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Abstract.  17 

Ground-based microwave radiometers (MWRs) offer the capability to provide continuous, high-temporal 18 

resolution observations of the atmospheric thermodynamic state in the planetary boundary layer (PBL) with low 19 

maintenance. This makes MWR an ideal instrument to supplement radiosonde and satellite observations when 20 

initializing numerical weather prediction (NWP) models through data assimilation. State-of-the-art data 21 

assimilation systems (e.g., variational schemes) require an accurate representation of the differences between 22 

model (background) and observations, which are then weighted by their respective errors to provide the best 23 

analysis of the true atmospheric state. In this perspective, one source of information is contained in the statistics 24 

of the differences between observations and their background counterparts (O-B). Monitoring of O–B statistics is 25 

crucial to detect and remove systematic errors coming from the measurements, the observation operator, and/or 26 

the NWP model. This work illustrates a 1-year O-B analysis for MWR observations in clear sky conditions for 27 

an European-wide network of six MWRs. Observations include MWR brightness temperatures (TB) measured 28 

by the two most common types of MWR instruments. Background profiles are extracted from the French 29 

convective scale model AROME-France before being converted into TB. The observation operator used to map 30 

atmospheric profiles into TB is the fast radiative transfer model RTTOV-gb. It is shown that O-B monitoring can 31 

effectively detect instrument malfunctions. O-B statistics (bias, standard deviation and root-mean-square) for 32 

water vapor channels (22.24-30.0 GHz) are quite consistent for all the instrumental sites, decreasing from the 33 

22.24 GHz line center (2-2.5K) towards the high-frequency wing (0.8-1.3K). Statistics for zenith and lower 34 

elevation observations show a similar trend, though values increase with increasing air mass. O-B statistics for 35 

temperature channels show different behaviour for relatively transparent (51-53 GHz) and opaque channels (54-36 

58 GHz). Opaque channels show lower uncertainties (< 0.8-0.9 K) and little variation with elevation angle. 37 
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Transparent channels show larger biases (2-3 K) with relatively low standard deviations (1-1.5K). The 1 

Observations minus Analysis TB statistics are similar to the O-B statistics, suggesting a possible improvement to 2 

be expected by assimilating MWR TB into NWP models. Lastly, the O-B TB differences have been evaluated to 3 

verify the normal-distribution hypothesis underlying variational and ensemble Kalman filter-based DA systems. 4 

Absolute values of excess kurtosis and skewness are generally within 1 and 0.5 respectively for all instrumental 5 

sites, demonstrating O-B normal distribution for most of the channels and elevations angles.  6 

 7 

1 Introduction 8 

The new generation of high-resolution (~1 km grid size) weather forecast models now operational over Europe 9 

promises to improve predictions of high-impact weather, ranging from flash floods to episodes of poor air 10 

quality. To realize this, a dense observing network is required, focusing especially on the lowest few km of the 11 

atmosphere, so that forecast models have the most realistic state of the atmosphere for initial states and 12 

subsequent forecasts. The United States National Research Council (NRC) recently reported that continuous 13 

planetary boundary layer (PBL) thermodynamic observations provide a practical and cost-effective means to 14 

improve local high-impact weather forecasting (National Research Council, 2008, 2010). However, they stated 15 

that the structure and variability of the lower troposphere is currently not well known because vertical profiles of 16 

water vapor, temperature, and winds are not systematically observed. This lack of observations results in the 17 

PBL being the single most important under-sampled part of the atmosphere. While the thermodynamic state of 18 

the atmosphere is well measured at the surface by in-situ sensors (e.g. weather stations) and in the upper 19 

troposphere by satellite sounders, there is currently an observational gap in the PBL. Ground-based microwave 20 

radiometers (MWRs) offer the capability to provide continuous temperature and humidity profiles in both clear- 21 

and cloudy-sky conditions with high temporal resolution, low-to-moderate vertical resolution, and with 22 

information mostly residing in the PBL (Cimini et al., 2006). Thus, MWR can help bridging the current 23 

observational gap in this thin layer of the troposphere. More than thirty MWR are currently installed in Europe, 24 

most of which are operating continuously, and the number is increasing. In this framework, MWR are candidates 25 

to supplement radiosonde and satellite observations to feed modern numerical weather prediction (NWP) models 26 

through assimilation of their data. This has been recently investigated in a few sporadic cases, assimilating 27 

retrieved temperature and humidity profiles into NWP models (Cimini et al., 2012; 2014; Caumont et al., 2016). 28 

Martinet et al. (2015) illustrate the attempt to assimilating the primary observable, i.e. brightness temperature 29 

(TB) instead of retrieved profiles, within a simplified 1D framework, showing positive impact on the NWP 30 

forecasts in the PBL. The development of the ground-based version of the fast radiative transfer model RTTOV, 31 

i.e. RTTOV-gb (De Angelis et al., 2016), allows the fast simulation of ground-based MWR TB, paving the way 32 

towards the operational assimilation of MWR TB into NWP models. 33 

The quality of the analyses produced by data assimilation (DA) systems primarily relies on the accuracy of all 34 

used information such as the observations, the model forecast (i.e. the background), and the observation operator 35 

(the latter for modern DA systems such as e.g. variational systems and ensemble Kalman filters). Hence, the best 36 

estimate of the atmospheric state is obtained only if background and observation errors are correctly described 37 

and follow Gaussian distributions with zero mean. The representation of background and observation errors is 38 

thus essential in the assimilation system (Waller et al., 2016). 39 
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For modern DA techniques, the observation error can be attributed to the radiometric noise, observation 1 

operator, representativeness errors, and calibration uncertainties. The radiometric noise of the MWR is often 2 

known (~0.1-0.2 K), well understood and approximately uncorrelated between frequency channels (Hewison, 3 

2006a). The occurring small correlations can be easily taken into account by observing the ambient black-body 4 

load included in the MWR hardware. Errors arising from the observation operator uncertainty in the context of 5 

radiative transfer modelling have been considered by De Angelis et al. (2016) for RTTOV-gb. These errors 6 

include uncertainty due to the spectroscopy parameters (dominant and most difficult to estimate accurately) and 7 

fast model parametrizations. The representativeness error corresponds to MWR fluctuations on smaller scales 8 

that cannot be represented by the NWP model. In general, the contributing error terms have similar magnitudes 9 

(Hewison, 2006a).  However, it is also noticeable that channels near the water vapor line at 22 GHz are 10 

dominated by spectroscopic uncertainties, while channels most sensitive to cloud liquid water (31, 51 and 52 11 

GHz) are dominated by their representativeness errors. Moreover, channels at 31, 51 and 52 GHz are also 12 

sensitive to the water vapor continuum as well and to the spectroscopy of the 50-60 GHz line complex. Finally, 13 

the highest frequency channels (> 55 GHz), which are only sensitive to the temperature in the lowest few 14 

hundred meters, are dominated by radiometric noise (Hewison, 2006a).  15 

Concerning calibration errors, Maschwitz et al. (2013) quantify the uncertainty for the tipping curve calibration 16 

in ±0.1 to ±0.2 K (22-31 GHz) and ±0.6 to ±0.7 K (51-52 GHz, only to be applied at high altitude sites with 17 

extremely low water vapor content), while they show an uncertainty of ±0.9 to ±1.6 K (22-31 GHz), ±0.5 to ±1.0 18 

K (51-53 GHz), and ±0.2 to ±0.3 K (54-58 GHz) for the liquid nitrogen calibration. To our knowledge 19 

Maschwitz et al. (2013) presented the most complete uncertainty analysis of LN2 calibration available in the 20 

literature. However, there may be additional error sources (such as condensate on the radome, spurious 21 

reflections, and receiver sensitiviy drifts) that could increase the total uncertainty in field conditions. 22 

The background error covariance matrix plays an important role in data assimilation and analysis systems by 23 

spreading the information contained in the observation both in space and between variables through cross-24 

correlations. A good specification of background errors is thus an essential part of any state-of-the-art data 25 

assimilation system (Ingleby, 2001), since it affects the impact of the observations on the analysis. 26 

The accuracy of NWP analysis systems is thus strongly dependent on appropriate statistics for both observation 27 

and background errors. Unfortunately, those statistics are not exactly known and their determination remains a 28 

major challenge in assimilation systems. Background errors are often determined using ensemble assimilation 29 

systems to compute the forecast differences between each member (Brousseau et al., 2011). Differences between 30 

observations and their background counterparts (O-B) are often used to determine observation error statistics 31 

(Desroziers et al., 2005). The O-B monitoring in radiance space can reveal systematic errors coming from the 32 

measurements, the radiative transfer model or the NWP forecast model (Hollingsworth et al., 1986, Stajner et al., 33 

2004). This approach is widely used by the satellite data assimilation community, although it may not be always 34 

straightforward to differentiate the source of the systematic errors (Waller et al., 2016). 35 

The bias arising from the O–B monitoring can be removed to guarantee the assumption of unbiased 36 

observations, which is inherent to optimal estimation retrieval, such as the variational DA and ensemble Kalman 37 

filter schemes.  38 

In this context, an accurate characterization of the MWR O-B departures represents an important step towards 39 

the operational exploitation of the so far under-exploited MWR instruments. 40 
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This paper illustrates the analysis of MWR O–B TB differences in clear-sky conditions during one year over a 1 

network of six instrumental sites in Central Europe. Section 2 describes the dataset and the methodology used for 2 

this long term O-B monitoring. Section 3 discusses the results of this study, while Section 4 summarizes the 3 

findings and draws the final conclusions. 4 

 5 

2 Dataset and Methodology 6 

2.1 Ground-based microwave radiometer observations 7 

The microwave radiometer observations considered in this analysis consist of downwelling TB measured by six 8 

commercial ground-based MWR. The MWR is a passive remote sensing instrument that measures the radiance 9 

naturally emitted by the atmosphere at selected frequency channels in the 20–60 GHz range (Westwater et al., 10 

2004). MWR represent a mature technique for the retrieval of atmospheric temperature and humidity profiles as 11 

well as integrated water vapor and liquid water path. MWRs provide retrievals in both clear- and cloudy-sky 12 

conditions, with high temporal resolution, low-to-moderate vertical resolution, and most of information content 13 

residing in the PBL. MWR channels near the 60 GHz oxygen complex are used to retrieve temperature profiles, 14 

while channels near the 22.235 GHz water vapor line provide humidity and integrated water vapour information, 15 

and are also sensitive to the column integrated liquid water content. A first attempt of MWR networking in 16 

Europe was reported by Güldner et al., (2009) for a temporary network, while Cadeddu et al., (2013) describe the 17 

details of the MWR network belonging to the U.S. Atmospheric Radiation Measurement program. In this study 18 

we consider the MWR units deployed permanently at six observing sites in central Europe (JOYCE, CESAR, 19 

LACROS, SIRTA, Payerne, and RAO – see details on Table 1). These instruments belong to different European 20 

institutions and were chosen to be representative of the MWR technology currently deployed in Europe. In 21 

addition, these six sites fall within the domain of the convective scale model AROME-France (Seity et al., 22 

2011), as shown in Figure 1. These MWR are all multichannel temperature and humidity profilers; five are 23 

manufactured by RPG (HATPRO, Rose et al., 2005), while the remaining one (at RAO) is manufactured by 24 

Radiometrics (MP3000A, Ware et al., 2003). HATPRO detects radiances at 14 frequency channels (22.24, 25 

23.04, 23.84, 25.44, 26.24, 27.84, 31.40, 51.26, 52.28, 53.86, 54.94, 56.66, 57.30, and 58.00 GHz). The first 26 

seven frequency channels are in the K-band (22 – 31 GHz), while the last 7 are in the V-band (51 – 60 GHz). 27 

MP3000A detects radiances at 12 channels (5 in the K-band and 7 in V-band). Both MWR types have elevation 28 

scanning capabilities for improved temperature profiling in the boundary layer. The observations presented here 29 

are taken at 6 elevation angles (90.0, 42.0, 30.0, 19.2, 10.2, and 5.4°) for the HATPRO units and at 2 elevation 30 

angles (90.0 and 15.7°) for the MP3000A. The period considered in this study extends from 1 January to 31 31 

December 2014. During this period, the MWR units undergo regular maintenance, including antenna radome 32 

cleaning, sanity checks, and absolute calibrations. The maintenance strategy is currently not harmonized across 33 

the network. Absolute calibration is commonly obtained via the cryogenic liquid nitrogen (LN2) calibration 34 

method. LN2 calibrations are typically performed once or twice a year to correct for instrument drifts. Note that 35 

faulty calibration may happen, manifesting as discontinuities in the time series of O-B statistics (Löhnert and 36 

Maier, 2012). Temporal matching of MWR observations and NWP model forecasts has been obtained by 37 

selecting MWR TB records closest in time to the model forecast time (only one observation without any average 38 
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over several). The following O-B analysis is performed on the sample of temporal match-up observation-model 1 

couples. 2 

2.2 NWP Model  3 

The NWP model used in this study is AROME (Seity et al., 2011). AROME has a nonhydrostatic dynamical 4 

core inherited from the ALADIN-NH model (Bubnová et al., 1995) and physical parameterizations taken from 5 

the research model Meso-NH (Lafore et al., 1998). In 2014, the operational configuration AROME-France 6 

covered the domain shown in Figure 1. The model had an horizontal resolution of 2.5 km and used 60 vertical 7 

levels, following the terrain in the lowest layers and the isobars in the upper atmosphere. The lateral boundary 8 

conditions were provided by the global ARPEGE NWP system (Courtier et al., 1991). AROME-France used a 9 

three-dimensional variational (3D-VAR) data assimilation system run in a rapid forward intermittent 10 

assimilation cycle, i.e., analyses were performed every 3 hours starting from 00 UTC by assimilating all the 11 

observations available at Météo-France in order to provide new initial states for subsequent forecasts. The 12 

background error covariance matrices were specified through the use of an ensemble method (Brousseau et al., 13 

2011). Data ingested by the AROME-France DA system included observations from radiosondes, wind profilers, 14 

aircrafts, ships, buoys, automatic weather stations, satellites, GPS stations, and both Doppler radar wind velocity 15 

and radar reflectivity (Brousseau et al., 2014).  16 

Temperature, humidity and pressure profiles are extracted from the AROME-France 3-hour forecasts and 17 

analyses. AROME-France cloud liquid water profiles are not available in the dataset used for this study. The 18 

profile extracted from the central point of the 3x3 model grid centered on each MWR site (i.e., closest in space to 19 

the MWR location) has been used as background.  20 

 21 

2.3 Radiative transfer model 22 

MWR TB are simulated at the specific frequency channel and elevation angle from the AROME-France 23 

thermodynamic profiles using the fast radiative transfer model RTTOV-gb (De Angelis et al., 2016). RTTOV-gb 24 

has been developed modifying the Radiative Transfer for TOVS (RTTOV) code (version 11.2) to simulate 25 

ground-based MWR observations, as the original RTTOV (Saunders et al., 1999) was meant to simulate 26 

downward-viewing satellite observations only.  27 

Fast radiative transfer models perform simplified calculations of the atmospheric radiances by parameterizing the 28 

atmospheric transmittances. Accurate transmittances, computed with a slower Line-by-Line (LBL) model for a 29 

set of climatological atmospheric profiles, are used to calculate channel-specific regression coefficients in the 30 

training phase. Given these regression coefficients, the fast radiative transfer model can compute transmittances 31 

for any other input profile. The parameterization of the transmittances makes the radiative model 32 

computationally much more efficient and in principle should not add significantly to the errors generated by 33 

uncertainties in the spectroscopic data used by the LBL model on which the fast model is based (Matricardi et 34 

al., 2001). The additional uncertainty due to the use of RTTOV-gb instead of a LBL model has been quantified 35 

in De Angelis et al. (2016). 36 
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The LBL model Rosenkranz (1998) has been used for the water vapour and oxygen absorption to calculate the 1 

clear-sky transmittances needed in the RTTOV-gb regression coefficients computation (De Angelis et al., 2016). 2 

For the RTTOV-gb training we used 83 profiles, interpolated on 101 pressure levels and carefully chosen from a 3 

NWPSAF (Numerical Weather Prediction Satellite Application Facility) profile dataset to represent a wide range 4 

of physically realistic atmospheric states (Matricardi, 2008). These 101 pressure levels (ranging from 0.005hPa 5 

to 1050hPa) have been specifically selected for ground-based perspective to be denser close to ground (34 levels 6 

below 2km; De Angelis et al., 2016). 7 

In this work, the RTTOV-gb simulations consider the MWR channel bandwidth through the training performed 8 

by using LBL double sideband opacities. MWR detects radiance through narrow band-pass filters for each 9 

frequency channel. The nominal MWR channels are characterized by the mid-frequency, which is a weighted 10 

average over the band-pass filter. In the RTTOV-gb training we consider a rectangular filter shape characterized 11 

by two frequencies equally weighted at the edges of the Full Width Half Maximum (FWHM). For the RPG-12 

HATPRO, the filter’s FWHM is 0.23 GHz, except for the opaque V-band channels (0.6-2.0 GHz) (Rose et al., 13 

2005). The FWHM is 0.30 GHz at all the channels for the radiometrics-MP3000A (Solheim et al., 1998). 14 

RTTOV-gb simulations take also into account atmospheric propagation effects due to Earth curvature and 15 

atmospheric refraction (Saunders et al., 2010). In this work, RTTOV-gb does not consider the finite antenna 16 

beamwidth as this feature is not available in the original RTTOV code. Thus, the antenna pattern, defining the 17 

region from where radiometer antennas receive their signal, is assumed as an ideal single pencil-beam. This 18 

assumption becomes important only at low elevation angles, e.g. up to 1-1.5 K in K-band at 5° elevation angle 19 

(Meunier et al., 2013; Navas-Guzmán et al., 2016). 20 

2.4 Quality control 21 

Routine quality control (QC) is applied by MWR instrument operators at the individual sites, resulting in a 22 

quality flag encoded within the datafiles. The complete data sets collected by each MWR in Table 1 have been 23 

transferred to a common centralized server. Then, MWR observations have been quality controlled before 24 

entering the O–B dataset.  First of all, data flagged by the sanity/rain checks provided within the instrument data 25 

stream were discarded. In addition, we applied a cloud screening, as we intend to monitor O–B TB differences in 26 

clear-sky only to avoid the uncertainty stemming from the forecast and absorption of cloud liquid water. Clear-27 

sky conditions have been selected using a two-stage screening: (i) 1-hour standard deviation of the MWR TB at 28 

30-31 GHz (C), and (ii) sky infrared temperature from the 10.5 μm infrared radiometer mounted within the 29 

MWR housing (TIR). Channels at 30-31 GHz are the most sensitive to clouds as they are in a gas absorption 30 

window, where the signal is relatively insensitive to changes in atmospheric temperature and humidity. Thus, the 31 

TB standard deviation at 30-31 GHz over a defined time period (e.g. 1-hour) can be used to indicate the presence 32 

of liquid clouds within the MWR field of view. In addition, the infrared radiometer (not available in Payerne, 33 

SIRTA and CESAR) is sensitive to cloud base temperature and indicates the presence of thick clouds when the 34 

infrared temperature is high (meaning no contribution from the cold background above the cloud) (Martinet et 35 

al., 2015). Thresholds for this screening procedure were determined in order to have a good compromise 36 

between a sufficient data sample and a high confidence of cloudy-sky rejections (Martinet et al., 2015). Periods 37 

with C > 0.5 K (Turner at al., 2007) or TIR > -30°C (Martinet et al., 2015) were rejected. In addition, O–B TB 38 
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differences larger than 3 standard deviations with respect to the mean difference were rejected to remove outliers 1 

(e.g. possible obstructions or undetected cloud contamination). Table 1 reports the sample size from each 2 

instrumental site before and after the quality control screening.  3 

 4 

3 Results 5 

An example of O-B monitoring is reported in Figure 2, showing 1-year time series of the O-B TB differences at 6 

JOYCE for channels 22.24, 31.40, 52.28, and 58.00 GHz. Here, observations are TB measured by the HATPRO 7 

at zenith, while background are TB simulated with RTTOV-gb from the 3-hour forecast profiles at the model 8 

grid column closest to JOYCE. It is evident that O-B TB differences show different variance depending on the 9 

frequency, being largest at 22.24 GHz and smallest at 58.0 GHz. O-B TB differences show to be quite steady, 10 

with the exception of channel 31.40 GHz; here a large difference (up to 10 K) is evident until 3 June 2014 11 

(Julian day 154). This misbehavior was later confirmed by the instrument operator and it was attributed to a 12 

faulty calibration. In fact, 3rd June 2014 corresponds to the date of the new LN2 absolute calibration at JOYCE, 13 

after which the observation comes closer to background again. This demonstrates that the O-B monitoring is able 14 

to detect instrument malfunctions, and it should be implemented and performed at each MWR site as part of its 15 

quality control procedure. Similar misbehaviors were detected and later confirmed by instrument operators at 16 

other sites. Specifically: (i) at CESAR at all the channels below 54 GHz between 15 June and 18 September, 17 

2014, corresponding again to a period after a faulty calibration; (ii) at CESAR at channel 22.24 GHz and 18 

elevation angles below 42 degrees, due to radio frequency interference (RFI) leaking into the channel bandpass 19 

filter; (iii) at Payerne at 26.24 GHz for the whole period, due to an unknown malfunction possibly related to 20 

hardware components causing large observed TB variations. 21 

Figure 3 shows the O-B TB statistics for the 6 instrumental sites at zenith (i.e. 90° elevation angle). The reported 22 

bias, standard deviation (Std) and root-mean-square (RMS) are computed from the QC data set. Note that 23 

periods of instrument malfunctions have been removed in JOYCE (before Julian day 154) and CESAR (Julian 24 

days between 165 and 261) by discarding the data before computing the statistics. The 26.24 GHz channel 25 

misbehavior in Payerne has not been removed because the source is still unidentified and it also affects the 26 

whole dataset. Accordingly, bias, Std and RMS for this channel show a peak, reaching -3, 2, and 4 K, 27 

respectively. Std statistics for the K-band channels show very similar behaviour from site to site, decreasing 28 

from the line center towards the high-frequency wing. This may suggest that the O-B difference is mostly due to 29 

an uncertainty in the humidity profile forecast. For example, at JOYCE the Std ranges from 1.6 K at 22.24 GHz 30 

to 0.7-0.8 K at 27.84/31.40 GHz. Note that channels close to the 22.24 GHz line center show the highest values 31 

of TB and the highest dynamic range in clear-sky conditions. Thus, the large absolute uncertainty at these 32 

channels may correspond to similar relative accuracy when compared to the other K-band channels. 33 

The maximum RMS and biases are located at 22.24 GHz at all the sites except RAO where they are at 23.04 34 

GHz (around 2.5 and 2.0 K, respectively). At JOYCE the bias and RMS range respectively from 0.9 and 1.8 K at 35 

22.24 GHz to 0.1 and 0.7 K at 27.84 GHz. Albeit one may not expect the variability to increase in the window 36 

channel, we see slightly larger differences at 31.40 GHz with respect to 27.84 GHz (bias and RMS equal to 0.8 37 

and 1.3 K, respectively), which may be attributed to few undetected cases of cloud contamination. Similar 38 

statistics are reported at all sites except LACROS. At LACROS we see similar standard deviations, but larger 39 



 8 

bias and, consequently, RMS (ranging from 1.7 to 3.6 K in K-band, with maximum value at 22.24 GHz). The 1 

reason for these larger biases is still under investigation.  2 

O-B statistics at V-band show different behavior at lower frequency (i.e. transparent) and higher frequency (i.e. 3 

opaque) channels. Opaque channels (54-58 GHz) show low bias, std, and RMS (all within 0.9 K) as the 4 

atmosphere is opaque due to oxygen and therefore water vapour and the effect of clouds on observed TB is 5 

negligible at these channels. Transparent channels (51-53 GHz) show rather large biases (2-3 K and up to 5 K in 6 

Payerne) with relatively low std (1.0-1.5 K). Bias values of the same order of magnitude for the 51-53 GHz 7 

range were previously reported (Hewison et al. 2006b; Löhnert and Maier, 2012, Martinet et al. 2015, Blumberg 8 

et al., 2015; Navas-Guzmán et al. 2016), employing MWR of different types and manufacturers. Large biases at 9 

lower V-band channels (50-54 GHz) are likely due to a combination of systematic uncertainties stemming from 10 

inaccurate instrument bandpass characterization, calibration and absorption model. In fact, these channels are 11 

located on a steep shoulder of the O2 absorption complex, and thus are sensitive to uncertainty in band-pass 12 

modeling. In addition, they suffer from larger calibration uncertainty, due to the relative low opacity as well as 13 

larger radiative transfer model errors due to the lack of well calibrated data usable for tuning spectroscopic 14 

parameters. However, it is important to note that the standard deviation remains below 1 K allowing for an easy 15 

bias correction. In this study, a bias correction based on simulated TB computed from clear-sky NWP model 16 

profiles can thus be applied on the measurements.  17 

Figure 4 shows O-B statistics for zenith MWR observations in JOYCE, before and after such a bias correction. 18 

Ideally, the bias correction should be computed using the same NWP and radiative transfer models used for the 19 

O-B, as done in operational systems. However, applying such a bias correction on this same dataset, the resulting 20 

bias would of course be zero. Thus, aiming to a qualitative demonstration of the bias correction, we use here 21 

independent bias correction values computed for JOYCE with respect to another NWP model. The correction 22 

values were computed by a previous work considering the DWD COSMO-DE model (Baldauf et al., 2011), 23 

using forecasts not older than 3h at the closest vertical column to JOYCE. Also the radiative transfer models are 24 

different, though both adopting the atmospheric absorption model of Rosenkranz (1998). All clear sky 25 

observations between two absolute calibrations have been used to compute the V-band biases by considering 26 

simultaneous observations and forward modeled TB. This approach assumes a constant bias between two 27 

adjacent calibrations, which has been justified for a HATPRO system by Löhnert and Maier (2012). In this way, 28 

the TB biases in the V-band are decreased from 1-1.5 K to 0.1-0.5 K between 51 and 53 GHz (Figure 4). Note 29 

that the bias correction is applied to the V-band channels only, since the humidity uncertainty affecting the 30 

model and the colocation is deemed too high for providing a reliable bias correction for the K-band channels. A 31 

different approach using NWP model output to adjust microwave observations for operational applications is 32 

discussed by Güldner (2013). 33 

Although the caviats described above make the bias correction results only qualitative, we can see a significant 34 

improvement in the O-B statistics demonstrating that a bias correction would remove most of the systematic 35 

errors at 51-53 GHz, on the assumption of consistent NWP and radiative transfer models. Apart from this 36 

qualitative demonstration, a consistent bias correction, computed using the same NWP and radiative transfer 37 

models used for the O-B, is highly recommended for any further use of this dataset. 38 
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Table 2 reports the O-B TB mean differences (i.e., biases) and their 95% confidence intervals, for each 1 

instrumental site at zenith. 2 

Observations at different elevation angles allow to check the robustness of the previous results. Figure 5 shows 3 

the statistics at JOYCE at elevation angles 90.0, 42.0, 30.0, 19.2, 10.2, and 5.4°.  Results at K-band show similar 4 

tendencies at lower elevation angles (panels B to F). However, the variability increases with decreasing elevation 5 

angle, because uncertainty in the AROME-France humidity profile gets amplified with increasing air mass. This 6 

happens also due to a stronger TB signal resulting in larger absolute noise. Statistics follow a similar trend up to 7 

19.2° elevation angle, where RMS reaches 6 K. Larger differences are found at 10 and 5° elevation angles in K-8 

band (biases, Std and RMS respectively up to 16, 8 and 18 K at 5°) probably due to: (i) the current version of 9 

RTTOV-gb is not designed for elevation angles lower than 15° (De Angelis et al., 2016), as simulations at low 10 

elevation angles were not necessary in the original satellite perspective; and (ii) the violation of the homogeneity 11 

assumption which needs to be satisfied when using low elevation angles. This may also be due to the fact that 12 

10° and 5° are outside the elevation angle range used in the RTTOV-gb training configuration (elevation angle 13 

set between 90° and 16°) (De Angelis et al., 2016). Moreover, while RTTOV-gb considers earth curvature, band 14 

width and atmospheric refraction (as explained in Section 2.3), it currently does not take into account the antenna 15 

beam width; this aspect can cause large biases between simulations and observations at very low elevation 16 

angles.   17 

Statistics at V-band opaque channels show little variation with elevation angle. The zenith systematic O-B 18 

differences in the 52.28 and 53.86 GHz channels decrease with decreasing elevation angle due to the fact that 19 

atmosphere becomes more and more opaque. However, the systematic difference at 51.26 GHz stays between 1 20 

and 2 K, independent of elevation angle. Here, the systematic offset at zenith (possibly due to calibration 21 

uncertainty) is probably taken over by effects of not considering the antenna beam width at low elevation angles 22 

(see Meunier et al. 2013, Figure 14). The statistics of random uncertainty (i.e. Std) follow a similar trend with 23 

elevation angle at all the instrumental sites (Figures for all sites are reported in the supporting document). 24 

Note that both the clear-sky selections performed with the IR measurements and the 31 GHz-standard deviations 25 

only refer to zenith observations. This may not be fully representative of off-zenith measurements. Ancillary data 26 

providing cloud presence at other elevation angles (such as those provided by whole sky imagers) are not 27 

available at the considered MWR sites. In addition, the aim of this study is to present a method that can be 28 

applied to any site where a MWR instrument is operated stand-alone. The uncertainty due to residual off-zenith 29 

cloud contamination may contribute to enhanced O-B differences at lower elevation angles, possibly adding to 30 

both bias and standard deviation. However, cloud contamination does not affect significantly V-band opaque 31 

channels, which are those used at lower elevation for boundary layer temperature profile retrievals. 32 

Moreover, O-B statistics are found to be consistent among the instrumental sites (in particular standard 33 

deviations) down to 10° elevation angle; this seems to suggest that no significant site-specific contamination is 34 

affecting the comparison. 35 

Figure 6 shows the statistics of O-B differences as well as Observation minus Analysis (O-A), in which the 36 

Arome analysis is used instead of the 3-hour forecast as background. The Arome analysis is the result of the 37 

blending of the Arome 3-hour forecast with all the observations available at Météo-France (from satellites, 38 

radiosondes, surface networks, etc., but not from MWRs) at the same time. O-B and O-A statistics at JOYCE, 39 

elevation angles 90° and 19.2°, are shown. O-B and O-A biases are similar at both elevation angles in the K-40 
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band and in the V-band more transparent channels. Thus, forecast and analysis compare almost equally to MWR 1 

observations; thus, despite the large number of observations assimilated into the analyses (but not into the 3h-2 

forecasts), O-B and O-A statistics are almost identical. This seems to indicate that the newly assimilated data did 3 

not bring significant information to the analysis with respect to forecast in terms of MWR observables. 4 

Assuming the observations as the reference, and considering that MWR uncertainty for transparent channels is 5 

typically smaller than the RMS in Figure 6, this may suggest that the assimilated data perhaps provide little 6 

information where it would be useful (e.g. in the boudary layer). In this perspective, the assimilation of MWR 7 

brightness temperatures into NWP may provide useful information in the boundary layer. Considering V-band 8 

opaque channels, we note smaller biases for O-A than O-B differences (up to 40% smaller at 19.2°). These 9 

channels are mostly sensitive to temperature profile in the PBL, and thus this result suggests that most of the 3h-10 

forecast errors point toward the PBL. PBL is indeed the atmospheric layer where most of the information 11 

provided by MWRs is located, though this may be redundant with that of other assimilated observations (e.g., 12 

radiosondes). Quantification of the information brought by MWR into NWP data assimilation will be the subject 13 

of future research.  14 

Note that O-A standard deviations are slightly lower than or equal to the corresponding O-B Std at all the 15 

frequency channels; this is consistent with the assumptions that the analysis variance is lower than or equal to the 16 

background variance, and the observation errors and the model errors (either analysis or background) are 17 

independent. These assumptions are usually made in modern DA techniques.  18 

In addition to unbiased observations, another hypothesis common to variational and ensemble Kalman filter-19 

based DA systems is that the observations and background errors are Gaussian, which implies that the 20 

distribution of the O-B TB differences is Gaussian. This assumption has been verified by exploiting excess 21 

kurtosis and skewness scores. Kurtosis can be formally defined as the standardized fourth population moment 22 

about the mean of a specific distribution. The normal distribution has a kurtosis of 3, thus the "excess kurtosis" is 23 

usually used (i.e., kurtosis − 3). A distribution with positive excess kurtosis has heavier tails and a higher peak 24 

than the normal distribution, whereas a distribution with negative excess kurtosis has lighter tails and is flatter. 25 

Skewness is formally the third central moment of the specific distribution, divided by the cube of its standard 26 

deviation, and it is a measure of symmetry, or more precisely, the lack thereof. A positive skewness value 27 

indicates positive (right) skew; a negative value indicates negative (left) skew. The higher the absolute value, the 28 

greater the skew. 29 

For both excess kurtosis and skewness, a normal distribution should return a score of 0. In general, fair 30 

approximations to normal distribution should have skewness and excess kurtosis within -1 and +1 (Bulmer, 31 

1979). Figure 7 shows two histograms of O-B TB differences at 90° elevation angle, for JOYCE (58.00 GHz) 32 

and Payerne (52.28 GHz). The histogram at JOYCE shows a distribution approximately Gaussian, with excess 33 

kurtosis 0.15 and skewness -0.07. Conversely, the distribution at Payerne has heavier tails (excess kurtosis 1.86) 34 

than Gaussian and moderate asymmetry (skewness 0.72). Figures 8 and 9 show respectively excess kurtosis and 35 

skewness as function of frequency, at each instrumental site and for elevation angles 90.0, 42.0, 19.2 (15.7 for 36 

RAO) and 10.2°. In general, excess kurtosis is within 1, demonstrating fair approximation to Gaussian error. 37 

Excess kurtosis above 2 is reported for Payerne at 51-53 GHz and 90°-42° elevation and for CESAR at 22.24 38 

GHz and 42° elevation. These same channels are also characterised by large O-B TB statistics, as shown in 39 

Figure 3 and in the supporting document. Above 10° elevation, absolute values of excess kurtosis slightly 40 
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exceeding 1 are reported for RAO at 23.04 GHz and 15.7°, and for LACROS at 51.26 GHz and 19.2°. At 10°, 1 

kurtosis around 1.3-1.5 is reported for Payerne (31.40, 51.26 and 52.28 GHz) and for CESAR (51.26 GHz). In 2 

general, the absolute value of the skewness is within 0.5 in K-band (22-28 GHz) and in the V-band opaque 3 

channels (54-58 GHz) at each instrumental site, meaning approximately symmetric distributions. The only 4 

exception is CESAR at 22 GHz and 42°, where skewness is 1.2. Larger skewness are reported for more 5 

transparent channels (31, 51 and 52 GHz), in particular for Payerne (52 GHz, elevation angles 90 and 42°, up to 6 

0.9), and for Joyce (51 GHz, 10° elevation angle, up to 1.1), demonstrating moderate asymmetry. In summary, of 7 

the 328 channel and elevation angle combinations that were evaluated, only 4.2% (0.6%) showed an absolute 8 

value of excess kurtosis (skewness) larger than 1. Among these are the channels that showed large O-B statistics 9 

and are thus suspect of instrumental misbehaviour. 10 

 11 

4 Summary and conclusions  12 

This work illustrates the first Observations minus Background (O–B) analysis of ground-based brightness 13 

temperature (TB) observations from an European network of six microwave radiometers (MWR) over a 1-year 14 

period (2014). Statistics of the differences between MWR observations and their NWP model background 15 

counterparts can be used to shed light on observation and background errors. The knowledge of these errors is 16 

crucial for data assimilation because observations and short-term model forecasts are the primary sources of 17 

information used to produce analyses. Moreover, the O-B monitoring is essential to detect and possibly remove 18 

any systematic errors coming from the MWR measurements, the radiative transfer model or the NWP model 19 

forecast.  20 

In this analysis, observations are MWR TB measured by two types of commercial MWR (RPG-HATPRO and 21 

Radiometrics-MP3000A). Background counterparts are TB simulated with the fast radiative transfer model 22 

RTTOV-gb from the AROME-France 3-hour forecasts and analyses. Quality control and clear-sky selection are 23 

performed with a three-stage screening based on the 1-hour standard deviation of the MWR TB at 31 GHz, the 24 

infrared radiometer TB, and the quality/rain flag provided by the manufacturer. 25 

It is shown how O-B monitoring can be used to detect instrument malfunctions by exploiting the timeseries of 26 

the O-B TB differences. The results strongly suggest an operational implementation of this monitoring at all sites 27 

deploying a MWR as part of the quality control procedure. 28 

Observations minus background statistics are quite consistent between the instrumental sites. They decrease in 29 

K-band at zenith from the 22.24 GHz line center (Std1.5-2.0 K) towards the high-frequency wing (Std0.5-1.0 30 

K). V-band opaque channels (54-58 GHz) show low statistics (RMS within 0.8-0.9 K) due to the saturation and 31 

the dependence to only temperature. V-band more transparent channels (51-53 GHz) show large biases (up to 5 32 

K in Payerne) with relatively low std (1.0-1.5 K), demonstrating that these biases can be effectively removed by 33 

applying a bias correction based on TB simulated from a NWP model (if the forecast errors are within the 34 

expected accuracy). 35 

Bias, standard deviation and RMS at K-band increase with decreasing elevation angle, following a similar trend. 36 

Large differences are found at low (5-10°) elevation angles (RMS up to 20 K) due to atmospheric inhomogeneity 37 

and known RTTOV-gb limitations at elevation angles below 15°. Statistics at V-band opaque channels show 38 
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only small variations with the elevation angle. The O-B mean differences decrease at 52.28 and 53.86 GHz and 1 

increase at 51.26 GHz with decreasing elevation angles. 2 

The Observations minus analysis TB statistics are similar to the O-B, except for a bias deflection (up to 40%) in 3 

the V-band opaque channels, especially at low elevation angles. This suggests the possible level of improvement 4 

that may be expected by assimilating MWR TB into NWP models, at least for boundary layer temperature 5 

profiling. 6 

The Gaussian error assumption, typical of variational and ensemble Kalman filter-based DA systems, has been 7 

evaluated by computing excess kurtosis and skewness scores of the O-B TB distributions. Among the evaluated 8 

angle/channel combinations, excess kurtosis and skewness are typically within respectively 1 (95.8%) and 0.5 9 

(99.4%). This demonstrates that O-B TB distributions are typically Gaussian with good approximation. Larger 10 

scores (excess kurtosis and skewness above 2 and 1) are reported for Payerne at 51-53 GHz and high elevation 11 

angles (90-42°), and for Cesar at 22.24 GHz and 42° elevation angle. These scores result in O-B TB distributions 12 

with moderate asymmetry and heavier tails than Gaussian, possibly due to instrument malfunction or radio 13 

frequency interference. 14 

In conclusion, the presented O-B analysis demonstrated the typical operational performances of a prototype 15 

network of six MWR in Europe, showing: 16 

1) Robust and mature technology, suitable for operational use; 17 

2) Continuous TB observations, typically stable and reliable, whose quality can be monitored remotely; 18 

3) Consistent O-B statistics throughout the network; 19 

4) Moderate O-B systematic differences that can be effectively addressed through bias correction; 20 

5) Typically Gaussian O-B distributions; 21 

This work provides a comprehensive characterization of the MWR O-B statistics and distributions that may 22 

serve as a reference for the other MWR currently deployed in Europe and world-wide, including commercial 23 

(e.g. Attex MTP-5) and research types (e.g. TEMPERA, Navas-Guzman et al., 2016). It also represents a step 24 

towards the operational exploitation of ground-based MWR, so far under-exploited instruments that may play a 25 

crucial role in the accurate characterization of boundary layer thermodynamics into NWP models. 26 

 27 
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 1 

 2 

Figure 1: Topography (m) and domain of AROME-France (large area delineated by solid black line). Locations of 3 

MWR sites are also shown (+ and × indicate respectively HATPRO and MP3000A). 4 

  5 
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 1 

 2 

Figure 2: Timeseries of the O-B TB differences at JOYCE; from top to bottom: channels 22.24 (blue dots), 31.40 (red 3 

dots), 52.28 (magenta dots), and 58.00 GHz (cyan dots). The black solid line represents the date of the new calibration 4 

(June 3rd, 2014). 5 
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 1 

Figure 3: Statistics of the differences between observations and background TB. Observations are TB measured by 2 

ground-based MWR. Background counterparts are TB simulated with RTTOV-gb from AROME-France 3-hour 3 

forecast profiles in clear-sky conditions at zenith. Panels A, B, C, D, E, and F refer respectively to JOYCE, LACROS, 4 

Payerne, SIRTA, CESAR and RAO. Biases are shown with black lines, standard deviations with red lines and RMS 5 

with blue lines. 6 
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 2 

Figure 4: Statistics of the differences between observations and background TB, as in Figure 3. Here, results from 3 

JOYCE at zenith are shown. Panels A, and B, refer respectively to before and after the bias correction with the 4 

COSMO-DE model. Biases are shown with black lines, standard deviations with red lines and RMS with blue lines. 5 
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 1 

Figure 5: Statistics of the differences between observations and background TB, as in Figure 3. Here, results from 2 

JOYCE at different observing angle are shown. Panels A, B, C, D, E, and F refer respectively to 90, 42, 30, 19.2, 10.2, 3 

and 5.4° elevation angle. Biases are shown with black lines, standard deviations with red lines and RMS with blue 4 

lines. 5 
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Figure 6: Statistics of the differences between TB observations and model background (solid lines), and TB 3 

observations and model analysis (dashed lines). Simulated TB are computed with RTTOV-gb respectively from 4 

AROME-France 3-hour forecast (solid lines) and AROME-France analyses (dashed lines) profiles in clear-sky 5 

conditions for Joyce at zenith. Panels A, and B, refer respectively to 90 and 19.2° elevation angle. Biases are shown 6 

with black lines, standard deviations with red lines and RMS with blue lines. 7 

 8 

 9 

 10 
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 12 

Figure 7: histograms of the O-B TB differences. Panel A refers to JOYCE at 58.00 GHz and 90° elevation angle, while 13 

Panel B refers to Payerne at 52.28 GHz and 90° elevation angle. 14 
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Figure 8: Excess kurtosis as function of frequency, for elevation angles 90.0, 42.0, 19.2 (15.7 for RAO) and 10.2°. 2 

Scores for JOYCE, LACROS, Payerne, SIRTA, CESAR and RAO are reported respectively in blue, black, red, 3 

yellow, cyan, and magenta. 4 
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Figure 9: Skewness as function of frequency, for elevation angles 90.0, 42.0, 19.2 (15.7 for RAO) and 10.2°. Scores for 2 

JOYCE, LACROS, Payerne, SIRTA, CESAR and RAO are reported respectively in blue, black, red, yellow, cyan, 3 

and magenta. 4 

 5 

 6 

Table 1: Sample size at all the instrumental sites before and after the quality control screening. Position and height of 7 

each instrument are reported. For HATPRO only, the generation family is also reported (G5 is currently 8 

commercialized).   9 

LOCATION LAT LON HEIGHT(m) MWR 
PRE-

SCREENING 
POST-

SCREENING 

JOYCE 50.91 6.41 111 HATPRO G2 602 557 

LACROS 51.35 12.43 125 HATPRO G2 542 502 

Payerne 46.82 6.95 491 HATPRO G1 1087 955 

SIRTA 48.80 2.36 156 HATPRO G2 1022 923 

CESAR 51.97 4.93 -0.7 HATPRO G1 988 664 

RAO 52.21 14.12 125 MP3000A 709 680 

 10 

 11 
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Table 2: biases of O-B TB differences and their 95% confidence intervals, for all the instrumental sites at zenith. 1 

Values at RAO (MP3000A) are reported on the colomn of the closest HATPRO frequency channel.  2 

  3 

 4 

 5 

 6 

Chan 
(GHz) 

22.24 23.04 23.84 25.44 26.24 27.84 31.40 51.26 52.28 53.86 54.94 56.66 57.30 58.00 

JOYCE 

0.791 

±0.124 

-0.411 

±0.121 

0.075 

±0.098 

-0.303 

±0.077 

-0.148 

±0.067 

0.068 

±0.053 

0.630 

±0.114 

0.874 

±0.089 

-1.052 

±0.095 

-1.519 

±0.034 

0.196 

±0.027 

0.337 

±0.033 

0.275 

±0.033 

0.428 

±0.035 

LACROS 

3.288 

±0.130 

2.776 

±0.121 

2.179 

±0.105 

1.698 

±0.075 

1.688 

±0.063 

1.605 

±0.049 

2.425 

±0.093 

-0.341 

±0.047 

-2.536 

±0.039 

0.026 

±0.030 

-0.179 

±0.034 

-0.009 

±0.042 

0.066 

±0.044 

-0.004 

±0.044 

Payerne 

1.666 

±0.107 

1.105 

±0.103 

0.995 

±0.087 

-0.085 

±0.061 

-3.156 

±0.162 

0.029 

±0.050 

0.409 

±0.038 

3.941 

±0.051 

-5.230 

±0.039 

1.978 

±0.019 

-0.781 

±0.020 

-0.017 

±0.029 

0.082 

±0.035 

-0.090 

±0.031 

SIRTA 
2.243 

±0.110 

1.645 

±0.106 

1.810 

±0.089 

1.161 

±0.061 

1.105 

±0.053 

1.203 

±0.043 

0.943 

±0.039 

-1.284 

±0.051 

-3.425 

±0.046 

-2.301 

±0.023 

-0.153 

±0.033 

-0.064 

±0.035 

0.012 

±0.037 

0.121 

±0.037 

CESAR 

1.615 

±0.150 

0.840 

±0.124 

0.293 

±0.117 

-0.190 

±0.073 

-0.061 

±0.064 

0.065 

±0.053 

0.243 

±0.050 

0.838 

±0.062 

-0.883 

±0.043 

1.139 

±0.029 

-0.632 

±0.029 

-0.279 

±0.033 

-0.300 

±0.032 

-0.233 

±0.034 

RAO 

1.588 

±0.122 

2.032 

±0.117 

0.647 

±0.086 

 0.821 

±0.063 

 0.940 

±0.060 

-0.549 

±0.057 

-2.706 

±0.048 

-2.429 

±0.031 

-1.262 

±0.034 

-0.905 

±0.039 

-0.932 

±0.039 

-0.831 

±0.045 


