E-M algorithm or a typical

regression problem under the framework of the Gaussian mixture model. We have showed the speed of the GMM for Kdp

estimation via an example in section 5.1.

[changes] We have made a number of changes:

p.16, ln. 26–29: Moreover, the computational time is crucial for the real-time application of theKdp retrieval algorithms. For30

the data in Fig. 8, the GMM takes about 7.058/4.068 seconds to process theKdp with/without the data masking, whereas the LR

reduces the time to about 2.037 seconds. It indicates that the LR has the advantages of simplicity and efficiency. Nevertheless,

the GMM can obtain more information from the radar data, which is useful for the model studies.
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3.5. Page 6: Line 10. What is "the maximum detectable range"? is it the unambiguous range determined by the selected

PRF ?

[responses] It is true that we mean the unambiguous range here.

[changes] p.6, ln.17–18: The maximum unambiguous range of the MZZU radar is 94.64 km with a resolution of 260 m in

range and 1◦ in azimuth.5

3.6. Page 6: Line 10-25: are the height above the ground or ASL ? for the elevation of 0.8◦, at 4.4 km from radar the

height of radar beam is 314.6 m. Is it correct ?

[responses] It is ASL. Yes, it is true. We consider the altitude of our radar tower.

[changes] It has been changed to

p.6, ln.24–26: The first elevations at Bradford and Sanborn may be affected by ground clutter, since the radar beams are very10

close to the ground, with heights of 314.6 m and 336.9 m ASL, respectively, including the radar tower.

3.7. Page 8: Line 1-2: There is something odds in the sentence. Are clutter-contaminated echoes well identified or not ?

[changes] It has been changed to

p.8, ln.10–11: The clutter may be incorrectly identified in the regions of high reflectivity or for the echoes mixed by weather

and clutter.15

3.8. Page 8: lines 9-11. What is the need of eliminate hail contamination ? Is not Kdp computed in hail ?

[responses] Since melting hails or raindrops with ice cores make a significant contribution to the variation of Φdp, we need

to increase the thresholds for data masking in the regions of a mixture of rain and hail.

[changes] It has been changed to

p.8, ln.18–19: To reduce the mis-classification in the hail regions, the thresholds are increased for higher ZH , resulting in20

σ(Ψdp)/σ(r)< 47.9◦ km−1 and σ(Ψdp)< 6.3◦.

3.9. Page 8: Lines 18-32: I recommend to use degrees consistently in the manuscript and add a legend on x-axis (this is

valid for all the figures showing profiles). Given the range of unambiguous differential phase, it seems that MZZU features

the alternate polarization scheme. About the jump at the beginning of the profile in Fig. 3b: to be interpreted as δco there

should a peak of Zdr. Is this the case ?25

[responses] We have updated Figs. 3, 4 and 6. The cut-off in the range is due to the strong attenuation at X-band. Indeed,

there is a peak in ZDR in Fig. 1, however, the GMM does not rely on ZDR for the δco estimation. So, we would not show ZDR

in this revision.

3.10. Page 9. Lines 1-2: negative Kdp can be due also to non uniform beam filling (Ryzkhov 2007 https://doi.org/10.1175/JTECH2003.1),

which is a further source of error in computing Kdp (see manuscript at pag 15).30

[responses] The non-uniform beam filling may affect the error characteristics ofKdp, but we think the particle types primarily

determine the sign of Kdp here. We have given a reference about it (Marzano et al., 2010). The non-uniform beam filling is

beyond the scope of this paper, so we would not give any reference about it. The mis-matches between radar and rain gauge

are likely produced by the wet-radome attenuation. The readers may refer to the QPE papers for further information.

[changes] We have made a number of changes:35
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Figure 1. ZDR for Fig. 4.b

p.9, ln.8–9: It rises quickly for horizontally-oriented anisotropic scatterers, and conversely, it falls steadily for vertically-

oriented particles (Marzano et al., 2010).

3.11. Page 10. Again, please be sure that the interpretation of differential phase upon backscattering is correct.

[responses] We think our interpretation of δco is basically correct. To further clarify it, we have given the definition of δco.

[changes] We have made a number of changes:5

p.11, ln.22–24: which is defined as the phase difference between the horizontal and vertical polarizations upon the backscat-

tering of the particles in a radar resolution volume.

3.12. Page 11. Line 29. Section explains how unfolding works. Sometimes there are false alarms in unfolding. Could you

provide the rate of correct unfolding for the dataset used?

[responses] The false alarms do not occur very frequently, and we have not yet found any clear evidence of errors in unfolding10

in our two-year dataset. In some cases, the clutter may result in a false alarm, so we assume that the first cluster should be less

than a certain threshold (< 90◦). Even if the false alarm may occur, the Kdp smoothing removes the spike effect, producing the

correct Kdp means.

3.13. Page 13, line 22-23. Could authors please provide more details on how the weights are derived?

[responses] We generated the FIR filter using a window method. We have then given some details of the parameters in the15

method.

[changes] We have made a number of changes.

p.13, ln.31–33: Figure 7 shows the time responses of the FIR with the cutoff frequency of 0.053 and the Gaussian window

of 28, which yield the best performance for the MZZU radar.

p.14, ln.1–4: In this study, we gradually increase the order number to calculate the difference between the Kdp profiles20

obtained by the FIR filters with two adjacent order numbers. The optimal order of the FIR filter is then set when the relative
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square error of the two Kdp is below 0.001. For profiles with sufficiently large data points, the order number is between 29 and

33 for the MZZU radar.

3.14. Page 14: Line 23. Please provide information about how hourly rain is obtained from instantaneous radar mea-

surements.

[changes] We have made a number of changes:5

p.15, ln.9–11: It is noted that the radar collects instantaneous measurements every 4–5 minutes, whereas RGs obtain the

precipitation accumulations over 60 minutes. Therefore, it is necessary to average 12–15 consecutive radar scans to derive the

hourly rain amounts.

3.15. Page 15: Line 13-24. The presence of too many missing data for LR indicates a clear advantage for GMM. However,

it is not clear what is the cause of these missing data. Surprisingly is the presence of Kdp estimates beyond the edge of10

differential phase shift rays, especially for LR. Is it the effect of smoothing and/or extrapolation?

[responses] If we look at the raw data of ZH and Φdp, we can identify a number of missing data. The regions of the missing

data are extended due to the smoothing in the linear regression method. In contrast, the PDF of Φdp in the GMM can still

produce the Kdp means at these regions, giving better Kdp estimates than the LR. The extended Kdp values at the edges are

also due to the smoothing. We fill zero values at the edges by half of the window for the FIR filter. The resulting PPI will then15

present zero values at the edge.

[changes] We have made a number of changes:

p.16, ln.2–4: Nevertheless, LR (Fig. 9.b) produces continuous Kdp by Φdp unfolding and linear interpolation according to

the trends of the profiles, but some missing data still exist within the storm, due to low signal-to-noise ratio.

3.16. Page 15: Line 25. Notoriously, in rain, Kdp, Zh, and Zdr exhibit a self-consistency property. I recommend authors to20

exploit this property to validate their method to see whether the Kdp estimate is consistent with Zh and Zdr measurements.

[responses] That is an excellent idea. We have also considered the attenuation correction in our work. However, we think

this paper is very long, and it has all the components for a research article. We will include it in our future work.

Here are some examples.

3.17. Page 32: Figure 7: Please use larger font size.25

[changes] We have improved the layout and increased the font size.

3.18. Page 34: A Kdp rain algorithm is supposed to work well (at least better than a R(Z) algorithm) for high rainfall

rate. Instead, there are evident underestimates for high rainfall rates that likely affect RMSE. How about LR: does it yield

the same behavior?

[responses] Yes, the LR yields a similar behaviour. This underestimation is likely due to the wet radome attenuation. Our30

study shows that R(Z) is much worse than R(Kdp), giving a correlation coefficient of about 60%. In the revision, we have

provided the radar-gauge comparison figures for the LR (see Fig. 10).

3.19. Page 36: NB is not in mm.

[responses] It is true. The NB should be unitless.
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Figure 2. Self-consistency for ZH , ZDR and Kdp.
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