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Abstract. The recent proliferation of high quality global gridded GIS datasets has spurred a 
renaissance of studies in many fields, particularly biogeography. However these data, often 1 km 
at the finest scale available, are too coarse for applications such as precise designation of 
conservation priority areas and species distribution modeling, or purposes outside of biology 
such as city planning and precision agriculture. Further, these global datasets likely 
underestimate local climate variations because they do not incorporate locally relevant variables. 
Here we describe a comprehensive set of 30 m resolution rasters for Hong Kong, a small 
subtropical territory with highly variable terrain where intense anthropogenic disturbance meets 
a robust protected area system. The data include topographic variables, Normalized Difference 
Vegetation Index, and interpolated climate variables based on weather station observations. We 
present validation statistics that convey each climate variable’s reliability, and compare our 
results to a widely used global dataset, finding that our models consistently reflect greater 
climatic variation. To our knowledge, this is the first set of published environmental rasters 
specific to Hong Kong. We hope this diverse suite of geographic data will facilitate future 
environmental and ecological studies in this region of the world, where a spatial understanding 
of rapid urbanization, introduced species pressure, and conservation efforts is critical. The 
dataset is accessible at https://figshare.com/s/3a5634e36e80dc33444c.  

1 Introduction  

Scale of analysis has long been considered a key concern in biogeographic research (Levin, 
1992). Multiple types of scale are relevant to environmental data, including analysis grain, 
response grain, spatial structure, and study extent (Mertes and Jetz, 2018). Analysis grain, the 
minimum unit of spatial resolution in a spatial grid, is commonly referred to as a pixel or cell. In 
research that uses environmental raster data, the pixel size directly dictates the types of 
biogeographic questions that can be reasonably addressed. 

This relationship between analysis grain and study suitability is complex, and higher resolutions 
are not always advantageous. For example, in global analyses excessively high resolution data 
would be computationally cumbersome and unnecessary if the goal is to characterize broad 
patterns. However as shown below, many studies have found notable benefits of higher 
resolution climatic predictors. Unfortunately, regional analyses lacking local data are limited to 
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using global datasets and the grain size at which they are available (e.g. Cheng and Bonebrake, 
2017).  

Species distribution modeling (SDM) is a common application of gridded environmental data, 
where the selected analysis grain has important consequences. In SDM, one or more geographic 
predictors are associated statistically with the location of known observations of a species. The 
resulting statistical model can be converted to a geographic model: a spatially continuous 
measure of species occurrence likelihood across the landscape of interest. SDMs are used for 
many applications, including predicting potential ranges of invasive species, characterizing 
ecological constraints on species ranges, discovering biodiversity, and planning protected areas 
(Peterson et al., 2011). The effects of SDM grain size manipulation is an active area of research. 
Below, we summarize findings on four main effects: estimated distribution size, inclusion of fine 
scale features, predictor variable selection, and model predictive ability.  

Coarser environmental data consistently result in SDMs that predict larger areas of species 
presence (Connor et al., 2017; Franklin et al., 2013; Seo et al., 2009). Overestimation of SDMs is 
especially a concern for conservation purposes, where inferred size of suitable habitat is often 
used to inform extinction risk assessments. Mistakenly large calculated distributions could result 
in species that are assigned artificially low risk levels.  

Coarse resolution predictors can cause SDMs to omit small, but important areas. Particularly of 
interest are microrefugia, climatically unique patches of land that can harbor rare species, and are 
especially important for conservation as species distributions respond to climate change 
(Dobrowski, 2010). Meineri and Hylander (2017) demonstrated that because high resolution 
climate models included such microrefugia, the resulting species distribution models predicted 
lower extinction rates for plant species than coarser predictors. Nezer et al. (2016) found that 10 
m or 100 m resolution SDMs can reveal other distribution features invisible at lower resolutions 
(1 km): movement corridors, isolated habitat patches, geomorphologic features, and 
anthropogenic effects on distributions.  

SDM scale can also affect which predictors are selected for model calculation. Certain predictors 
may be excluded in SDMs because they lack explanatory power at the chosen scale of analysis 
(Mertes and Jetz, 2017). For example, vegetation measures like the Normalized Difference 
Vegetation Index (NDVI) in fragmented forests are unlikely to be relevant if the grain size is 
much larger than the forest patch size, because each grid cell will be a single averaged value. 
This means that coarse models might not only mischaracterize the distribution pattern itself, but 
they also may fail to explicate important environmental relationships that determine species 
occurrence. Indeed, Nezer et al. (2016) found that the most important predictors (vegetation, 
slope) in their highest resolution models (10 m) were "nearly meaningless" at 1 km resolution. 
Another study found similar differences in predictor importance related to variation in scale 
(Lasseur et al., 2006). Of course, predictor importance is always relative and thus is subject to 
which predictors are included in model building. Therefore this pattern is not expected to be 
observed in all studies, but should not be overlooked as a potential source of bias.  
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Last, any consistent effects of SDM grain size on the overall predictive ability of SDMs are 
unclear. The most commonly used measure of SDM performance is Area Under Curve (AUC), 
where a higher value indicates a greater ability to differentiate between area the species is 
present or absent. Some studies found increased SDM resolution resulted in increased AUC (Seo 
et al., 2009; Nezer et al., 2016), while others found no effect (Pradervand et al. 2014) or mixed 
effects depending on dataset (Guisan et al., 2007). These studies used different species, 
predictors, scales, regions, and modeling algorithms, so further research is required to investigate 
any association between SDM grain size and AUC.  

The above advantages of higher resolution environmental data in SDM may be dependent on 
project-specific factors, such as the quality of species records available and the goals of the 
research. For example, using environmental grids of a smaller grain size than the locational 
accuracy of the available species records is untenable. Additionally, stationary species (e.g. 
lichens) may be more strongly affected by local factors while highly mobile species (e.g. birds) 
may only be limited at broader scales. Indeed, it has been shown that plant (rather than bird or 
mammal) species models with highest locational accuracy were those most improved by higher 
resolution (Guisan et al., 2007). Lastly, the utility of fine grain environmental grids may depend 
on habitat; flat deserts likely have less biologically relevant fine-scale spatial variation compared 
to mountainous forests or subtropical areas fragmented by human activity, like Hong Kong.  

In this study, a new series of rasters for Hong Kong are introduced particularly suited for SDM. 
The layers produced focus on long term climate averages, topography, and vegetation. We asked 
how the new 30 m scale rasters provide new information on climatic variables in Hong Kong, in 
comparison to a global dataset already available.  We hypothesize that our new climate data will 
indicate greater variation (measured as raster standard deviation) in climate variables. The 
development of high-resolution environmental rasters is particularly important in tropical regions 
where species exhibit small distribution ranges (as predicted by Rapoport’s Rule: Stevens, 1989) 
and where understanding interactions between organisms and their changing habitats is 
paramount.  

2 Study area: Hong Kong  

Geographic data of appropriate resolution is critically important for conducting research within 
the Hong Kong Special Administrative Region of China, because of its complex landscape. 
Hong Kong exhibits dramatically variable topography, fitting numerous small islands, dozens of 
mountain peaks over 500 m, 733 km of coastline, and a human population of over 7 million into 
a land area of only 1,104 km2 (Fig. 1). Seasonally variable monsoon winds deliver equatorial 
heat and torrential precipitation in summer, while northerly winds carry chilly dry air from 
continental Asia during the winter (Dudgeon and Corlett, 1994). However, daily temperature 
fluctuations are attenuated by the surrounding South China Sea and Pearl River Estuary. Hong 
Kong’s terrain typically exhibits a stark bifurcation between some of the most densely 
constructed areas in the world (Lau and Zhang, 2015) and steep, vegetated slopes. Uninhabited 
expanses are protected as part of 24 country parks and additional special areas that cover over 
40% of the territory’s land (Agriculture, Fisheries and Conservation Department, 2017). Even 
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within these more natural areas, a strong disturbance gradient encompasses grasslands, 
shrublands, evergreen secondary forests, and old-growth feng shui woods that have been 
protected from deforestation. Historically Hong Kong has been largely stripped of its trees, and 
only since the end of World War II and later the establishment of the Country Park system have 
large swathes of forest begun to regenerate (Zhuang and Corlett, 1997). However this process is 
frequently reset by human-induced hill fires, which maintain predominantly upland areas as 
shrubland or grassland (Marafa and Chau, 1999). Hong Kong harbors several unique and 
restricted habitats, including mangroves in coastal areas and freshwater wetlands in the far 
northwest.  

Hong Kong climate data is available within a variety of global gridded climate datasets 
(WorldClim 2 - Fick and Hijmans, 2017; MerraClim - Vega et al., 2017; CHELSA - Karger et 
al., 2017), but none of these have a resolution higher than 1 km. We suspect those global climate 
models underestimate variation in local climate values, even after consideration of the coarser 
scale. Local studies of Hong Kong meteorology have largely focused on characterizing and 
mitigating the effects of urbanization (e.g. Shi et al., 2018; Wang et al., 2017; Nichol et al., 2014; 
Liu and Zhang, 2011; Ng, 2009; Giridharan et al., 2004). Unfortunately, it appears the climate of 
Hong Kong’s landscape as a whole has been given little notice, and we are unaware of long-term 
averaged climate rasters available for the region. Relevant studies that do exist include limited 
variables, and the data appear to be publicly unavailable. We are additionally unaware of Hong 
Kong data publicly available for vegetation indices such as NDVI, or topographic data other than 
elevation.  

Therefore Hong Kong is in dire need of a comprehensive suite of accessible environmental GIS 
data, at a resolution finer than 1 km, suitable for species distribution modeling and other local 
applications. To this end, we developed new, 30 m resolution rasters of topography, NDVI, and 
10 interpolated climate variables for each month of the year.  

3 Methods  

All data manipulation and geographic analyses were conducted in the R statistical computing 
environment (v3.3.2, R Core Team, 2016) using RStudio (v1.0.136, RStudio Team, 2015) unless 
otherwise noted. Analyses are divided into three broad categories of data products, detailed in the 
sections below: topographic variables, climate variables, and remote sensing variables. The 
variables developed were selected based on their utility in environmental research, especially 
SDM, as well as the availability of appropriate source data. An overview schematic of the data 
workflow is available in Figure S1 

3.1 Topographic variables  

Data on the physical characteristics of Hong Kong’s landmass were assembled from remote 
sensing inputs, crowdsourced coastline polygons, and a digital terrain model. The topographic 
variables developed are coastline, elevation, slope, aspect, terrain roughness, relative elevation, 
distance to coast, water proximity, and urbanicity.  
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3.1.1 Coastline  

As reclamation of land from the ocean in Hong Kong is ongoing, obtaining current data for the 
coastline can be challenging. Natural coastline and reservoir vectors were downloaded from 
OpenStreetMap (2018) and merged in QGIS (v3.01, QGIS Development Team, 2018) to produce 
a shapefile of polygons representing Hong Kong land area as of January 2018. All output rasters 
were masked to this area.  

3.1.2 Elevation, slope, aspect, and roughness  

A 5 m resolution Hong Kong digital terrain model (Lands Department, 2017) was upscaled using 
bilinear resampling. The resulting 30 m DEM was used as the elevation data throughout the 
study. Four other topographic predictor layers were derived directly from this DEM: aspect, 
slope, aspect*slope, and a roughness index. These were calculated using the Hong Kong 
elevation raster with the terrain() function in the R raster package, using all 8 neighboring cells 
(queen case). Aspect was transformed from degrees to a measure of north-south exposure 
("northness") by cos(aspect*pi/180).  

3.1.3 Relative elevation  

Relative elevation is a measure of the difference in elevation between the pixel of interest, and 
the lowest pixel within a given radius. A pixel on a mountain peak has a high relative elevation, 
while a pixel on a flat plain has a relative elevation of 0 (regardless of its elevation above or 
below sea level). A set of relative elevation layers for Hong Kong were calculated at multiple 
scales, following the moving window approach of Bennie et al. (2010). The radii used were 60 
m, 120 m, 240 m, 480 m, and 960 m. These layers are expected to be most applicable as 
measures of surface water drainage and therefore soil moisture as well. Relative elevation has 
been used as a covariate in climate interpolation as a proxy for cool air draining (Bennie et al., 
2010; Ashcroft and Gollan, 2012), but were not included here as a predictor as Hong Kong lacks 
large valleys and other sheltered areas where this effect would be most relevant.  

3.1.4 Distance to coast and water proximity  

Water bodies adjacent to land areas can act as temperature buffers, contribute to evaporative 
cooling (Lookingbill and Urban, 2003), and influence precipitation patterns (Heiblum et al., 
2011; Paiva et al., 2011); therefore considering their presence is important for climatic 
predictions. Here, two different methods were used to quantify water body distribution in Hong 
Kong: distance to coast and water proximity. A distance to coast raster, measured in meters, was 
produced using the distance() function in the raster package with the Hong Kong coastline 
shapefile described in section 3.1.1. Distance to coast did not incorporate inland water bodies. 
Second, water proximity (including inland water bodies) was calculated as the percent surface 
land in the area surrounding a given pixel. A value of 1 means that the area within a given radius 
is entirely terrestrial, while 0 indicates it is entirely aquatic. Multiple water proximity rasters 
were calculated with varying radii using a circular moving window approach like that described 
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by Aalto et al. (2017), to represent buffering processes at different scales. The radii used were 
0.75 km, 1.5 km, 3 km, 6 km, and 12 km.  

3.1.5 Urbanicity  

Urbanicity rasters were developed because in densely constructed areas, urban heat island effects 
are expected to influence temperatures (Nichol et al., 2013; Shi et al., 2018), and therefore 
urbanicity may be an important predictor in climate interpolation. High rise buildings can 
influence temperature by blocking wind, creating shade, acting as heat sinks, and producing 
thermal pollution. These effects are particularly relevant for this study, as some of Hong Kong’s 
weather observation stations are adjacent to or inside urban centers. To quantify the distribution 
of developed area, we used a 30 m resolution dataset of percent impervious surface (Brown de 
Colstoun et al., 2017), which we expect to strongly correlate with urban development. For use in 
climate predictions this data was smoothed using a Gaussian moving window, because bulk air 
temperature is not expected to vary at a granular (30 m) scale. at three buffer scales (sigma = 10, 
50, 100), using the focalWeight() and focal() functions in the raster R package, where type = 
‘Gauss’.  The resulting ’urbanicity’ layers were later used as climate predictors. In these rasters, 
completely impervious locations have a value of 100, while vegetated areas are 0.  

3.2 Climate variables  

Climate interpolators are often faced with the challenge of estimating climate parameters over a 
large area using sparse weather station observations, at least in part of the region considered (e.g. 
Hu et al., 2016). In contrast, interpolation in Hong Kong is benefitted by a relatively small 
geographic area and a quite dense network of weather data provided by dozens of permanent 
weather stations (Hong Kong Observatory, 2018; see Figure S2). Here we use multiple linear 
regression to predict geographic climate patterns using weather station training points and raster 
covariates. This is followed by thin plate spline (TPS) interpolation (see Wahba, 1979) of the 
regression model residuals. TPS is a widely used approach in climate interpolation (e.g. New et 
al., 2002; Fick and Hijmans, 2017), which fits a curved surface to irregularly distributed points. 
This two-step interpolation (regression followed by TPS) was based on the approach of Meineri 
and Hylander (2017). 

Weather station observation data and geographic coordinates were downloaded from the web 
portal of the Hong Kong Observatory (2018). As the goal was to produce a representation of 
long-term but modern climate, measurements over 20 years (1998 to 2017) were included. To 
ensure averages were reliable, weather stations were only included for interpolation of each 
variable if at least 8 years of complete data were available within the 20 year window. The 
minimum number of stations used for each model is provided in Table 2. Monthly observations 
of ten variables were obtained: maximum temperature, mean daily maximum temperature, mean 
daily temperature, mean daily minimum temperature, minimum temperature, mean dew point, 
mean relative humidity, mean wind speed, mean air pressure, and total rainfall.  
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Climate interpolation consisted of two main steps. First, a linear model was built for each climate 
variable for each month of the year. Independent variables were selected by searching the 
literature for similar studies, and choosing predictors we expected to have an influence on 
climate at this regional scale. When necessary, each predictor was statistically transformed to 
approach a normal distribution. The six topographic predictors used as model building 
candidates were: elevation, log-transformed distance to coast, exponentially transformed fine and 
coarse water proximity, log-transformed urbanicity (sigma = 50), and ‘northness’ - the cross 
product of aspect and slope. The water proximity layers were products of additively combining 
multiple scale rasters into fewer predictors: fine water proximity was the sum of 0.75 km, 1.5 
km, 3 km scale rasters, while coarse was the sum of 6 km, and 12 km. The six model predictors 
were tested for collinearity and no problems were found. Linear models were built using the lm() 
R function. All predictors were initially included, then using the step() function, pared down in 
each regression model using stepwise bidirectional selection based on AIC, using 4 degrees of 
freedom as a penalty to make predictor selection stricter than the default. The resulting 
regression model was used to calculate a climate value at each grid cell based on a linear 
relationship with the selected predictors.  

Second, to adjust for local variation in climate that is not associated with topography, the linear 
model residuals at each station were calculated and interpolated using the thin plate spline 
approach implemented in the fields R package. The lambda smoothing parameter, which 
determines how closely the fitted surface matches input values, was set to 0.01. This low lambda 
value was selected because of the relatively high confidence in the long-term averaged weather 
station values (based on at least 8 years of data). This effectively produces a smoothed layer of 
local deviation from the linear model, which was used to additively adjust the results of the 
linear model predictions and produce finalized climate rasters.  

We measured the spatial predictive ability of models using ten-fold cross-validation (Dobesch et 
al., 2007). In each validation round, 10% of weather stations were reserved as a test dataset and 
the remainder were used for training. Average root mean squared error of the test data subset 
from the final model prediction was used as an error measurement. To normalize these error 
measures across the climate variables, we adjusted them as a percentage of the standard 
deviation of the initial weather station values measured. This cross-validation procedure was 
used only to produce these validation measurements. The finalized monthly climate rasters 
described above were trained using all available data. 

The finalized monthly rasters were then summarized into raster layers that characterize yearly 
climatic means and variation. These include 19 "bioclimatic" variables using the biovars() 
function in the dismo R package (Hijmans et al., 2017), which are specifically suited for species 
distribution modeling and other ecological purposes. This also allows our data to be compared 
with other climate data products that use the same calculations. Because those calculations only 
use rainfall and average daily maximum and minimum temperatures in each month, we also 
produced yearly average layers of dewpoint, relative humidity, mean daily temperature, air 
pressure, and wind speed. Also provided are layers of highest and lowest average monthly 
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extreme temperatures, and their difference (extreme temperature annual range). These two 
variables characterize temperature extremes experienced in a given location better than the 
bioclimatic variables. 

For comparison with global climate data products, we resampled bioclimatic variables to the 
same (1 km) resolution as WorldClim using bilinear interpolation. Only pixels present in both 
data products were used for comparisons.  

3.3 Remote sensing data  

Normalized difference vegetation index (NDVI) is a common metric of vegetation presence and 
density derived from satellite imagery. To calculate NDVI, Landsat 8 images (U.S. Geological 
Survey, 2018) of Hong Kong were obtained. We downloaded one image from March 2016 that 
covers much of Hong Kong except for the far eastern areas, and is free of clouds. This was 
supplemented with an image from March 2018 after adjustment, so that all land areas of the 
region were included. NDVI calculations were completed using the standard equation:  

NDVI = (NIR−Red)/(NIR+Red) 

Where NIR is near-infrared (Landsat band 5: 0.851 to 0.879 μm) and Red is visible red radiation 
(Landsat band 4: 0.636 to 0.673 μm). The resulting NDVI value varies between 1 and -1, where 
higher values correspond with denser vegetation.  

4 Results and discussion  

Results of this environmental analysis of Hong Kong include 48 rasters and one vector file. All 
rasters are provided at an identical 1 arc second (30 m) resolution and in the WGS84 geographic 
coordinate system. Summary values and filenames are provided in the data repository.  

4.1 Topographic variables  

Distance to coast results show that approximately 42% of Hong Kong’s land area is within 1 km 
of the coastline. However it is apparent that inland areas often feature steep inclines, as half of 
Hong Kong’s land is above 84 m elevation.  

For variables like relative elevation, urbanicity, and water proximity, the ideal scale of raster 
calculation is dependent on the desired effect to be captured, and perhaps other characteristics of 
the landscape in question. For this reason, we provide these rasters calculated at multiple buffer 
scales. 

Urbanicity results show that the majority of land in Hong Kong is not near urban areas, as the 
median raster values are below 4% urban at all scales calculated (Table 1). This shows that 
although Hong Kong has extremely dense urban cores, most of its mountainous terrain is 
unpopulated. 

Deleted:	normalized difference vegetation index (

Deleted:	)

Deleted:	( 0.03 km) 

Deleted:	is 

Deleted:	It is also apparent that inferring urban development 
from impervious surface is not ideal, as sometimes bare soil 
or rock are sensed as impervious. Also, there is little ability 
for such a measure to differentiate between a dense urban 
core of high-rises, and large paved areas (such as parking 
lots or airports). Unfortunately, accessible data on the 
geographic distribution of the urban environment in Hong 
Kong is limited. For climate modeling, an urbanicity 
measure that takes into account building height or population 
density at a 30 m or finer scale could be preferable. 



4.2 Climate variables  

Minimally, 32,024 monthly weather station measurements over 20 years (1998 to 2017) were 
used to construct climate models for all months and variables at finer resolution compared to 
global datasets (Fig. 2). High weather station density and availability of data on multiple 
candidate topographic climate-forcing factors allowed for high confidence in many climate 
variable models, especially those related to temperature (Figs. 3, 4). The climate interpolation 
results include monthly models of ten variables including temperature, precipitation, and 
humidity, making a total of 120 individual models produced (monthly models of three 
temperature variables are shown in Fig. 5). For all variables, the predictors included in monthly 
models are displayed in Figure 6, and the number of stations with data included is in Table 2.  

4.2.1 Temperature  

Temperature was found to vary considerably across Hong Kong, with more than 6ºC difference 
in mean annual temperature between the highest mountain peaks (>900 m, <18ºC) and some 
low-lying urbanized areas (>24ºC). While mean and minimum temperature are highest in urban 
areas, maximum temperature shows a different pattern with a maximum in inland valleys in the 
northern New Territories. This pattern may be explained by urban heat retention: buildings act as 
heat sinks which absorb solar radiation during the day, and slowly release heat at night, causing 
increased minimum temperatures (see Oke, 1982). The high maximum temperatures in inland 
valleys may be due to reduced air circulation in sheltered locations, and lack of complex 
vegetation or urban structures providing shade. The high accuracy of temperature models (Figs. 
3, 4) is likely due to a strong association with elevation; elevation was by far the most commonly 
included predictor for temperature models (Fig. 6). Urbanicity was important for mean and 
minimum temperature, but not maximum temperature. Water proximity and coast distance were 
differentially included depending on the variable, while aspect*slope rarely had an effect.  

4.2.2 Rainfall  

In our models, the highest annual rainfall (bio12) areas in Hong Kong (>2500 mm annually) are 
inland and at high elevations, presumably because of condensation from humid air as it passes 
over mountains. Areas near the coast, particularly small outlying islands and the eastern coast in 
Lung Kwu Tan receive the lowest amount of annual rainfall (<1600 mm). Precipitation of driest 
month (bio14) was uniformly low, ranging from 20 to 40 mm, but the relative pattern of high and 
low precipitation areas remained similar. The most commonly included model predictor was 
fine-scale water proximity (Figure 6). Elevation was predictive for 5 out of 12 months, but few 
other topographic predictors were useful. Seasonality of rainfall in Hong Kong is strong. 
Averaged across all locations, 52% of total yearly rainfall was recorded in three months (June 
through August). Rainfall models were informed by more weather stations than any other climate 
variable (Table 2), but they have the highest relative standard error (Fig. 3) and therefore the 
lowest accuracy. Because they are influenced by both global and locally variable wind patterns, 
precipitation distributions are notoriously difficult to predict, especially in urban areas (Cristiano 
et al., 2017).  
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4.2.3 Dew point, humidity, pressure, and wind speed  

Dew point exhibits a similar pattern to other temperature variables, with mean annual dew point 
ranging from 15.5ºC at 5 mountain peaks to around 19ºC on small islands and lower areas. Mean 
annual relative humidity reaches a maximum of about 90% at Tai Mo Shan, while many urban 
areas in Kowloon, Tuen Mun, and Yuen Long are between 70 and 75%. Surprisingly, mean 
annual air pressure has a positive correlation with elevation; the highest values (reaching 1014 
hPa) are at mountain peaks, and particularly low values (as low as 1012.5 hPa) in coastal areas of 
southern and western Hong Kong. Mean annual wind speed is also strongly associated with 
elevation, with mean annual values above 30 km/h on Lantau Island mountain peaks, down to 
below 5 km/h in interior low elevation areas of the New Territories.  

4.2.4 Comparisons with global climate data  

Our new climate models are compared with a recent global climate dataset to identify differences 
in predictions of Hong Kong climate values (Fig. 7). WorldClim 2 was produced using a similar 
interpolation approach with regression modeling and thin plate spline interpolation, but also 
included satellite-derived covariates in addition to topography (Fick and Hijmans, 2017). 
Because WorldClim incorporates vast amounts of data from multiple databases covering 
overlapping geographic and political entities, it is difficult to ascertain exactly which individual 
weather stations were included, and we were unable to determine whether any Hong Kong 
weather stations were included or if the datasets are completely independent. However, the 
model predictions differ substantially (Figs. 1, 7; Table 3). Our models generally indicate greater 
spatial variation than WorldClim, with cool areas colder, warm areas hotter, and wet areas 
wetter. For example in average low temperature of coldest month (bio6), high elevation areas 
could be more than 2ºC lower, and urban areas more than 2ºC higher than WorldClim indicates 
(Fig. 7a). To further quantify differences in values between these two datasets, for each of the 19 
bioclimatic variables we calculated the standard deviation of raster values (Table 3). All of our 
interpolated climate rasters had a higher standard deviation than their WorldClim 2 counterparts. 
These results suggest that unless global climate models increase in resolution and accuracy, 
regional models will remain critical for local applications.  

4.3 Remote sensing variable  

The NDVI data represents vegetation quality and density based on two merged satellite images, 
both in March of their respective years. Although this is only an instantaneous representation of 
NDVI, we expect it to correlate strongly with the spatial pattern of vegetation density throughout 
the year. Certain plant species shed and regenerate their leaves during specific months ranging 
from winter through mid-summer, but Hong Kong’s woody vegetation is overall evergreen 
(Dudgeon and Corlett, 1994), so seasonal changes in NDVI are not expected to be drastic. NDVI 
values above 0.4 include Hong Kong’s densest forests, while unvegetated or urbanized areas are 
well below 0.1. The densest vegetation (> 0.4 NDVI) in Hong Kong tends to be on slopes 
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between 100 m and 400 m elevation (Fig. 8), and is distributed between Hong Kong Island, 
Lantau Island, and the New Territories. One exception is the verdant mangrove forests, at sea 
level. The patchy distribution of high density vegetation likely reflects the effects of historical 
deforestation. The largest patches are found on the southeastern slopes of Tai To Yan in the New 
Territories. The relative distribution of NDVI classes along Hong Kong’s elevational gradient is 
shown in Figure 8. Future work could determine to what extent NDVI changes over time, in 
response to seasonality or recent weather. The limiting factor is the availability of data of 
adequate temporal resolution, as many satellite images of Hong Kong are obscured by cloud 
cover or degraded by poor air quality.  

4.4 Value and Utility 
 
This new data will benefit environmental research, and specifically SDM studies, in two main 
ways. First, it will enable finer scale analyses than previously possible. For SDM, this means 
improved detection of climatic microrefugia (Meineri and Hylander, 2017), and the ability to 
differentiate between human altered habitat and natural areas. Rampant development and a 
shifting climate make this knowledge of local species persistence more important than ever. 
Additionally, this is especially relevant in Hong Kong where topography varies dramatically, and 
where urban areas form a complex mosaic with undeveloped expanses. 

Second, we provide a diverse array rasters derived from multiple independent data sources, but 
in a single resolution and format to facilitate further analysis and synthesis of meaning. For 
SDM, these diverse layers have distinct advantages over datasets that only contain climate data. 
Compared to climate data alone, using diverse predictors including topographic characteristics 
have been shown to be important variables for accurate SDM results, such as predicting the 
spread of invasive species in new ranges (Peterson and Nakazasa, 2008). However benefits of 
non-climate data may only be evident in finer scale SDMs (Luoto et al., 2007). 

Finally, such high quality, diverse geographic data is especially uncommon in tropical regions, 
where improved knowledge for environmental research and biological conservation is most 
needed. According to Rapoport’s Rule, tropical species are more likely to have smaller 
distributions (Stevens, 1989), and therefore future execution of local SDM studies to understand 
their ranges are particularly important. 

4.5 Limitations and next steps 

Here we outline how shortfalls of the data presented may be improved in the future. First, though 
we inferred Hong Kong’s pattern of urban development from impervious surface data, this is less 
than ideal because in addition to concrete, bare soil or rock are sensed as impervious. Also, it 
cannot differentiate dense urban cores of high-rises from large paved areas. For climate 
modeling, an urbanicity measure that considers building height or population density at a 30 m or 
finer scale could be preferable.  

Second, while our temperature rasters should accurately represent air temperature in open areas, 
they do not reflect the high spatial variation in temperature found in urban microclimates. For 
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example, although the manned Kowloon HKO weather station is inside a densely populated area, 
as pointed out by Nichol and To (2012) it is still in a small parklike area surrounded by trees, and 
therefore is not representative of the most densely urbanized areas of Hong Kong. Other stations 
in urban areas are similarly near green spaces or otherwise open areas. Higher resolution (say 5 
m or 1 m) studies of urban thermal distributions would strongly benefit from analysis of wind 
patterns, building height, thermal pollution, and other factors (e.g. Shi et al., 2018). Therefore 
granular, ground-level temperatures in urban areas are likely substantially different than the 
broader air temperature values our models provide.  

Similar to other climate interpolation studies, bias in the physical locations of automatic weather 
stations may be of concern. Weather stations are often intentionally placed in flat, open areas 
with the goal of measuring weather that is relevant to a broad geographic area, rather than 
locations that may experience unique local climate. It may be for this reason that Slope*Aspect 
was infrequently useful for model construction, as few stations are on steep slopes. Elevational 
distribution of stations may also be a source of bias; although a weather station operates at the 
highest point in Hong Kong (Tai Mo Shan, 955 m), there are only two other stations above 600 
m.  

Finally, while we used cross-validation to measure the spatial predictive ability of the climate 
models, this method is only able to test models against locations where weather stations are 
present; validation based on an independently collected dataset would be ideal. One common 
validation method is to use weather data loggers placed across elevational and land-use gradients 
(Meineri and Hylander, 2017). Such an approach would allow for explicit testing and comparing 
predictiveness of climate products for different areas of Hong Kong. 

Important gaps in Hong Kong geographic data remain. Models projecting future climate 
scenarios would enable biodiversity change predictions, with additional variables like cloud 
cover and solar radiation useful. A discrete classification of habitat type would be useful for 
ecological research, and quality soil type data is lacking. Availability of such data for Hong 
Kong would complement the findings of this project, which significantly advance our 
understanding of geographic heterogeneity in this complex tropical region.  

Conclusions  

This diverse set of 30 m resolution topography, climate, and remote sensing data include the first 
published interpolation of long-term climate averages specific to Hong Kong. Our findings 
suggest that global interpolated climate datasets are limited by their resolution, and 
underestimate local climate variability. Therefore the availability of such local data will remain 
critically important for the forseeable future. This new data will allow for a new generation of 
studies in Hong Kong, and enable connections between environmental data and biotic patterns at 
a much finer scale than previously possible. Aside from clear uses in conservation, ecological 
and biogeographic research, we also expect this freely accessible dataset to be broadly applicable 
for many sectors, including tourism, hydrology, recreation, agriculture, mapmaking, and real 
estate.  
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6 Data availability  

GeoTIFF raster and shapefile documents can be downloaded from figshare: 
https://doi.org/10.6084/m9.figshare.6791276. A document in the repository includes file names, 
descriptions, and summary statistics for all provided rasters. Individual monthly rasters for each 
of the 10 climate variables are available as a compressed zip file.  

Author contributions. BAM acquired initial data, conducted modeling, and prepared the dataset. 
BAM and BG prepared the manuscript.  

Competing interests. The authors declare that they have no conflict of interest.  

Acknowledgements. We thank Ocean Park Conservation Foundation for supporting this 
research. This project would not have been possible without the Hong Kong Observatory, which 
works tirelessly to maintain their weather station network and ensure the resulting data is 
accessible. We also thank Eric Meineri for comments and advice while planning our analyses.  

 

Citations Added: 

Luoto, M., Virkkala, R., and Heikkinen R. K.: The role of land cover in bioclimatic models 
depends on spatial resolution. Global Ecol. Biogeogr., 16, 34-42, 2007. 

New, M., Lister, D., Hulme, M., and Makin, I.: A high-resolution data set of surface climate over 
global land areas. Clim. Res., 21, 1-24, 2002. 

Oke, T. R.: The energetic basis of the urban heat island. Quart. J. R. Met. Soc., 108, 1-24, 1982. 

Peterson, A. T., and Nakazawa, Y.: Environmental data sets matter in ecological niche 
modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecol. Biogeogr., 
17, 135-144, 2008. 

Stevens, G.: The latitudinal gradient in geographical range: how so many species coexist in the 
tropics. Amer. Nat., 133, 240-256, 1989. 

Wahba, G.: How to Smooth Curves and Surfaces with Splines and Cross-Validation. Ft. Belvoir: 
Defense Technical Information Center, 1979. 

 

 

Figures and Appendix Added: 

Deleted:	https://figshare.com/s/3a5634e36e80dc33444c (or) 

Deleted:	(once data is published). The readme 

Deleted:	from the authors upon request

Moved	(insertion)	[3]

Moved	up	[3]:	Luoto, M., Virkkala, R., and Heikkinen R. K.: 
The role of land cover in bioclimatic models depends on 
spatial resolution. Global Ecol. Biogeogr., 16, 34-42, 2007.

Moved	down	[4]:	Peterson, A. T., and Nakazawa, Y.: 
Environmental data sets matter in ecological niche 
modelling: an example with Solenopsis invicta and 
Solenopsis richteri. Global Ecol. Biogeogr., 17, 135-144, 
2008.

Moved	(insertion)	[4]



 

Figure S1. Schematic of data products and the sources that informed them. Items enclosed in a 
box represent the files available for download from the figshare repository. 



 

Figure S2. Permanent weather stations operated by the Hong Kong Observatory. Symbols 
indicate what type of data is available from each station: temperature, rainfall, or both.  

Appendix 1. Glossary of variable definitions 
Maximum temperature   the highest temperature observed within a month 
Mean daily maximum temperature the mean of all daily high temperatures within a month 
Mean daily temperature   the mean of all temperatures within a month 
Mean daily minimum temperature the mean of all daily low temperatures within a month 
Minimum temperature   the lowest temperature observed within a month 
Mean dew point    the mean of all dew point observations within a month 
Mean relative humidity   the mean of all relative humidity observations within a month 
Mean wind speed   the mean of all wind speed observations within a month 
Mean air pressure   the mean of all air pressure observations within a month 
Rainfall     the total of all rain recorded within a month 
 
Relative elevation the difference in elevation between the pixel of interest, and the lowest 

pixel within a given radius 
Distance to coast geometric distance between the pixel of interest and the nearest oceanic 

coastline 
Water proximity percent of area that is terrestrial within a given radius of the pixel of 

interest 
NDVI     Normalized Difference Vegetation Index  
Urbanicity measure of area that is impervious surface within a given radius of the 

pixel of interest 


