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1 Review #1

1.1. Readers would benefit from a more tutorial style as the topic is highly specialized. This regards both the Kdp estimation5

in general as well as the Gaussian mixture statistical modeling.

[response] This is really a good comment, since the paper describes a new Kdp estimation method. It is necessary to give

some details about this topic to readers in a variety of backgrounds. Therefore, we have provided an additional appendix related

to the regression-based estimation of Kdp.

[changes] p.4, ln.10–12: This method has been widely used in the existing radar system (Cifelli et al., 2018; Chandrasekar10

et al., 2018; Chen et al., 2017b, a). The details of the regression-based estimation of Kdp are given in Bringi and Chandrasekar

(2001) and Appendix A.

[changes] p.19, ln.6–p.20, ln.6: Appendix A: Regression-based estimation of Kdp

Let the total differential phase ψdp be y, and the range gate r be x. The ψdp profile over small range segments can be

approximated by a first-order polynomial, i.e,i15

y = β0 +β1x+ ε, (1)

where β0 and β1 are the coefficients in the linear approximation, and ε is an error function. It can be assumed that ε is

independent and individual distributed with zero mean and variance of σ2
ε = σ2.

In the linear regression, it is easy to find that

β1 =

∑
i(xi− x̄)(yi− ȳ)∑

i(xi− x̄)2
. (2)20

where x̄ and ȳ are the means of x and y in the segment, respectively. Since∑
i

(xi− x̄)(yi− ȳ) =
∑
i

(xi− x̄)yi−
∑
i

(xi− x̄)ȳ (3)
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and∑
i

(xi− x̄)ȳ = ȳ

(∑
i

xi−Nx̄

)
= ȳ(Nx̄−Nx̄) = 0, (4)

we have

β1 =

∑
i(xi− x̄)yi∑
i(xi− x̄)2

, (5)

where N is the number of the gates in the segment.5

It is noted that the range gate r is equally spaced with an interval of ∆r, ψdp is the two-way propagation phase shift, and

Kdp is the one-way specific differential phase. The Kdp is then estimated by

Kdp =

∑n
i=1ψdp (ri)

[
i− (n+1)

2 ∆r
]

1
6n(n− 1)(n+ 1)∆r2

. (6)

At S-band, the backscattering differential phase shift δco is often negligible, and thus ψdp and φdp are interchangeable, leading

to Eq. (2).10

By taking the variance on both sides of Eq. (5) and noting ε is the only variable, we have

σ2(β1) = σ2

(∑
i(xi− x̄)(β0 +β1xi + ε)∑

i(xi− x̄)2

)
(7)

=

∑
i(xi− x̄)2σ2

ε

[
∑
i(xi− x̄)2]

2 (8)

=
σ2∑

i(xi− x̄)2
(9)

Similar to Eq. (6), we have15

σ2 (Kdp) =
σ2 (ψdp)

1
3∆r2 [n(n− 1)(n+ 1)]

. # (10)

[response] The Gaussian mixture model is widely used in signal processing, but may be new in atmospheric science. To

interpret this model, we may think the mixture model is that the data looks multimodal, for example, a raindrop size distribution

(DSD) with multiple peaks. Trying to fit a multimodal DSD with a unimodal model will lead to poor fitting. An obvious way to

model a multimodal DSD would be to assume that it is generated by multiple unimodal DSD. In signal processing, a commonly20

used distribution is the Gaussian distribution. Therefore, modeling multimodal data as a mixture of many unimodel Gaussian

distributions makes intuitive sense. We have added more words about Gaussian mixture model.

[changes] p.4, ln.25: Intuitively, it is used to model the multimodal data, with each Gaussian component corresponding to a

subpopulation of the data.

1.2. I think, that it is important to point out that Kdp is calculated from a filtered (estimated) differential phase and not25

directly from its moment-based measurements.To distinguish the three, one may use psi, fi, k symbols.

[response] It is true that we need to derive φdp from the raw data ψdp before estimating Kdp, since the X-band radar is

affected by the backscattering differential phase δco. In fact, the Gaussian mixture method analyzes the raw ψdp to calculate
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the mean ψdp profile, and then remove δco to obtain the φdp. In the revision, we have corrected the notation problems by

denoting the data as the ψdp before δco elimination and as the φdp after it.

[changes] We have made a number of changes:

p.7, ln.20–30: From the chart of LR in Fig. 1.a, we can see that after the radar measurements are collected, the ψdp is

unfolded, and then the clutter is removed. After these corrections, an iterative filtering method is applied to the ψdp profile. An5

adaptive method is finally used to estimate the Kdp profile according to the values of ZH . The Gaussian mixture model, on the

other hand, processes ψdp differently. First of all, the clutter is masked out according to the thresholds of ZH and the variation

of ψdp. Secondly, the range r and ψdp are fitted into a Gaussian mixture to yield the joint PDF, while the mean ψdp and the

ψdp variance are obtained by taking the first raw and second central moments of the conditional PDF of ψdp given r. Thirdly,

some specific clusters in the Gaussian mixture PDF are adjusted to solve the problems of ambiguous ψdp and backscattering10

differential phase shift δco in order to derive the PDF of φdp. Fourthly, a rawKdp profile is calculated from the first derivative of

the expected values of φdp, and the associated variances are obtained via a Taylor series expansion. Finally, the rawKdp profile

is smoothed, and consequently, the variances are reduced. In addition, new φdp with lower variances can be re-constructed

from the Kdp estimates.

1.3. The authors should emphasize that the main advantage of their proposed method is in providing the estimation15

variance for the Kdp and not is providing better estimates of Kdp. This is evident in the long-term evaluation using rain

gauge data.

[response] This is absolutely right that the Gaussian mixture method has the advantage that it provides the variance of Kdp

together with the mean Kdp. Since the Kdp variance is nonconstant, it leads to the variability in the Kdp error characteristics.

Furthermore, the method yields the statistical uncertainty of Kdp, which is often missed in the existing methods. We can then20

use the uncertainty of Kdp to calculate the uncertainty of ZH and ZDR via the attenuation correction, and the uncertainty

of R via the R–Kdp relation. These uncertainties are useful for studying the streamflow trends in the hydrological model. It

is true that our rain rate estimates are not optimized for the MZZU radar, since we did not derive the R–Kdp relation in the

paper. For the rain rate estimation, one can refer to some advanced studies, such as the IFloodS (Chen et al., 2017a) and MC3E

(Giangrande et al., 2014) campaigns.25

[changes] We have made a number of changes:

p.2, ln. 34–p.3, ln.3: It is found that σ2(Kdp) is closely related to the square of the first derivative of Kdp and σ2(Φdp),

while large σ2(Kdp) is associated with high variation of Kdp estimates. When compared to the existing methods, our method

considers the joint probability density function of the data as the non-linear Gaussian mixture, leading to better performance

for the multimodal data. The Kdp variance can be used to calculate the variances of ZH , ZDR and rain rate, and to study the30

streamflow trends in the hydrological model.

p.17, ln. 20–25: It is clear that the rain rates based on the GMM Kdp have a moderate consistency with the rain gauge data.

To improve the results, some advanced rain rate algorithms can be considered, such as the rain-ice separation technique in the

IFloodS campaign (Chen et al., 2017a) and the radar-gauge comparison method in the MC3E campaign (Giangrande et al.,

2014). Nevertheless, the GMM has the advantage over the existing methods, since it can yield the variance ofKdp. Furthermore,35
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the variance ofR can also be obtained by the meanKdp and theKdp variance via theR–Kdp relation, leading to the variability

in the error characteristics of R. Thus, the variances can be used to study the streamflow trends in the hydrological model.

1.4. I suggest that the authors improve the quality of the figures: some lettering is not legible, the inter-panel space could

be reduced, etc.

[response] We have improved the figures according to the suggestion.5

[changes] Figures 1, 2, 4, 7, 8 and 9.
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