
Dear referee, 

thank you for your comments. We would like to respond to them: 

 

1. I found the paper not easy to read and understand, and it is not well organized. There are too many symbols 

and many words are abbreviated that make reader confuse. 

To make it easier to read, we tried to create Table 1. (line 370), which we corrected, and at the same time, we 

added links to this table in the article. 

Line 150: Description of symbols that indicate the type of prediction error E in the text is provided in Table 1. 

Line 214-215: Note that the description of symbols that indicate the type of parameters of error growth models  

,  , p and Elim in the text is provided in Table 1. 

 

2. I'd suggest to divide section 2 "Experimental setting" suggest into "2.1 Experimental setting" and "2.2 

Calculation of the predictability curves". 

We added: 

Line 61: 2. Experimental setting 

Line 91: 3. Calculation of the predictability curves 

and we have modified the last paragraph of the introduction accordingly (Lines 57 - 59) 

 

3. The error growth estimate consists of initial and model error is lower bound predictability curve and the upper 

bound predictability curve only contains initial error. Can you say more about the differences between the bound 

predictability curves and the limit error? 

We have expanded the introductory definition: 

Line 18 - 22: Forecast errors in numerical weather prediction systems grow in time because of the inaccuracy of 

the initial state (initial error), chaotic nature of the weather system itself, and the model imperfections (model 

error). The growth of forecast error in weather prediction is exponential on average. As an error becomes larger, 

its growth slows down and then stops with the magnitude saturating at about the average distance between two 

states chosen randomly from dynamically and statistically possible states (limit (saturated) error). 

 

We also added information about the difference between the limit values of the lower and upper bound 

predictability curves: 

Line 135 -136:  
,UE

 and 
,LE

 differ if the ECMWF forecasting system does not sufficiently describe the 

variability of the atmosphere (model error). 

 

and we added a link to Figs. 3 and 4 to visually show the limit value as dE/dt = 0. 

Line 194:  Elim is the limit (saturated) value of E (value of E when dE/dt = 0, theoretically E∞  , Figs. 3 and 4) 

 

4. L85:Remove the comma ""”. It can be changed to “A bounded dynamical system with a positive Lyapunov 

exponent is chaotic”. 

Line 85:The comma is removed. 

 

5. L95: How to determine the values of N “real” and N “observed”? 

We added the number of variables we tested. 

Line 98: N (N = 30; 60; 90; 120; 150) 

The reason why N = 90 was chosen is explained on lines 172-178. 

 

6. L125-130: My main issue with this manuscript is that I’m not convinced that the measure of limit error really 

works, mainly because of the ERAInterim daily data including uncertainty. Also, given that the maximum forecast 

time for the ECMWF forecasting system is 10 days, the forecast error may not be reach to the 

saturated value or predictability limit. 

We agree on this point. That is why we developed the method (Eq. (15)) that is independent of the calculation 

presented on the lines 125 – 130 (Eq. (7)), and we have shown that the method we specify is valid (5. Discussion) 

 

7. L125-130: What is the physical meaning of the ’limit error’ you derived? Dose the limit error means the error 

of saturated value of predictability limit? 

In our text, the limit and the saturated value of the error have the same meaning. 



Line 19 -22: The growth of forecast error in weather prediction is exponential on average. As an error becomes 

larger, its growth slows down and then stops with the magnitude saturating at about the average distance between 

two states chosen randomly from dynamically and statistically possible states (limit (saturated) error). 

 

8. The paper of RuiqiangDing., and Jianping, Li(2011) is listed in References, but it cannot be found in the 

manuscript. Please check it again. 

 

Thank you for your comment. 

Line 164: which agrees with Ruiqiang and Jianping (2011) 
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Abstract. This article provides a new estimate of error growth models’ parameters approximating predictability curves and 

their differentials, calculated from data of the ECMWF forecast system over the 1986 to 2011 period. Estimates of the largest 

Lyapunov exponent are also provided, along with model error and the limit value of the predictability curve. The proposed 

correction is based on the ability of the Lorenz’s (2005) system to simulate predictability curve of the ECMWF forecasting 10 

system and on comparing the parameters estimated for both these systems, as well as on comparison with the largest Lyapunov 

exponent (λ = 0.35 day-1) and limit value of the predictability curve (E∞ = 8.2) of the Lorenz’s system. Parameters are calculated 

from the Quadratic model with and without model error, as well as by the Logarithmic and General models and by the 

hyperbolic tangent model. The average value of the largest Lyapunov exponent is estimated to be in the <0.32; 0.41> day-1 

range for the ECMWF forecasting system, limit values of the predictability curves are estimated with lower theoretically 15 

derived values and new approach of calculation of model error based on comparison of models is presented.  

1. Introduction 

Forecast errors in numerical weather prediction systems grow in time because of the inaccuracy of the initial state (initial 

error), chaotic nature of the weather system itself, and the model imperfections (model error). The growth of forecast error in 

weather prediction is exponential on average. As an error becomes larger, its growth slows down and then stops with the 20 

magnitude saturating at about the average distance between two states chosen randomly from dynamically and statistically 

possible states (limit (saturated) error). This average growth of forecast error with increasing lead times is called the 

predictability curve. 

Predictability curves (Froude et al., 2013) of the European Centre for Medium-Range Weather Forecasts (ECMWF) numerical 

weather prediction system are calculated by the approach developed by Lorenz (1982), where two types of error growth can 25 

be obtained (Lorenz, 1982). The first type is calculated as the root mean square difference between forecast data of increasing 

lead times and analysis data valid for the same time. This error growth estimate consists of initial and model error and following 

Lorenz (1982) we will call it the lower bound predictability curve (L). The second type is calculated as the root-mean-square 

difference between pairs of forecasts, valid for the same time but with times differing by some fixed time interval (the 
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difference between two forecasts issued with 24-h lag but valid at the same time is used in this article). This type consists of 30 

initial error and we will call it the upper bound predictability curve (U). Predictability curves of Lorenz’s 05 system (L05; 

Lorenz, 2005) can be controlled by model parameters and by the size of the initial error and they are set to be as close to 

predictability curves of ECMWF forecasting system as possible.  

Over the years several error growth models approximating predictability curves have been developed, aiming to quantify 

Lyapunov exponents, model errors (for the imperfect model case where the atmosphere is not perfectly modeled), and limit 35 

(saturated) errors. The first, called Quadratic ( Km ), was designed by Lorenz (1969). Dalcher and Kalney (1987) added model 

error to the Quadratic model and Savijarvi (1995) changed it to the form ( Km
), that is used today. An alternative, called 

Logarithmic model ( Lm ) was introduced by Trevisan et al. (1992; 1993). General model ( Gm ) was introduced by Stroe and 

Royer (1993; 1994). All these models approximate differences of predictability curves (error growth rate). Newer models 

approximate the predictability curve directly by the hyperbolic tangent (Tm  and Tm
) (Žagar et al., 2017).  40 

Values of parameters calculated from error growth models are used to evaluate the improvement of the ECMWF forecasting 

system (Magnusson and Kallen, 2013), to estimate the predictability or the limit error (Bengtsson et al., 2008), to quantify 

impacts of different model’s resolutions (Buizza, 2010), to study chaos and model error in different spatial-temporal scales 

(Žagar et al., 2015; Žagar et al., 2017 ). They are also used by researchers when the need arises to estimate chaoticity, model 

error or predictability, but their validity can’t be proved, because standard methods (Sprott, 2006) to calculate the largest 45 

Lyapunov exponents for the ECMWF forecasting system can’t be used due to a large number of variables. An independent 

value estimated from forecast and analysis anomalies can be calculated for the limit error (Simmons et al., 1995) and its validity 

will be discussed.  The need for correct values of error growth models´ parameters increased these days because the Quadratic 

model with model error is used to describe multiscale weather (Zhang et al., 2019).  

This article intends to provide a new estimate of parameters of error growth models in the ECMWF forecasting system 50 

calculated from data over the 1986 to 2011 period. The correction is based on comparing the parameters calculated from the 

error growth models for the L05 system and the ECMWF forecasting system and on comparison with the largest Lyapunov 

exponent and the limit value of the predictability curve of the L05 system that can be calculated independently and with 

sufficient accuracy. To make the correction valid, predictability curves of the ECMWF forecasting system and the L05 systems 

are compared for two different methods (arithmetic and geometric averages) and the number of variables of the L05 system, 55 

pertaining to the best match of the predictability curves is identified. As a result, a new approach to the calculation of model 

error based on a comparison of models is presented. 

This article is divided into six seven sections.  The second describes the experimental setting. The third describes calculation 

of the predictability curves. The third fourth provides a comparison of predictability curves of the ECMWF forecasting system 

and the L05 system and the fourth fifth deals with the estimation of Lyapunov exponents, model, and limit errors of the 60 

ECMWF forecasting system based on the correction.  Discussion and conclusions are then presented in the final two sections. 
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2. Experimental setting  

L05 model is based on the low-dimensional atmospheric system presented by Lorenz (1996). It is a nonlinear model, with N 

variables connected by governing equations   

 2 1 1 1 ,n n n n n ndX dt X X X X X F− − + −= − + − +  (1) 65 

1, ,n N= . 2 1 1   ,  ,   ,   n n n nX X X X− − + are unspecified (i.e., unrelated to actual physical variables) scalar meteorological 

quantities, F is a constant representing external forcing and t is time. The index is cyclic so that 
n N n N nX X X− += = and 

variables can be viewed as existing around a circle. Nonlinear terms of Eq. (1) simulate advection. Linear terms represent 

mechanical and thermal dissipation. The model quantitatively, to a certain extent, describes weather systems, but, unlike the 

well-known Lorenz’s model of atmospheric convection (Lorenz, 1963), it cannot be derived from any atmospheric dynamic 70 

equations. The motivation was to formulate the simplest possible set of dissipative chaotically behaving differential equations 

that share some properties with the “real” atmosphere. One of the model´s properties is to have 5 to 7 main highs and lows that 

correspond to planetary waves (Rossby waves) and a number of smaller waves that correspond to synoptic-scale waves. For 

Eq. (1) this is only valid for 30N =  and that is, as it will be seen, not sufficient for the experimental setting. Therefore, spatial 

continuity modification of L05 system is used, where the Eq. (1) is rewritten to the form:                                                          75 

  
,

, ,n nL n
dX dt X X X F= − +  (2) 

where 

  ( ) 2

2,
, ' ' .

J J

n L i n L j n L j i n L jL n
j J i J

X X X X X X L− − − − − + − + +

=− =−

= − +   

If L is even, ∑’ denotes a modified summation, in which the first and last terms are to be divided by 2. If L is odd, ∑’ denotes 

an ordinary summation. Generally, L is much smaller than N and J = L/2 if K is even and J = (L-1)/2 if L is odd. For comparison 80 

with predictability curves of the ECMWF forecasting system, we choose N =30; 60; 90; 120; 150; 360. To keep a desirable 

number of main pressure highs and lows, Lorenz (2005) suggested to keep ratio N/L = 30 and therefore L = 1; 2; 3; 4; 5; 12. 

For even values of L we have J = 1; 2; 6 and for odd values of L we have J = 0; 1; 2. Parameter F = 15 is selected as a 

compromise between too high Lyapunov exponent (smaller F) and undesirable shorter waves (larger F). For this setting and 

by the method of numerical calculation (Sprott, 2006), the global largest Lyapunov exponents are calculated (Table 2). By the 85 

definition of Lorenz (1969): „“A bounded dynamical system with a positive Lyapunov exponent is chaotic “. Because the 
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value of the largest Lyapunov exponent is positive and the system under study is bounded, it is chaotic. Strictly speaking 

(Aligood  

et al., 1996), we also need to exclude the asymptotically periodic behavior, but such a task is impossible to fulfill for the 

numerical simulation. The choice of parameters F and time unit = 5 days is made to obtain a similar value of the largest 90 

Lyapunov exponent as the ECMWF forecasting system. 

3. Calculation of predictability curves  

To calculate predictability curves (Lorenz, 1996), arbitrary values of the variables nX  are chosen, and, using a fourth-order 

Runge-Kutta method with a time step ∆t = 0.05 or 6 hours, it is integrated forward for 14400 steps or 10 years. Final values 

0,nX , which should be free of transient effect, are the initial values of “reality”. Initial values of “prediction” are 95 

0, 0, 0,n n nX X e = + , where 
0,ne  is the initial error and it is chosen randomly from a normal distribution ( );ND   , where 0 =  

is mean and σ is the standard deviation, which is chosen from comparison with the ECMWF forecasting system. From 
0,nX  

and 
0,nX   Eqs. (2) are integrated forward for 37.5 days (K=150 steps). For upper bound predictability curves nX  and nX   are 

chosen with the same number of variables N (N = 30; 60; 90; 120; 150). For lower bound predictability curves nX  is defined 

by 
0,nX  and by Eqs. (2) with 0 360N =  and nX   by 

0,nX   and by Eqs. (2) with N = 30; 60; 90; 120; 150. The size of the model 100 

error is corrected by the difference of N for nX  and nX  . If, for example, 120N =  then nX  is compared with nX   in each 

third point of 0N . 

In each time step t  of numerical integration N “real” and N “observed” values are obtained. The size of the error at a given 

time for upper bound predictability curves is ( ) , , ,n k n k ne k t X X = −  where 1, ,k K=  and  1, ,n N= and for lower bound 

predictability curves ( ) , ,´ ,n k n k nk t X X  = −  where 1, ,k K= , 1, ,n N=  (except for 0N ). 1, ,n N =  (except for 0N ) 105 

is the location of the value 
,k nX  for N = 360, where 0n n N N =   for N = 30; 60; 90; 120; 150. The predictability curves of 

the ECMWF forecasting system, in this case, are obtained from annual averages of daily data. To simulate that, the number of 

runs M = 400 is made. In each new run, initial values 
0,nX  are the last values 

,K nX  from the previous run. M N values are 

obtained for each k. Final formulas of prediction errors that constitute predictability curves by calculation with arithmetic mean 

(A) are: 110 

 ( ) ( ) ( )05 2

,

1 1

1
,

M N
L

n mU A
m n

E k t e k t
M N = =

 = 

  (3) 
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Formulas to calculate prediction errors by geometric means (G) are: 
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  (6) 115 

For an overview of the symbols see Table 1. 

To calculate predictability curves for the ECMWF forecasting system (EFS) values of 500 hPa geopotential height are used. 

Data were obtained from ECMWF (Magnusson, 2018). Lower bound predictability curves are calculated (Magnusson and 

Kallen, 2013) from twenty-one root mean squares over the Northern Hemisphere (20°–90° N) obtained daily from 1 January 

1986 to 31 December 2011. Means are differences between operational forecasts and analyses from ERA-Interim for a given 120 

day. Forecasts range from 0.5 day ago relative to the given day to 10 days ahead, with time step 0.5 day. The difference 

between operational analysis and analysis from ERA-Interim is taken as the initial error.  Upper bound predictability curves 

are calculated (Magnusson and Kallen, 2013) from twenty-seven root mean squares over Northern Hemisphere (20°–90°) 

obtained daily from 1 January 1986 to 31 December 2011. Means are differences between two operational forecasts issued 

with one day lag, but valid at the same day. Specifically, following differences are obtained for a given day (hours): 0–24, 6–125 

30, 12–36, 18–42, 24–48, 30–54, 36–60, 42–66, 48-72, 54–78, 60–84, 66–90, 72–96, 78–102, 84–108, 90–114, 96–120, 108–

132, 120–144, 132–156, 144–168, 156–180, 168–192, 180–204, 192–216, 204–228, 216–240. Prediction errors constituting 

the predictability curves are calculated as annual averages of daily data. Detailed information about calculating predictability 

curves of the ECMWF forecasting system can be found in Lorenz (1982). 

Comparisons of model predictability curves are done through values normalized by the limit (saturated) errors (
, limU U

t
E E

→
=130 

, 
, limL L

t
E E

→
= ). Because maximum forecast time for the ECMWF forecasting system is 10 days, presented predictability 

curves don’t reach their limit value.  Independent measure of limit error can be calculated as: 

 

 ( ) ( ) ( )
2 2 2

, ,; 2 ,L UE f c a c E f c = − + − = −  (7) 
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where ( )f c−  is the time-averaged anomaly with respect to climate and ( )a c−  is the time-averaged analysis anomaly with 135 

respect to climate. The climate is defined from ERA-Interim daily climatology. 
,UE

 and 
,LE

differ if the ECMWF 

forecasting system does not sufficiently describe the variability of the atmosphere (model error). More information can be 

found in (Simmons et al., 1995). Because it will be shown that values of limit error calculated by this method aren´t correct, 

predictability curves of the ECMWF forecasting system are normalized by values calculated by Eq. (15). 

4. Comparison of predictability curves 140 

Predictability curves of the ECMWF and L05 systems are compared to find a setting of the L05 system (number of variables 

(N), the size of the initial errors, preference of arithmetic or geometric mean) that gives the most similar progress of systems’ 

predictability curves. 

Predictability curves of the L05 system show negative growth for the first time step (6 hours) but turn into an increase 

thereafter. At the second time step (12 hours) values of predictability curves reach approximately the same values as it had 145 

initially. A possible explanation could be that initial errors set the initial state off the attractor and decrease occurs because the 

first tendency is to get on the attractor (Brisch and Kantz, 2019). With an increase of average errors, chaotic behavior becomes 

dominant. Predictability curves of the ECMWF forecasting system do not exhibit this type of behavior. This may be because 

of larger time steps or methods of objective analysis. We aim to get the most similar predictability curves of both models and 

therefore the first two time steps (up to 12 hours) of L05 model’s predictability curves are filtered out. 150 

Description of symbols that indicate the type of prediction error E in the text is provided in Table 1. Initials values ( )05 0L

UE  

and ( )05 0L

LE  or equivalently standard deviations σ from a normal distribution ( );ND    of the L05 system are calculated 

from a comparison of values that are normalized ( NormE ) by limit (saturated) errors E  calculated by Eq. (15). Upper bound 

predictability curves start for the ECMWF forecasting system at day one (the difference between one-day prediction and the 

analysis) and therefore ( )05 0L

UE  are calculated from predictability curves that are close at the first day ( ) ( )( )05 1 1L EFS

Norm NormE E= . 155 

Values for the L05 system are computed for N = 60; 90; 120; 150. Normalized predictability curves with N = 30 exhibit 

different evolution compared to predictability curves of the ECMWF forecasting system and they aren’t displayed. Initial 

prediction errors ( )05 0L

UE  calculated by arithmetic and geometric mean and N = 60; 90; 120; 150 have the same values and  

( )05 0 0.3;0.8L

UE  . For lower bound predictability curves of the ECMWF forecasting system, the initial error ( )0EFS

LE  is 

computed as a difference between analysis from the operational forecasting system and analysis from ERA-Interim. Initial 160 

errors of the L05 system ( )05 0L

LE  are calculated as: ( ) ( )05 05

, ,0 0L L EFS EFS

L L L LE E E E =   and ( )05 0 0.2;0.7L

LE  . Values are the 

same for all N and arithmetic and geometric mean. 
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Predictability curves calculated by arithmetic and geometric mean show a significant difference for the L05 system (all N), 

which agrees with Ruiqiang and Jianping (2011), and minor difference for the ECMWF forecasting system. For the L05 system 

and upper and lower bound predictability curves, the maximal difference is between 6.5 % and 10.5 % of 
05

,

L

UE  or 
05

,

L

LE  and 165 

these maximal values occur between 5 and 9 day of forecast length. For the ECMWF forecasting system and upper and lower 

bound predictability curves, the maximal difference is 2 % of 
,

EFS

UE
 or 

,

EFS

LE
 and these maximal values occur at the end of the 

forecast length (10 day). The choice of the averaging method doesn’t significantly change the evolution of the ECMWF 

forecasting system’s predictability curves and it does not change values of parameters of the approximations. For the L05 

system, the choice of averaging method is significant and it changes values of the parameters. The reason for this sensitivity 170 

can be found in the spread of values that are used for averaging. For the ECMWF forecasting system, the values are closer to 

each other than for the L05 system and from the definition of means, it leads to the aforementioned difference. 

The comparison of predictability curves is done with given initial values. Predictability curves of the ECMWF forecasting 

system are normalized by ,

EFS

UE  or ,

EFS

LE  (Fig. 7, black full curves) and for the L05 system by 
05

,

L

UE  and 
05

,

L

LE  displayed in 

Table 2 (for a description of the symbols see Table 1). For the L05 system predictability curves are calculated with N = 60; 175 

90; 120; 150 variables and by arithmetic and geometric mean. For the ECMWF forecasting system only arithmetic mean is 

used. 

A comparison of lower bound predictability curves (Fig. 2) shows the most similar predictability curves of the ECMWF 

forecasting system and the L05 system for the L05 system calculated by arithmetic mean with N = 90. For upper bound 

predictability curves (Fig. 1), predictability curves for the L05 system with N = 90 are the most similar but to the year 1999 180 

for predictability curves of the L05 system calculated by geometric mean and after 1999 by the arithmetic mean. 

5. Estimation of parameters 

Parameters of error growth models are the Lyapunov exponent, model error, and limit error. They are estimated from 

approximations of predictability curves or differences of predictability curves ( ) ( )( ) ( ) ( )( )( )2;E t t E t E t t E t t+  + +  −  , 

where t is time and 0.25t = day (Figs. 3 and 4). Error growth models considered here are: 185 

 
( )

lim

: 1 ,
dE t E

Km E
dt E


 

= = − 
 

 (8) 

 
( )

( )
lim

: 1 ,
dE t E

Km E
dt E

  
 

= = + − 
 

 (9) 
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( )

lim

: ln ,
dE t E

Lm E
dt E


 

= = −  
 

 (10) 

 
( )

lim

: 1 ,

p
dE t E

Gm E
dt p E

   
 = = −  
   

 (11) 

 ( ) ( ): tanh ,Tm E t A at a A= = + +  (12) 190 

where parameters of Tm  are 2a = , lim 2E A=  and  

 ( ) ( ): tanh ,Tm E t A at b B = = + +  (13) 

where parameters of Tm
 are ( )a A B A = + , ( )2 2a A B A = −  and limE A B= + . E is an average forecast error. t 

represents time,  is the estimate of the Lyapunov exponent .   is the parameter of model error ( dE dt  when 0E = ), limE  

is the limit (saturated) value of E (value of E when 0dE dt = , theoretically E , Figs. 3 and 4) and p, A, B, a, b are parameters. 195 

The calculation is done for the ECMWF forecasting system and the L05 system ( 90N = ), for arithmetic (A) and geometric 

(G) means, for upper bound predictability curves (U) and lower bound predictability curves (L). See Tables 3 and 4 for RMS 

values of parameters  , 
limE ,   and p , that are calculated over all used initial errors for the L05 system and all calculated 

years for the ECMWF forecasting system.  

The average values of parameters  , 
limE  are higher for the lower bound predictability curves than for the upper bound 200 

predictability curves. Upper bound predictability curves should not include model error (theoretically 0 = ) but from Table 

4 it can be seen that for the L05 system (arithmetic mean) the values are even higher than for the lower bound predictability 

curves. For the ECMWF forecasting system the values of   are higher for lower bound predictability curves which is 

theoretically more acceptable, but   is not zero for the upper bound predictability curves. A possible explanation can be the 

sensitivity to correct approximation (cases with higher   have lower  ), but this can not fully explain the discrepancy. For 205 

p  the values of upper and lower bound predictability curves are similar to each other (L05 system and ECMWF forecasting 

system). 

There are significant differences of parameters  , 
limE ,   and p  between predictability curves calculated by arithmetic and 

geometric mean for the L05 system (for the ECMWF forecasting system only arithmetic mean is presented). The most 
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significant differences are detected for   and p , where for   values are closer to zero for geometric mean and values of 210 

predictability curves calculated by arithmetic mean are two or three times higher. Values of parameter p  are closer to 1p =  

for geometric mean. This means that differences of predictability curves calculated by geometric mean have a shape that is 

close to a symmetric parabola (for example Fig. 3a) but for the arithmetic mean the parabolic shape is skewed to the left (for 

example Fig. 3c). 

Note that the description of symbols that indicate the type of parameters of error growth models  ,  , p and 
limE  in the text 215 

is provided in Table 1. The Lyapunov exponent of the ECMWF forecasting system is recalculated by the formula:  

 ( )05 05 ,EFS EFS L L   = + −  (14) 

where 
EFS and 

05L  are parameters of error growth models and 
05 0.35L =  day-1.  For upper bound predictability curves 

(the L05 system with N = 90, to the year 1999 calculated by geometric mean and after 1999 by arithmetic mean), the average 

value EFS

U over all error growth models is in the range 0.33; 0.41  day-1 (Fig. 5a). Lm is not used, because this error growth 220 

model is not sufficient to approximate predictability curves. RMSEs of EFS

U are mostly about 0.01 day-1 only in years 1991, 

1995, 1997 a 1999 RMSE is about 0.02 day-1. For comparison, RMSEs of  EFS

U  are in the range 0.02; 0.07  day-1 (Fig. 5a). 

For lower bound predictability curves (the L05 system with N = 90 calculated by arithmetic mean), the average value EFS

U

over all error growth models is in the range 0.32; 0.41  day-1 (Fig. 5b). RMSEs of EFS

L are in the range 0.01; 0.02  day-1. 

For comparison, RMSEs of  EFS

L  are in the range 0.03; 0.07  day-1 (Fig. 5b).  The average value EFS  over upper and lower 225 

bound predictability curves is shown in Fig. 6  and RMSEs of EFS are mostly about 0.01 d-1. Low values of RMSEs of 
EFS  

compared to RMSEs of 
EFS and similar values of 

EFS for upper and lower bound predictability curves (low values of RMSEs 

of EFS ) prove the validity of EFS . Values of EFS and 
EFS  are generally closer to parameters  

EFS  of Km
 , Tm

 and 

Gm  than to 
EFS  of Km  , Tm  and Lm , but none of the error growth models approximates EFS  (Fig. 6). 

New limit values EFSE
 are calculated from the error growth models by the formula: 230 

 ( )( )05 05 05

lim lim lim ,EFS EFS EFS L L LE E E E E E  = +  −  (15) 

where 05LE
 and 05

lim

LE  are values from error growth models  and 05 8.2LE = . For upper bound predictability curves (the L05 

system with N = 90), average value over all error growth models ,

EFS

UE is in the range 96; 133  m (Fig. 7a). Lm is not used, 
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because this error growth model is not sufficient to approximate predictability curves. RMSEs of 
,

EFS

UE
are mostly about 1 m 

only in the years 1987, 1988, 1995, 1997, 2003, and 2011 it is about 2 m. For comparison, RMSEs of 
lim,

EFS

UE  are in the range 235 

2; 6  m (Fig. 7a). For lower bound predictability curves (the L05 system with N = 90 calculated by arithmetic mean), average 

value over all error growth models 
,

EFS

LE
is in the range 114; 134  m (Fig. 7b). Lm is not used, because this error growth 

model is not sufficient to approximate predictability curves. RMSEs of ,

EFS

LE are mostly 3 m and after the year 2004, they are 

4 m. RMSEs of lim,

EFS

LE  are in the range 3; 6  m (Fig. 7b). Lower values of RMSEs of ,

EFS

UE  and ,

EFS

LE calculated by Eq. (15) 

compared to RMSEs of 
lim,

EFS

UE  and 
lim,

EFS

LE  prove the validity of 
,

EFS

UE
 and 

,

EFS

LE
. 240 

6. Discussion 

The argument that favors EFSE
 calculated by Eq. (15) (Fig. 7, black full curves) instead of EFSE

 calculated by Eq. (7) (Fig. 7, 

black dashed curves) is based on the parameter of model error  .  The most similar predictability curves of the L05 system 

and the ECMWF forecasting system with EFSE
 calculated by Eq. (15) are found for the L05 system with N = 90  (for lower 

bound predictability curves calculated by arithmetic mean and for upper bound predictability curves calculated by geometric 245 

mean to 1999 and after by arithmetic mean). The most similar predictability curves of the L05 system and the ECMWF 

forecasting system with EFSE
 calculated by Eq. (7) are found for the L05 system with N = 90 by the arithmetic mean for upper 

and lower bound predictability curves. It means that if the comparison is valid and model error is constant for the L05 system 

(same number of variables over years in the L05 system means constant model error over years), it must be constant also for 

the ECMWF forecasting system, but the calculation of parameters EFS

L  shows a decreasing trend with increasing time (Fig. 250 

8b).  This can’t help yet.  But parameters EFS

U  have non zero values (Fig. 8a) that are close to EFS

L  for some years and that 

is inconsistent with the theoretical expectation that upper bound predictability curves should be without model error and 

therefore   should be 0 m/day. This inconsistency can be solved by the new definition of the model error. From Fig. 6 it can 

be seen closer value of 
EFS to EFS for 

EFS approximated from error growth models Km
 , Tm

 and Gm than for 
EFS

approximated from error growth models Km , Tm  and Lm . Gm  has parameter p  that defines skewness of the originally 255 

parabolic shape of the difference of predictability curves. 1p =  pertains to symmetrical parabolic shape ( Gm becomes Km ) 

and 0p =  means the greatest skewness to the left ( Gm becomes Lm ). Parameters   also skew the originally parabolic shape 

(Figs. 3 and 4). The model error can be seen as a difference between skewness of upper and lower bound predictability curves 

and the new definition of model error would be: 
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 .L U L U  − = −  (16) 260 

Results (Fig. 9a) show good agreement for EFS

L U −
 (Eq. (16)) calculated from Km

 and Tm
, decreasing trend of EFS

L U −
 with 

increasing time for predictability curves with EFSE
 calculated by Eq. (15) and almost constant values of EFS

L U −
 with increasing 

years (slight decrease can be due to the error of approximations) for predictability curves with EFSE
 calculated by Eq. (7). 

There is also good agreement with trends of L Up p−  (Fig. 9b). Because constant values of 
L U −

 for predictability curves 

with EFSE
 calculated by Eq. (7) are not theoretically possible, predictability curves with EFSE

 calculated by Eq. (15) are 265 

favored. The reason for the decreasing trend of 05L

L U −
, found for predictability curves of the L05 system with N = 90 that are 

the most similar with predictability curves of the ECMWF forecasting system normalized by EFSE
 calculated by Eq. (15), is 

that they are partly calculated by geometric and partly by the arithmetic mean. 

These arguments are taken as proof of the validity of   EFS , EFSE
 calculated by Eq. (15). The reason for the overestimation 

of EFSE
 calculated by Eq. (7) (Fig. 7) can be found in the multiscale behavior of weather. If some events are predictable on a 270 

timescale longer than ten days (for example long-lived anomalies in sea surface temperature or soil moisture) than they 

wouldn´t be captured by medium-range weather forecast (Simmons et al., 1995; Brisch and Kantz, 2019). It is also possible 

that the overestimation is due to the different source of data used for calculation of EFSE
 by Eqs. (7) and (15): For EFSE

 

calculated by Eq. (7) only data from ERA-Interim (Janoušek 2011) are used but for EFSE
 calculated by Eq. (15) data from 

operational forecast are employed.  275 

At the end of this section, it is important to remind the readers about the importance of the correct values of the parameters. 

Nowadays, Km
 is used in the ECMWF forecasting system to estimate the influence of different spatiotemporal scales where 

parameter   newly represents the intrinsic upscale error growth and propagation from small scales and  represents synoptic-

scale error growth (Zhang et al., 2019). The results of our analysis well support this approach by the new definition of model 

error (Eq. (16)) and by showing the errors of approximations for individual error growth models. 280 

7. Conclusion 

The values of error growth models’ (Eqs. (8) - (13)) parameters that approximate predictability curves and their differences 

(Figs. 3 and 4) in the ECMWF forecast system (Tables 3 and 4) were recalculated. It is based on similarities of normalized 

upper and lower bound predictability curves (Figs. 1 and 2) of the ECMWF forecasting system (annual arithmetic mean of 

geopotential heights of 500 hPa from years 1986 – 2011) and the L05 system (N = 90,  arithmetic mean for lower bound 285 

predictability curves; geometric mean up to 1999 and arithmetic mean after 1999 for upper bound predictability curves). It is 
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also based on knowledge of the largest Lyapunov exponent (λ = 0.35 day-1) and the limit value of the predictability curve (E∞ 

= 8.2) of the L05 system. 

Lyapunov exponents of the ECMWF forecasting system were recalculated by Eq. (14). The average value over all error growth 

models for upper bound predictability is in the range 0.33; 0.41  day-1 (Fig. 5a) and RMSEs are mostly about 0.01 day-1. For 290 

lower bound predictability curves average value over all error growth models is in the range 0.32; 0.41  day-1 (Fig. 5b). 

RMSEs are in the range 0.01; 0.02  day-1. The average value over upper and lower bound predictability curves is shown in 

Fig. 6 and RMSEs are mostly about 0.01 d-1. Values of Lyapunov exponent are generally closer to parameters  
EFS  of Km

 

, Tm
 and Gm  than to 

EFS  of Km  , Tm  and Lm  (Fig. 6). 

New limit values were calculated from the error growth models by Eq. (15). For upper bound predictability curves, the average 295 

value over all error growth models is in the range 96; 133  m (Fig. 7a) and RMSEs are mostly about 1 m. For lower bound 

predictability curves average value over all error growth models is in the range 114; 134  m (Fig. 7b) and RMSEs are mostly 

3 m. 

The argument that favors limit values calculated by Eq. (15) (Fig. 7, black full curves) instead of limit values calculated by 

Eq. (7) (Fig. 7, black dashed curves) is based on the new definition of model error (Eq. (16)) which shows a decreasing trend 300 

with increasing years for predictability curves with limit values calculated by Eq. (15), and almost constant trend with 

increasing time (slight decrease can be due to the error of approximations) for predictability curves with limit values calculated 

by Eq. (7), which is theoretically impossible (Fig. 9a). This new model error calculated as a difference of model error 

parameters between the upper (Fig. 8a) and lower (Fig. 8b) bound predictability curves well support model error parameters 

calculated for upper bound predictability curves that are used to represents the intrinsic upscale error growth and propagation 305 

from small scales (Zhang et al., 2019). 
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 Types of 

mean 

Types of predictability curve 

 
Upper bound (U) Lower bound (L) 

ECMWF 

forecasting 

system 

(EFS) 

Arithmetic 

(A) 
( ) ( )

EFS

U A
E t  

( ),

EFS

U A
E


 
( )lim,

EFS

U A
E  

( ) ( )
EFS

L A
E t  

( ),

EFS

L A
E


 ( )lim,

EFS

L A
E  

( )
EFS

U A
  ( )

EFS

U A
  ( )

EFS

U A
p  

( )
EFS

L A
  

( )
EFS

L A
  

( )
EFS

L A
p  

Geometric 

(G) 
( ) ( )

EFS

U G
E t  

( ),

EFS

U G
E


 
( )lim,

EFS

U G
E  

( ) ( )
EFS

L G
E t  

( ),

EFS

L G
E


 ( )lim,

EFS

L G
E  

( )
EFS

U G
  ( )

EFS

U G
  ( )

EFS

U G
p  ( )

EFS

L G
  ( )

EFS

L G
  ( )

EFS

L G
p  

L05 system 

(L05) 

Arithmetic 

(A) 
( ) ( )
05L

U A
E t  

( )
05

,

L

U A
E


 
( )

05

lim,

L

U A
E  

( ) ( )
05L

L A
E t  

( )
05

,

L

L A
E


 ( )
05

lim,

L

L A
E  

( )
05L

U A
  ( )

05L

U A
  ( )

05L

U A
p  

( )
05L

L A
  

( )
05L

L A
  

( )
05L

L A
p  

Geometric 

(G) 
( ) ( )
05L

U G
E t  

( )
05

,

L

U G
E


 
( )

05

lim,

L

U G
E  

( ) ( )
05L

L G
E t  

( )
05

,

L

L G
E


 ( )
05

lim,

L

L G
E  

( )
05L

U G
  ( )

05L

U G
  ( )

05L

U G
p  ( )

05L

L G
  ( )

05L

L G
  ( )

05L

L G
p  

 

Table 1: Description of symbols that indicate types of predictability curve, types of mean and systems for prediction error E, 370 

theoretically calculated limit error E  , and parameters of error growth models  ,  , p and limE  (Eqs. (8) - (13)). 
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N 05L  
05

,

L

UE  
05

,

L

LE  

30 0.70 8.5 8.3 
60 0.29 8.0 8.1 

90 0.35 8.2 8.2 
120 0.32 8.2 8.2 

150 0.34 8.2 8.2 

360 0.34   

 

Table 2: Values of the global largest Lyapunov exponents 05L  and limit values of predictability curves 05

,

L

UE
 a 05

,

L

LE
 for displayed 

number of variables N of the L05 system. 375 
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RMS 
D

PPKH  D

PMKH  KP

PPKH  KP

PMKH  OH  LH  

value (day-1) (day-1) (day-1) (day-1) (day-1) (day-1) 

( )
05L

U A
  0.45 0.36 0.46 0.34 0.31 0.24 

( )
05L

L A
  0.46 0.40 0.48 0.41 0.33   0.23 

( )
05L

U G
  0.41 0.39 0.41 0.39 0.39 0.19 

( )
05L

L G


 0.42 0.40 0.43 0.41 0.35 0.19 

( )
EFS

U A


 0.45 0.41 0.46 0.39 0.36 0.21 

( )
EFS

L A
  0.48 0.42 0.50 0.40 0.35 0.27 

 (-)
 

(-)
 

(-)
 

(-)
 

(-)
 

(-)
 

( )
05

lim,

L

U A
E

 7.5 7.8 7.3 7.8 8.2 8.9 

( )
05

lim,

L

L A
E

 7.5 7.8 7.3 7.6 8.3 9.3 

( )
05

lim,

L

U G
E

 7.7 7.8 7.7 7.8 7.8 11.0 

( )
05

lim,

L

L G
E

 7.8 8.0 7.6 7.8 8.3 10.6 

 (m)
 

(m)
 

(m)
 

(m)
 

(m)
 

(m)
 

( )lim,

EFS

U A
E

 108 110 106 111 115 138 

( )lim,

EFS

L A
E

 114 117 112 117 123 134 

 

Table 3: RMS values calculated over all used initial errors for the L05 system ( 90N = ) and over all years for the ECMWF 

forecasting system of parameters  , limE  (for description see Table 1).  
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RMS 
D

PMKH  KP

PMKH  RMS OH  RMS 
D

PMKH  KP

PMKH  RMS OH  

value (day-1) (day-1) value (-) value (day-1) (day-1) value (-) 

( )
05L

U A
  0.21 0.27 ( )

05L

U A
p  0.3 ( )

05L

U G
     0.03 0.04 ( )

05L

U G
p    0.9 

( )
05L

L A
  0.10 0.12 ( )

05L

L A
p  0.4 ( )

05L

L G
  0.04 0.03 ( )

05L

L G
p  0.7 

 (m/day) (m/day)  (-)  (m/day) (m/day)  (-) 

( )
EFS

U A


 
0.97 1.82 ( )

EFS

U A
p

 
0.6 ( )

EFS

L A


 
2.14 2.83 ( )

EFS

L A
p

 
0.40 

 

Table 4: RMS values calculated over all used initial errors for the L05 system ( 90N = ) and over all years for the ECMWF 380 

forecasting system of parameters  and p (for description see Table 1).  



19 

 

 

Figure 1. Comparison of upper bound predictability curves ,norm UE  of the ECMWF forecasting system normalized by 
,

EFS

UE
 (Eq. (15)

)  (EFS; annual arithmetic means, representative samples from 1986–2011) and the L05 system normalized by 05

,

L

UE
 (Table 2) (L05; 

geometric means (1986–1999), arithmetic means (2000–2011)). 385 
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Figure 2. Comparison of lower bound predictability curves ,norm LE  of the ECMWF forecasting system normalized by 
,

EFS

LE
(Eq. (15)

), (EFS; annual arithmetic means, representative samples from1986–2011) and the L05 system normalized by 05

,

L

LE
 (Table 2) (L05; 

arithmetic mean). 
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 390 

Figure 3. Approximations of differences of upper bound predictability curves (representative samples). (a) – (b): the most similar 

predictability curves in the year 1995 of the ECMWF forecasting system. (c) – (d): the most similar predictability curves in the year 

2005 of the ECMWF forecasting system. Parameters from Tm used in Km  (blue) and parameters from  Tm  used in Km  (blue, 

dashed).  
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 395 

Figure 4. Approximations of differences of lower bound predictability curves (representative samples). (a) – (b): the most similar 

predictability curves in the year 1995 of the ECMWF forecasting system. (c) – (d): the most similar predictability curves in the year 

2005 of the ECMWF forecasting system. Tm displays parameters from Tm used in Km  and Tm  displays parameters from Tm  

used in Km .  
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 400 

Figure 5. Lyapunov exponents EFS  of the ECMWF forecasting system calculated by Eq. (14) and parameters EFS  of error growth 

models for (a) upper and (b) lower bound predictability curves. 
EFS is average value over all error growth models.   
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Figure 6. Average values over upper and lower bound predictability curves of Lyapunov exponents 
EFS (black, solid), average 

values 
EFS  (black, dashed) for (a) upper and (b) lower bound predictability curves of the ECMWF forecasting system calculated 405 

by Eq. (14) and parameters EFS  of error growth model for (a) upper and (b) lower bound predictability curves of the ECMWF 

forecasting system.  
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Figure 7. Limit values 
EFSE  of the ECMWF forecasting system calculated by Eq. (15) and parameters lim

EFSE  of error growth models 

for (a) upper and (b) lower bound predictability curves. 
EFSE (Eq. (15))  is average value over all error growth models and  and 

EFSE410 

(Eq. (7)) is limit values calculated by Eq. (7).    
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Figure 8. Parameters 
EFS (a) for upper bound predictability curves 

EFS

U  and (b) for lower bound predictability curves 
EFS

L . Black 

curves represent 
EFS  approximated from predictability curves with 

EFSE  calculated by Eq. (7), red curves pertain to 
EFS  415 

approximated from predictability curves with 
EFSE  calculated by Eq. (15), full curves correspond to 

EFS calculated from Tm  and 

dashed curves to 
EFS calculated from Km . 
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Figure 9. Absolute values of differences of parameters (a) 
EFS EFS

L U −  and (b) 
EFS EFS

L Up p− between lower and upper bound 

predictability curves. For the notation see Fig. 8. 420 

 


