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Abstract. Here we introduce a new version of the global carbon cycle data assimilation system, Tan-Tracker (v1), which is 

based on the Nonlinear Least Squares Four-dimensional Variational Data Assimilation algorithm (NLS-4DVar) and the 

Goddard Earth Observing System atmospheric chemistry transport model (GEOS-Chem). Using a dual-pass assimilation 

framework that consists of a carbon dioxide (CO2) assimilation pass and a flux assimilation pass, we assimilated the atmosphere 15 

column-averaged CO2 dry air mole fraction (XCO2), while sequentially optimizing the CO2 concentration and surface carbon 

flux via different length windows with the same initial time. When the CO2 assimilation pass is first performed, a shorter 

window of 3 days is applied to reduce the influence of the background flux on the initial CO2 concentration. This allows us to 

obtain a better initial CO2 concentration to drive subsequent flux assimilation passes. In the following flux assimilation pass, 

a properly elongated window of 2 weeks absorbs enough observations to reduce the influence of the initial CO2 concentration 20 

deviation on the flux, resulting in better surface fluxes. In contrast, the joint assimilation system Tan-Tracker (v0) uses the 

same assimilation window for optimization of CO2 concentration and flux, making the uncertainties in CO2 concentration and 

flux indistinguishable. The proper orthogonal decomposition (POD)-4DVar algorithm applied with the older system is only a 

rough approximation of the one-step iteration of the NLS-4DVar algorithm; thus, it can be difficult to fully resolve the 

nonlinear relationship between flux and CO2 concentration. In this study, we designed a set of observation system simulation 25 

experiments to assimilate artificial XCO2 observations, in an attempt to verify the performance of the newly developed dual-

pass Tan-Tracker (v1). Compared with the prior and joint system, the dual-pass system provided a better representation of the 

spatiotemporal distribution of the true flux and true CO2 concentration. We performed sensitivity tests of the flux assimilation 

window length and number of NLS-4DVar assimilation iterations. Our results indicated that the appropriate flux assimilation 

window length (14 days) and the appropriate number of NLS-4DVar maximum iterations (three) could be used to achieve 30 

optimal results. Thus, the Tan-Tracker (v1) system, based on a novel dual-pass assimilation framework, provides more accurate 

surface flux inversion estimates and is ultimately a better tool for carbon cycle research. 
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1. Introduction 

Since the Industrial Revolution, humans have consumed fossil fuels and emitted large amounts of carbon dioxide (CO2). About 

50% of the CO2 remains in the atmosphere. The continuous rise in global atmospheric CO2 concentrations breaks the radiation 

balance of the Earth system, resulting in global climate change. The remaining CO2 is absorbed by the terrestrial ecosystem 

and oceans; however, there are still many uncertainties associated with these absorption mechanisms (Ballantyne et al., 2012; 5 

Le Quéré et al., 2017). Determining the appropriate carbon budget for the Earth’s ecosystem and oceans is important for the 

development of relevant climate policies and predictions of future scenarios, having been the focus of extensive carbon cycle 

research (Stocker et al., 2013). In recent years, there has been an increase in multi-source atmospheric CO2 concentration 

measurements and model development. The surface carbon flux inversion method, especially carbon cycle data assimilation, 

obtained by combining model and atmospheric CO2 information, has made great progress in carbon cycle data assimilation 10 

(Peters et al., 2005; Peters et al., 2007; Tian et al., 2014; Deng et al., 2016; Feng et al., 2016; Basu et al., 2013;  Basu et al., 

2018). 

Many have attemptsed have been made, assimilating atmospheric CO2 measurements, to optimize surface carbon flux 

measurements. For example, Carbon-Tracker (Peters et al., 2005; Peters et al., 2007) is a well-designed carbon assimilation 

system that uses Transport Model 5 (TM5) and the ensemble Kalman filter (EnKF) method (Evensen, 1994) to assimilate in 15 

situ CO2 observations. The Carbon Cycle Data Assimilation System (CCDAS) (Rayner et al., 2005;) Kaminski et al., 2013) 

couples the Biosphere Energy-Transfer HYdrosphere (BETHY) model (Kaminski and Heimann, 2001) with the atmospheric 

transport model TM2, to assimilate satellite observations of photosynthetically active radiation and atmospheric CO2 

concentration observations; the approach is a two-step process, in which the parameters of the carbon cycle model are first 

optimized to improve surface flux measurement accuracy. Tan-Tracker (v0) (Tian et al., 2014) uses the Goddard Earth 20 

Observing System atmospheric chemistry transport model (GEOS-Chem) and the identity matrix as a joint dynamical model; 

a proper orthogonal decomposition (POD)-based four-dimensional variational assimilation algorithm (POD-4DVar) (Tian et 

al., 2011) is combined with a joint assimilation framework to integrate in situ CO2 concentration observations, with 

simultaneous optimization of the CO2 concentration and flux. This method has obtained good results; however, there are still 

some problems associated with the joint assimilation framework. The same window lengths make uncertainties of CO2 and 25 

surface flux indistinguishable limit the ability to distinguish the CO2 concentration from the flux. Additionally, the POD-

4DVar algorithm is only a rough approximation of a one-step iteration of the Nonlinear Least Squares (NLS)-4DVar algorithm 

(Tian and Feng, 2015; Tian et al., 2018). Although the above assimilation system has achieved reasonable results, the sparse 

and uneven spatial distributions of in situ stations greatly limit the flux optimization accuracy. Several unconventional data 

assimilation techniques  attempts have been explored. For example, Zhang et al. (2014) conducted an assimilation of the 30 

aircraft observation Comprehensive Observation Network for Trace gases by Airline (CONTRAL) based on Carbon-Tracker. 

With the launch of the Greenhouse gases Observing SATellite (GOSAT) (Kuze et al., 2009) and the Orbiting Carbon 

Observatory-2 (OCO-2) satellite (Crisp et al., 2017), satellite data assimilation experiments have also been conducted based 
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on the atmosphere column-averaged CO2 dry air mole fraction (XCO2) at higher temporal and spatial resolutions. Basu et al. 

(2013) used TM5 4DVar to assimilate GOSAT observations, and showed that satellite data provided an effective constraint 

for surface carbon source–sink inversion. Tian et al. (2014) used Tan-Tracker (v0) to conduct GOSAT observation 

assimilations using a set of observing system simulation experiments (OSSEs), and found that the optimized CO2 concentration 

and flux showed expected results. Deng et al. (2016) used the GEOS-Chem and the 4DVar method to simultaneously assimilate 5 

GOSAT observations of the land and ocean. This method provided a better representation of the CO2 surface flux than others 

that used only terrestrial observations; additionally, the results indicated that increasing the observation coverage further 

improved the sensitivity of surface flux inversion measurements. Feng et al. (2016) used the EnKF to assimilate GOSAT 

observations in Europe; the flux inversion results obtained displayed a larger amplitude change than those using an in situ 

stations. Basu et al. (2018) applied 4DVar OSSEs to OCO-2 observations with multiple atmospheric transport models; they 10 

showed that the wider global coverage provided by OCO-2 observations enabled better surface flux representation than in situ 

observations;. oOverall, flux results depend on the atmospheric chemical transmission mode atmospheric chemistry transport 

model used. The abovementioned assimilation attempts using satellite data have reduced the uncertainty associated with flux 

inversion measurements and provided some insight into surface carbon flux mechanisms. However, the assimilation of satellite 

column-average concentration observations of XCO2 is still in the exploratory stage.  15 

Based on GEOS-Chem and NLS-4DVar (Tian et al., 2018) assimilation of XCO2 satellite observations, we introduce the Tan-

Tracker (v1) carbon cycle data assimilation system. The novel dual-pass data assimilation framework consists of a CO2 

assimilation pass and a flux assimilation pass, which have the same initial time but different assimilation window lengths. 

Specifically, the first performed CO2 assimilation pass uses a shorter window of 3 days to reduce the influence of background 

flux on the initial CO2 readings. By minimizing the initial CO2 deviation, better initial CO2 concentrations are derived for the 20 

subsequent flux assimilation pass. In the following flux assimilation pass, a properly elongated window of 2 weeks absorbs 

enough observations to reduce the influence of the initial CO2 concentration deviation on the flux, resulting in a better 

representation of the surface flux. Compared with the joint Tan-Tracker (v0) assimilation system, the Tan-Tracker (v1) system 

uses a dual-pass framework to mitigate the effects of the initial CO2 concentration on surface flux, while using a more advanced 

assimilation algorithm, NLS-4DVar, to improve the accuracy of the optimized flux results. 25 

This paper is divided into four sections. Section 2 introduces the method and the framework of the Tan-Tracker (v1) system 

and its coupling to the NLS-4DVar algorithm. In Section 3, we describe the OSSE design using OCO-2 observations, and 

compare Tan-Tracker (v1), Tan-Tracker (v0), and control experimental results to true results. The flux obtained using Tan-

Tracker (v1) exhibited a total spatiotemporal flux distribution and optimized CO2 concentration that were closer to those of the 

true flux. A summary  Discussions and conclusions are presented in Section 4 and 5. 30 



4 

 

2. Methods and Systems 

2.1 Dual-pass Tan-Tracker (v1) assimilation system framework 

The dual-pass carbon cycle data assimilation system Tan-Tracker (v1) is divided into two assimilation passes: a CO2 

assimilation pass and a flux assimilation pass, in addition to an update section (Fig. 1). Based on the NLS-4DVar (Tian and 

Feng, 2015; Tian et al., 2018) assimilation method for , assimilating satellite column-average CO2 concentration measurements 5 

of XCO2, we optimized the CO2 concentration and surface CO2 flux in different lengths of assimilation windows with the same 

initial time  0t of CO2 concentration. First, the CO2 assimilation pass is implemented. The shorter 3-day window reduces the 

influence of background flux on the initial CO2 measurements evolution, minimizing the initial CO2 deviation to obtain a better 

initial CO2 concentration to drive the flux assimilation pass. In the following flux assimilation pass, a properly elongated 

window of 2 weeks absorbs enough observations to reduce the influence of the initial CO2 concentration deviation on the flux. 10 

As such, tThe evolution of the CO2 concentration in the assimilation window is dominated by the background flux for to 

improved the accuracy of surface flux inversion measurements. The update section guarantees a connection between the two 

adjacent assimilation windows, in which the initial CO2 concentration and background flux of the CO2 assimilation pass are 

provided for the next window, allowing the background flux and flux ensembles of the flux assimilation pass to be updated. 

The CO2 assimilation pass is shown in the blue portion of Figure 1. Given that NLS-4DVar is an ensemble-based hybrid 15 

assimilation algorithm, we first prepared a set of 3-day-length CO2 concentration ensembles, ( ), , 1, ,s i i N=U  (see Section 

2.3), where S denotes the ensembles and N is the ensemble number. In the CO2 assimilation pass, we used N = 160. Starting 

from the background initial CO2 
0,b tU forcing by the background flux: 

*,b b= F λ F                                                                                                                                                                              (1) 

where *
F  is the prior flux and bλ  is a linear scale factor (Peters et al., 2005; Tian et al., 2014) for the assimilation window, 20 

we simulated the 3-day CO2 concentration bU  used as the background CO2. Note that for one certain assimilation cycle, 

“background flux” is different to “prior flux” as shown in Eq. 1; “background flux” served as the assimilation background 

field where “prior flux” means prior flux data sets. kH  is a satellite XCO2 observation operator, as given in Eq. (31). Putting 

, ,s b kHU U  together with observations 
2 ,CO ObsX  into the NLS-4DVar processor, we can obtain an optimized initial CO2 

0,a tU , 

to be used as the initial CO2 of the flux assimilation pass. 25 

In the flux assimilation pass (the red portion shown in Fig. 1), we assume that there is no error in anthropogenic emissions, 

and only optimize the terrestrial ecosystems flux and oceans flux: 

* * * ,bio oce= +F F F                                                                                                                                                                           (2) 

where *
F  is the prior flux, with bio referring to the flux from the terrestrial biosphere, and oce representing the flux from the 

ocean. Starting from the optimized initial CO2 
0,a tU , forcing by a set of prepared flux ensembles:  30 
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( )*

, , , 1, , ,s i s i i N=  =F λ F                                                                                                                                                       (3) 

we obtain a set of 2-week CO2 ensembles ( ), , 1, ,s i i N=U , where ( ), 1, ,s i i N=λ  is a set of scale factors (see Section 2.3). 

Using an optimization variable for the flux and cConsidering computational cost, we chose N = 36. Simultaneously, starting 

from the background initial CO2 
0,b tU  forcing by the background flux *,b b= F λ F  we simulated the 2-week CO2 

concentration bU  as background CO2. Putting , , , ,s s b b kHλ U λ U , and observations 
2 ,CO ObsX  into the NLS-4DVar processor, 5 

we can obtain the optimized scale factor aλ , with the optimized flux given by *

a a= F λ F . 

The update section is shown as the black portion of Figure 1. Starting from the optimized background initial CO2 
0, ,b t rU  (To 

guarantee the system’s mass-balance) of the rth assimilation cycle forceding by optimized fluxes 
,a rF , and integrating through 

the window of the flux assimilation pass to the end, we obtain the background initial CO2 concentration 
0. , 1b t r+U  of the (r+1)th 

assimilation cycle. Unlike the joint Tan-Tracker (v0) system, the background initial CO2 concentration of Tan-Tracker (v1) is 10 

obtained by a running model, as opposed to a direct assimilation, thus eliminating the problem of CO2 over-optimization. 

Similar to the approach of Peters (2007), the (r+1)th background flux, *

, 1 , 1 1b r b r r+ + += F λ F , is applied using the mean value of 

the two previous time steps’ scale factors a: 

, 1 , , 1( 1) / 3.b r a r a r+ −= + +λ λ λ                                                                                                                                                       (4) 

2.2 Coupling of NLS-4DVar with Tan-Tracker (v1) assimilation framework 15 

The NLS-4DVar algorithm is used to solve the optimal initial perturbation '

ax to satisfy the incremental form of the 4DVar 

cost function: 

( ) ( ) ( ) ( ) ( )
1

' ' ' ' ' ' 1 ' ' '

, ,

0

1 1
,

2 2

S

k obs k k k obs k

k

J L L
−

−

=

   = + − −
   

ΤT

x x B x x y R x y                                                                                   (5) 

where '

b= −x x x  is the perturbation of the background field bx  at initial time t0, and  

( ) ( ) ( )' ' ' ,k k b k bL L L= + −x x x x                                                                                                                                                 (6) 20 

( )'

, , ,obs k obs k k bL= −y y x                                                                                                                                                             (7) 

0
,

kk k t tL H M →=                                                                                                                                                                         (8) 

where the superscript T  is the matrix transpose, the subscript b is the background value, 
,obs ky  is the observation at time 

, 0,1, ,
k

t k S= , kH  is the observation operator, 
0 kt tM → is the nonlinear forecast model integrating from t0 to tk, and B and Rk 

are the background error and observational error covariance matrices, respectively. For simplicity, 0 1( , , , )Sdiag=R R R R . 25 
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As an ensemble-based assimilation approach, NLS-4DVar (Tian and Feng, 2015; Tian et al., 2018) assumes that the optimal 

analysis increment '

ax  can be expressed by a linear combination of the pre-prepared initial perturbations (IPs): 

' = ,a xx P β                                                                                                                                                                                     (9) 

where ( )' ' '

1 2, , ,x N=P x x x  are the initial perturbations, ( )' , 1,2, ,i i b i N= − =x x x , N is the ensemble number, and 

( )1 2, , , N=β β β β . We can replace the background error covariance matrix B with an ensemble perturbation estimate: 5 

,
1

x x

e
N

=
−

T
P P

B                                                                                                                                                                              (10) 

Furthermore, symmetric R has the Cholesky factorization, 

( )1/2 1/2 ,+ +=
T

R R R                                                                                                                                                                     (11) 

Substituting Eqs. (9), (10) and (11) into Eq. (5), it can be rewritten as follows (Dennis and Schnabel, 1996), 

1
( ) ( ) ( ),

2
J Q Q= T
β β β                                                                                                                                                               (12) 10 

( )1/2 ' 'y
( ) .

1

x obsL
Q

N

+
  −

  =
 − 

R P β
β

β

                                                                                                                                              (13) 

Thinking approximations (Tian and Feng, 2015): 

( ) ( )' ' ' ' ' ' ,j j jL = x y H M x                                                                                                                                                         (14) 

and 

( ) ( )' ' ' ,x x yL  P β H M P β P β                                                                                                                                                   (15) 15 

, where ( )1 2, , , ,y N
  =P y y y are the observation perturbations (OPs), ( ) ( ), 1,2, , ,j jL j N  = =y x  and 

( )' ' ' '

0 1, , , .SL L L L= T T T  tThe first-derivate matrix (or Jacobian matrix) ( )acJ Q β of ( )Q β can be computed approximately as 

follows, 

1/2
( )

( ) ,
1

y

ac

Q
J Q

N

+
 

=   
  − 

R Pβ
β

β Ι
                                                                                                                                               (16) 

where I denotes the N×N identity matrix. The Gauss-Newton iteration for the non-linear least squares problem (12) is defined 20 

by (Dennis and Schnabel, 1996): 

( ) ( ) ( )
1

1 1 1 1 1( ) ( ) ( ) ( ),i i i i i i

ac ac acJ Q J Q J Q Q
−

− − − − − = −
  

T T

β β β β β β                                                                                              (17) 

Substituting Eqs. (13) and (16) into Eq. (17), the cost function Eq. (5) can be rewritten as the least squares form of the control 

variable β  (Tian and Feng, 2015) : 
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( ) ( ) ( ) ( )1 * ' ' 1 # 1 ' ' ' 1y ,i i i i

y a y obs aL L− − − − = + + −
 

T T

β β P x P R x                                                                                                           (18) 

( ) ( ) ( )
1 1

* 11 1 I ,y y y y y yN N
− −

−   = − − + −   
T

T T T
P P R P P P P                                                                                                          (19) 

( ) ( )
1

# 1 1 I .y y y yN
−

− = + − 
T

T T
P P R P P                                                                                                                                        (20) 

Here, max1,2, , I ,i = where maxI is the maximum NLS-4DVar iteration number., ( )1 2, , , ,y N
  =P y y y are the observation 

perturbations (OPs), ( ) ( ), 1,2, , ,j jL j N  = =y x  and ( )' ' ' '

0 1, , , .SL L L L= T T T  5 

Using an ensemble-estimated eB  to replace the background error covariance matrix B will bring a spurious correlation that 

can be eliminated by a localization scheme. An efficient local correlation matrix decomposition approach (Zhang and Tian, 

2018) can be used to quickly assimilate a large number of observations while ensuring the assimilation results, especially for 

satellite data assimilation with high spatiotemporal resolution. Its implementation in NLS-4DVar is as follows: 

( ) ( ) ( ) ( )1 * ' ' 1 # 1 ' ' ' 1

,ρ ,ρ y ,i i i i

y a y obs aL L− − − − = + + −
 

T T

β β P x P R x                                                                                                       (21)  10 

( ) ( ) ( ) ( )' ' 1 * ' ' 1 # 1 ' ' ' 1

,ρ ,ρ ,ρ ,ρ y ,i i i i

a a x y a x y obs aL L− − − − = + + −
 

T T

x x P P x P P R x                                                                                         (22)  

and  

( ) ( )* * *

,ρ ,1 ,2 ,= = , , , ,x m x m x m x m x Ne P ρ P ρ P ρ P ρ P                                                                                                         (23) 

( ) ( )* * # #

,ρ ,ρ= , = .y o y y o ye e   P ρ P P ρ P                                                                                                                                (24) 

Here, symbol e   is given in Eq. (23), symbol “ ” is the Schür product, each column of *

, ( 1,2, , )mn r

x j j N


 =P  is the 15 

same as the jth column of xP , mn r

m


ρ  is the decomposition matrix of the model grids spatial correlation matrix, and 

on r

o


ρ  is extracted from the decomposition matrix of the correlation matrix: 

.mo m o T
C ρ ρ                                                                                                                                                                              (25) 

m on n

mo


C  is the correlation matrix between the model grids and observation positions constructed by the following fifth-

order piecewise rational function (Gaspari and Cohn, 1999): 20 

0 ,( , ) ( / ),mo i ji j d d=C C                                                                                                                                                             (26) 

where 0C is defined as 

5 4 3 2

5 4 3 2 1

0

                    

      

               

1 1 5 5
1, 0 1

4 2 8 3

1 1

                                 

5 5 2
( ) 5 4 , 1< 2

12 2 8 3 3

                  0 2< ,

l l l l l

l l l l l l l l

l

−


− + + − +  




= − + + − + − 




C                                                                                                       (27) 
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,
,

i jd
l

d
= d is the localization radii,

,i jd is the spatial spherical distance between ith model grid and jth observation, mn  is the 

model grid number, on  is the observation number, and r is the number of selected truncation modes.  

In the Tan-Tracker (v1) assimilation system, the optimization variables for different assimilation passes differ. In the CO2 

assimilation pass, the optimized state variable x  is the CO2 concentration U , and '

ax  is the increase in the initial CO2 

concentration. IPs xP  are the initial perturbations of the CO2 concentration, and OPs 
yP  are the perturbations of simulated 5 

XCO2 within the 3-day window; kH  is the observation operator of XCO2 given in Eq. (31). For the flux assimilation pass, 

state variable x  is the scale factor λ , and '

ax  is the increase in the scale factor within the window. IPs xP  and OPs 
yP  are 

the scale factor perturbations and simulated XCO2 perturbations, respectively, within the 2-week window. At this point, the 

observation operator kH  can be considered as a two-part chemistry transport model and the observation operator of the 

column-average concentration XCO2. 10 

2.3 Ensemble generation and update of the Tan-Tracker (v1) assimilation system 

The NLS-4DVar assimilation algorithm is an ensemble-based algorithm that is used to approximate the analysis incremental 

solution space with the ensemble perturbation sample space. As such, the generation and update of the ensemble samples are 

essential for assimilation accuracy. According to the characteristics of CO2 and the flux assimilation pass, we designed different 

sampling and updating methods for the Tan-Tracker (v1) assimilation system. 15 

A historical moving sampling scheme (Wang et al., 2010; Tian et al., 2014) was used in the CO2 assimilation pass to select 

samples from a long-term historical CO2 simulation, and a resampling scheme was used in the new assimilation window. The 

advantage of selecting samples from the historical simulation is that the appropriate sample size can be selected to ensure good 

results at a low computational cost. In this study, N = 160 was selected in the experiments to achieve a better assimilation 

effect. 20 

To ensure better flux results and minimize computational cost, we chose an ensemble number of N = 36 in the flux assimilation 

pass, integrating from the same initial CO2 concentration within each window; all ensembles ran throughout the entire 

assimilation process. The ensemble generation scheme of the flux assimilation pass combines the history sampling and 

ensemble update. The historical sampling was applied to the initial window, and the N = 36 initial ensemble members were 

selected by a moving strategy. Ensemble samples of subsequent windows were obtained using the ensemble update given by 25 

the Local Ensemble Transform Kalman Filter (Hunt et al., 2007; Tian and Xie, 2012): 

,a

x x=P P T                                                                                                                                                                                 (28) 

where a

xP  represents the updated ensemble perturbations, and the transformation matrix T is given by 

 ( )
(1/2)

*1 ,N = − T P                                                                                                                                                              (29) 
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with 

( )
1

* 1 1 I .y y N
−

− = + − 
T

P P R P                                                                                                                                                 (30) 

Equation (28) indicates that the updated ensemble perturbation a

xP  can be obtained from the initial perturbation xP  and a 

transformation matrix T . 

As the assimilation cycle progresses, the above ensemble update method usually reduces the dispersion of ensemble samples 5 

(Wang and Bishop, 2003), leading to an approximate distortion of the ensemble space a

xP  with respect to the solution space 

'

ax ; this ultimately causes the assimilation to fail. Therefore, we used an inflation factor   (see Zheng et al. (2013) for more 

details) with the ensemble perturbation a

xP , in which a

xP  maintained the dispersion of the ensemble samples; this is referred 

to as adaptive ensemble inflation. 

3. Observing System Simulation Experiments 10 

3.1 Model settings and observations 

The Tan-Tracker (v1) carbon cycle data assimilation system is based on the global three-dimensional (3D) atmospheric 

chemistry model GEOS-Chem (version: v11-01, http://acmg.seas.harvard.edu/geos), driven by meteorological inputs of 

Modern-Era Retrospective analysis for Research and Applications (MERRA-2) from the GEOS of the National Aeronautics 

and Space Administration (NASA, United States) Global Modeling and Assimilation Office. The original GEOS-Chem CO2 15 

simulation was developed by Suntharalingam et al. (2004). A major update to the CO2 simulation was completed by Nassar et 

al. (2010). The latest update to the CO2 simulation was developed by Nassar et al. (2013) and appears in GEOS-Chem v10-01, 

which was released in 2015. In the following experiments, we used the same spatiotemporal resolution: a horizontal resolution 

of 2° × 2.5° (latitude × longitude), 47 vertical layers, a chemical time step of 20 min, a transmission time step of 10 min, and 

an output time of 3 h for the CO2 concentration. 20 

The fluxes used to drive GEOS-Chem for the CO2 simulation were integrated and provided by the Harvard–NASA Emissions 

Component (HEMCO) model (Keller et al., 2014). There are seven emission inputs from the following sources: fossil fuel, 

ocean exchange, terrestrial ecosystem fluxes, biomass burning, ships, aviation, and chemical oxidation. Fossil fuel emissions 

were acquired from the Open-source Data Inventory of Anthropogenic CO2 (ODIAC) (Oda and Maksyutov, 2011) daily 

emissions data. Ocean exchange emissions were obtained from daily scaling data by Takahashi et al. (2009). Terrestrial 25 

ecosystem fluxes, specifically balanced biosphere exchange with a seasonal cycle but zero net annual uptake, were taken from 

the hourly data provided by the Simple Biosphere (SBI3) model (Baker et al., 2006; Messerschmidt et al., 2013). Biomass 

burning emissions were obtained from the Global Fire Emissions Database v4 (GFED4) (Randerson et al., 2018) daily biomass 

burning data. Ship emissions were based on monthly scaling data from Endresen et al. (2007). Aviation emissions were derived 

http://acmg.seas.harvard.edu/geos
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from monthly scaling data (Olsen et al., 2013) from the Aviation Emissions Inventory Code (AEIC) (Simone et al., 2013). 

Sources of carbonaceous compound oxidation were taken from monthly data provided by Nassar et al. (2010). 

The observations used in the OSSEs are based on real OCO-2 satellite column-average concentration XCO2 data (Crisp et al., 

2017), data version v8r (https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_V8r/summary; OCO-2 Science Team, 2017). 

From Connor's (2008) algorithm, we constructed an OCO-2 satellite XCO2 observation operator, representing a projection 5 

from 3D atmospheric CO2 concentrations to satellite column-average concentration: 

( )
2 2 , ,CO CO ap apX X U U= +  −A                                                                                                                                                (31) 

where 
2 ,CO apX  is the prior column-average concentration, A  is the column-averaging kernel matrix, 

apU  is the prior CO2 

profile, and U  is the profile of the 3D atmospheric CO2 concentration in each pressure layer of the prior CO2 profile, used 

here as the interpolation result of the GEOS-Chem simulation profile. 10 

When constructing the satellite observation 
2 ,CO OX , we retained the prior CO2 profile, the prior column-average concentration, 

the column-averaging kernel matrix, the pressure profile, quality control parameters, and time and position information. Only 

the column concentration value 
2 ,CO ObsX  and the uncertainty 

2 ,CO unX  from real observations were updated. The simulated truth 

profile tU  was applied to Eq. (31) to obtain the simulated true column-average concentration: 

( )
2 2, , .CO t CO ap t apX X U U= +  −A                                                                                                                                             (32) 15 

By adding a normal distribution random error ( )
2 , 0,CO errX N   (Wang et al., 2010) instead of the observation uncertainty, 

we were able to determine the simulated column-average concentration: 

2 2 2, , , ,CO O CO t CO errX X X= +                                                                                                                                                       (33) 

instead of 
2 ,CO ObsX , which was used as artificial observations in the OSSEs. 

The artificial observations were controlled for quality to ensure that the OSSEs were reasonable and close to the actual situation. 20 

We set the quality-control parameter Warn level = 0 (representing the 50% best data) and used an observation – background 

(O-B) 3σ quality control scheme for data culling. A comparison of artificial data before and after quality control in the first 

window (2 weeks) of the flux assimilation pass is shown in Figure 2. It is worth noting that Tan-Tracker (v1) does not use data 

thinning or regional average observations for assimilation, but instead applies the NLS-4DVar algorithm based on an efficient 

localization scheme (Zhang and Tian, 2018); this allows this tracking system to absorb large amounts of observations in a short 25 

period of time (about 105 per window in the CO2 assimilation pass and about 106 per window in the flux assimilation pass). 

3.2 Observing system simulation experiments 

The initial atmospheric CO2 concentration represents the state of the atmospheric carbon pool at the initial time, which is 

important for the simulation of CO2 concentration and flux inversion. All of the initial atmospheric CO2 concentrations in the 

following experiments were from the Carbon-Tracker 2017 global CO2 concentration (Peters et al., 2007; 30 

https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_V8r/summary
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https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/), interpolated from a global resolution of 2° × 3° (latitude × longitude), 

with 25 vertical layers, to the GEOS-Chem model grid resolution. 

We designed a set of OSSEs as shown in Table 1. Experimental True represents the true simulation, starting from the initial 

CO2 of the Carbon-Tracker global CO2 at time 20151101 (for short: CT20151101), running from 20151101 to 20161231. 

Forcing was driven by true fluxes: the terrestrial ecosystem flux of SIB3 in 2010 and the Takahashi ocean flux in 2010. 5 

Artificial observations 
2 ,CO OX  of True were constructed as discussed in Section 3.1. We also designed a background 

simulation control run (denoted as Ctrl), an assimilation experiment Tan-Tracker (v0) (denoted as TT_v0), and an assimilation 

experiment Tan-Tracker (v1) (denoted as TT_v1), with the same initial CO2 CT20160101, the same running time from 

20160101 to 20161231, and the same prior (background) fluxes: the terrestrial ecosystem flux of SIB3 in 2009 and the 

Takahashi ocean flux in 2009. The rest of the model settings remained the same as in True, with the difference being that 10 

TT_v0 and TT_v1 were assimilation experiments, assimilating artificial observations 
2 ,CO OX  of True. Note that the comparison 

between TT_v1 and TT_v0 is performed between two well-developed assimilation systems with their respective optimal 

parameters. 

The settings and parameters for TT_v0 can be found in Tan-Tracker (Tian et al., 2014), where only observation data, model 

versions, and prior flux replacements were performed. A comparison of the parameter settings of TT_v0 and TT_v1 is shown 15 

in Table 2. After the sensitivity test, the localization radii of the CO2 assimilation pass and flux assimilation pass were both 

selected to be 2000 km, and the localization truncation modes numbers were 50xr =  and 30yr =  (see Zhang and Tian (2018) 

for details regarding the selection of localization-related parameters). 

3.3 Analysis of results 

3.3.1 CO2 concentration 20 

The CO2 concentration reflects the state of the atmospheric carbon pool and can be used as a basic indicator for verification in 

flux inversion. Here, we analyzed the CO2 concentration results in detail from the time series and spatial distributions. We 

used the time series of the daily root-mean-square error (RMSE) and the time series of the mean deviations to characterize the 

deviations of Ctrl, TT_v0, and TT_v1 from True (Fig. 3). Overall, the indicators in Figure 3 showed that the results after the 

assimilation were better than the background prior results. 25 

The daily RMSE of XCO2 between the simulation/assimilation and artificial observations (Fig. 3a), representing the change in 

column-average concentration at the observed position, provides a comparison between O-B and the difference between 

observations and assimilation (O-A) to explain the effectiveness of the assimilation. The results in Figure 3a showed that the 

two versions of the Tan-Tracker carbon cycle data assimilation system effectively absorbed observations for flux optimization, 

with the TT_v1 showing slightly better performance than TT_v0 and superior performance with respect to that of Ctrl.  30 

https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/
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Daily RMSE (Fig. 3b) and the daily mean bias (Fig. 3c) of the atmospheric 3D CO2 concentration between the 

simulation/assimilation results and True reflect the changes in the atmospheric carbon pool. Figure 3b shows the deviation of 

the simulation/assimilation results from True. The deviation between Ctrl and True decreased from 1.4 to 0.4 ppm at the initial 

time from January to February, and remained low (0.4 ppm) from March to June; this showed that the initial concentration 

deviation was reduced gradually, which could be considered as a model spin-up process. The deviation increased from July to 5 

September from 0.6 to 1.0 ppm, which indicated that there was a large deviation between the prior flux and the true flux in the 

Northern Hemisphere growth season. Finally, the deviation from October to December fell back to 0.3–0.4 ppm, indicating a 

decrease in the deviation between the prior flux and the true flux in the non-growth season of the Northern Hemisphere. The 

deviation between TT_v1 and True decreased from 1.4 to 0.2 ppm at the initial time from January to February, maintaining a 

lower value of 0.2 ppm from March to June. After a slight increase to 0.2–0.6 ppm from July to September, the deviation 10 

between TT_v1 and True finally fell back to 0.2 ppm from October to December.  

Figure 3c shows the daily mean bias between the simulation/assimilation results and True. The daily mean bias of TT_v1 

dropped rapidly from −0.4 to 0 ppm and then remained low (-0.05 to 0.05 ppm); this performance was superior to that of Ctrl, 

which showed a larger bias amplitude. Thus, TT_v1 exhibited a faster spin-up convergence speed and a smaller deviation over 

the entire simulation time than Ctrl; these improvements were attributed to an adjustment in the optimized flux. The effect of 15 

the initial CO2 optimized by the CO2 assimilation pass occurred only at the initial time of each window, thus only a small 

adjustment to the state of the atmospheric carbon pool, and mainly served to improve the accuracy of the optimized flux. This 

was achieved given the good continuity of the CO2 results (Figs. 3b and 3c). The results of TT_v0 were better than those of 

Ctrl but slightly inferior to those of TT_v1. 

Figure 4 shows the spatial deviation between the simulation/assimilation results and True based on the RMSE spatial 20 

distribution of the vertical-averaged CO2 concentration grid time series. Figure 4a displays the RMSE spatial distribution 

between Ctrl and True. Large values over land appeared in Western Siberia (1.0–1.2 ppm) and Eastern Siberia, Eastern Central 

Asia, Eastern North America, and Central South America (0.8–1.0 ppm). Large values over the ocean appeared in the Northern 

Hemisphere, with an increasing bias trend from the Southern Hemisphere to the Northern Hemisphere (0.2–0.5 ppm). The 

results of TT_v1 were better than those of Ctrl, with a large bias over land of 0.3–0.5 ppm; the increasing bias trend over the 25 

ocean was lower at 0.1–0.2 ppm. The results of TT_v0 were better than those of Ctrl and slightly inferior to those of TT_v1.  

3.3.2 Flux 

In real assimilation experiments, CO2 concentration results can be used as the main objective indicator of flux evaluation due 

to the lack of a real flux. However, in OSSEs, we can quantitatively analyze the prior flux quantitatively and , optimized the 

flux and real flux to give the most direct judgment. Below we present a detailed analysis of flux using time series, annual total 30 

amounts, and regional distributions. 

Figure 5 shows the time series of the simulation/assimilation results of the monthly global total ecosystem, the ocean flux, and 

their deviations from True. Notably, similar to the spin-up process of the numerical model simulation, the first 4 months 
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corresponded to the spin-up process of the flux assimilation pass. During the early stages of the spin-up phase (from January 

to February), a larger portion of the optimized flux increment was used to adjust the initial CO2 concentration deviation from 

the true simulation. As a result, the deviation between the optimized flux and the true flux was larger than the prior value (Fig. 

5b); however, the CO2 concentration deviation continued to decrease (Fig. 3b). As the assimilation progressed, the 

concentration deviation became more stable. At this time point, the uncertainties in CO2 concentration and flux could not be 5 

distinguished; as such, the assimilation continued to run, allowing for adjustments to the flux and concentration. Finally, the 

deviations caused during the corresponding flux and concentration optimization processes were minimized. Here, we mainly 

discuss the flux results from May to December after reaching equilibrium. 

The prior flux (Ctrl) was in good agreement with the true flux (True) (Fig. 5a). Additionally, a significant seasonal cycle was 

evident (Fig. 5a). April to September is the growing season of the Northern Hemisphere, when the total flux of the global 10 

terrestrial ecosystem and oceans is negative, reaching its lowest value in July and August. From October to March, 

corresponding to the non-growth season in the Northern Hemisphere, the global flux was positive, and there was no obvious 

monthly change. The main deviation of the prior flux (Ctrl in Fig. 5b) appeared in the Northern Hemisphere growing season 

from June to August, reaching −4.0 PgC yr−1. In addition, there was a significant deviation of about 0.2 PgC yr−1 during the 

non-growth season of the Northern Hemisphere from October to December. The TT_v1 optimized flux of the dual-pass system 15 

showed significant improvement over Ctrl. The deviation was reduced to 0.0 PgC yr−1 from June to August, and the deviation 

decreased to 0.1 PgC yr−1 from October to December (Fig. 5b). The results from TT_v0 were better than those of Ctrl, but 

slightly inferior to those of TT_v1. Table 3 and Figure 6 show the assimilation/simulation deviations of the terrestrial ecosystem 

flux, ocean flux, and global total flux from True from May to December. Compared with Ctrl, the results of TT_v1 were better 

optimized for the terrestrial ecosystem flux and slightly improved for the ocean flux. In addition, the results of TT_v0 were 20 

better than those of Ctrl, but slightly inferior to those of TT_v1 for the terrestrial ecosystem flux and slightly superior to those 

of TT_v1 for ocean flux. 

We used the TransCom “super-regions” (Gurney et al., 2002) to calculate the regional total flux. Figure 7 shows the flux results 

of 11 land regions and the deviation from True. The results of TT_v1 had a positive effect on each region relative to the prior 

flux of Ctrl, with significant improvements in the mid-to-high latitudes of North America, Europe, and Eurasia, and the mid-25 

latitudes of South America and Australia. The results in the equatorial region of South America and Asia did not show 

significant improvements. The prior flux in Africa was close to the true value; an increase was not obvious in the data. TT_v0 

showed slightly improved results compared with Ctrl, but both were inferior to the performance of TT_v1. 

3.3.3 Sensitivity experiments 

The parameters of the carbon cycle data assimilation system Tan-Tracker (v1) are listed in Table 2. The main parameters are 30 

the assimilation window length, and the maximum NLS-4DVar assimilation iteration number and the localization radii of the 

flux assimilation pass, as described below.  
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The flux assimilation pass window length determines the influence of the initial CO2 concentration and the time of transmission, 

thus affecting the flux inversion. The sensitivity experiments of the assimilation window were used to select a window length 

of 7 days (denoted as v1_07), 14 days (denoted as v1_14), or 30 days (denoted as v1_30); the other TT_v1 parameters remained 

unchanged. The flux and concentration results are shown in Figure 8. From the time series of the total flux (Fig. 8a,) it could 

be concluded that the assimilation experiments of all three windows had positive effects; however, the assimilation results of 5 

v1_14 were better than those of v1_07, which was better than those of v1_30. The CO2 concentration results (Fig. 8c) showed 

that the assimilation experiments of all three windows had positive effects. The assimilation results of v1_07 were roughly 

equivalent to those of v1_14, both of which were better than those of v1_30. Thus, flux assimilation pass is sensitive to the 

length of the assimilation window. Note that, 14-days flux assimilation pass window length is close to those adopted by some 

other published inversion systems, such as the one week length of Carbon-Tracker (Peters et al., 2007), the one-month length 10 

of Basu et al. (2013) also the 7-days length of Tan-Tracker (v0) (Tian et al., 2014). The window of the appropriate length (14 

days) had a small initial CO2 concentration deviation, the appropriate integration time, and was closest to the OCO-2 satellite 

16-day regression period, i.e., it was possible to absorb more observations to obtain good flux inversion results. 

As the maximum NLS-4DVar iteration number increases, the assimilation results tend to converge, especially for solving the 

problem of high nonlinear systems. However, the computational cost increases with the number of iterations. The sensitivity 15 

experiments of the maximum NLS-4DVar iteration number selected one (Imax = 1), two (Imax = 2), and three (Imax = 3) 

iterations, with the remaining parameters retaining the values of TT_v1. The resulting flux and concentration results are shown 

in Figure 9. The time series of the monthly total flux (Fig. 9a) and the CO2 concentration (Fig. 9c) results showed that the 

assimilation results improved and tended to converge quickly as the number of maximum NLS-4DVar iterations increased. 

Considering the computational cost, we chose three maximum NLS-4DVar iterations as the final solution. 20 

The sensitivity experiments of the flux assimilation pass localization radii were used to select a localization radius of 1000 km 

(denoted as Loc-1k), 2000 km (denoted as Loc-2k), or 4000 km (denoted as Loc-4k); the other TT_v1 parameters remained 

unchanged. The flux and concentration results are shown in Fig. 10. The time series of the monthly total flux (Fig. 10a) and 

the CO2 concentration (Fig. 10c) results showed that the assimilation results is better with 2000 km localization radii. It is 

reasonable to be longer than 900km in Carbon-Tracker (Peters et al., 2005) and Tan-Tracker (v0) because of a shorter model 25 

integration time meaning lower error from remote location. 

4. Discussion 

For each assimilation cycle, the simulated CO2 concentration errors originated from both the initial CO2 and the background 

flux errors. These errors entangled with the model evolution, which is indeed difficult to optimize the CO2 concentrations and 

fluxes altogether. Dual-pass assimilation system Tan-Tracker (v1) was proposed to proper distinguish the errors and reduce 30 

their influences. The CO2 assimilation pass with a shorter length (3-days) window is firstly utilized to assimilate the initial 

CO2 concentrations with little influence of the background fluxes. This allows us to initiate the subsequent flux assimilation 
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pass from the optimal initial CO2 concentration. A properly elongated 2-weeks length is specially designed to incorporate 

enough observations for surface fluxes. Through the above optimization steps, initial CO2 errors and background flux errors 

are properly distinguished; CO2 concentration and surface CO2 flux are mutually adjusted and optimized.  In the ensemble-

based Tan-Tracker system, the uncertainties are described by the ensembles in the NLS-4DVar, which are further optimized 

with the ensembles update. In a summary, dual-pass presents a proper way controlling both CO2 initial condition and flux 5 

successively. 

Mass balance is important for a carbon cycle assimilation system. In Tan-Tracker (v1), CO2 assimilation pass is a directly 

change to the atmospheric carbon pool and will result in flux bias if accumulated through the whole assimilation process. To 

avoid this, the update section starts from the background initial CO2; As a result, the analysis CO2 concentrations are forced 

by the model and optimized fluxes only, starting from background initial CO2 of first window. This also means chemical 10 

transport model can impose continuous constraint on flux and CO2 without truncation error. In other words, optimized flux is 

not only the best-fitting of current window constrained by observations under low initial CO2 error, but the best-fitting of the 

whole assimilation progress constrained by model and mass balance. 

 

5. Conclusion 15 

We designed a new version of a carbon cycle data assimilation system, Tan-Tracker (v1), based on the atmospheric chemical 

transport model GEOS-Chem and an advanced NLS-4DVar data assimilation algorithm. Using a dual-pass assimilation 

framework consisting of a CO2 assimilation pass and a flux assimilation pass, we assimilated atmospheric CO2 observations 

to obtain an optimized representation of the surface carbon flux. Compared with the joint assimilation system Tan-Tracker 

(v0), the dual-pass assimilation system Tan-Tracker (v1) innovatively uses a dual-pass assimilation framework to successively 20 

optimize CO2 concentration and surface carbon flux in different assimilation passes. Optimization of the CO2 concentration 

uses a shorter assimilation window to reduce the effects of background flux for a more accurate initial CO2 concentration 

measurement. Flux optimization uses a longer assimilation window, allowing the system to absorb enough observations to 

optimize the flux while reducing the effects of the initial CO2 concentration deviation, resulting in more accurate surface flux 

estimates. 25 

We designed a set of OSSEs based on OCO-2 satellite data, which we compared with the Tan-Tracker (v0) joint assimilation 

system. The Tan-Tracker (v1) performance was superior to that of Tan-Tracker (v0) in resolving the CO2 concentration and 

surface flux estimates, and was far better than prior direct background simulations. Thus, the dual-pass assimilation strategy 

offers an advantage in satellite carbon cycle data assimilation. The results of the sensitivity experiment of window length and 

maximum NLS-4DVar assimilation iterations showed that the appropriate window length (14 days) and a greater number of 30 

iterations (three), as permitted by the computational cost, provides better assimilation results. 
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Future work will focus on multi-satellite (e.g., OCO-2, GOSAT, and Tan-Sat) observations for long-term sequence assimilation, 

regional high-resolution nested assimilation, and analyses used to distinguish between anthropogenic and natural sources. 
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Table 1. Experimental setup of the observing system simulation experiments (OSSEs). SIB3 and Takahashi flux are as described in 

Section 3.1; the remaining flux in each experiment is the same. 

Name Running time Initial CO2 Flux bio Flux oce 

True 20151101~20161231 CT 20151101 SIB3 2010 Takahashi 2010 

Ctrl 

20160101~20161231 CT 20160101 SIB3 2009 Takahashi 2009 TT_v0 

TT_v1 

 

Table 2. Selection of assimilation parameters (parameters for TT_v1 divided into the CO2 assimilation pass and the flux assimilation 5 
pass). 

Name 
Window  

length(days) 

Lag window 

(days) 

Localization 

radius(km) 

Localization 

parameters(rx,ry) 
Iteration times 

TT_v0 7 35(5 weeks) 900  1 

CO2 pass 3  2000 50，30 3 

Flux pass 14(2 weeks)  2000 50，30 3 

 

Table 3. Total flux from May to December and its deviation from True (unit: PgC yr−1). 

 True Ctrl TT_v0 TT_v1 

Ocean -2.03069 -1.87451 -1.88218 -1.87805 

land ecosystem -4.09202 -3.96772 -4.04544 -4.10416 

total -6.12273 -5.84224 -5.92764 -5.9822 

  Ctrl TT_v0 TT_v1 

Ocean  0.15618 0.148511 0.152643 

land ecosystem  0.124296 0.046578 -0.01214 

total  0.280489 0.195089 0.140531 
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Figure 1. Dual-pass Tan-Tracker (v1) assimilation system framework. 
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Figure 2. Spatial distribution of artificial observations 
2 ,CO OX  before and after quality control in the first window of the flux 

assimilation pass. 

  5 
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Figure 3. CO2 assimilation results: a. daily root-mean-square error (RMSE) between assimilation/simulation and artificial 

observations 
2 ,CO OX ; b. daily RMSE between assimilation/simulation and True; c. daily mean bias between assimilation/simulation 

and True. 5 
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Figure 4. Root-mean-square error (RMSE) spatial distribution of vertical-averaged CO2 concentration grid time series. RMSE 

between a. Ctrl and True; b. TT_v0 and True; c. TT_v1 and True.  
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Figure 5. Time series simulation/assimilation results of the monthly global total ecosystem and ocean flux and their deviation from 

the truth True: a. monthly total flux; b. monthly delta flux. 5 
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Figure 6. Total flux from May to December and its deviation from True. 
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Figure 7. Monthly total flux of 11 land regions of TransCom “super-regions” and its deviation from True: a. flux of each region; b. 

deviation from True. 
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Figure 8. Window length sensitivity experiment results: a. monthly total flux; b. monthly total flux deviation; c. daily root-mean-

square error (RMSE) of CO2 concentration between the simulation/assimilation results and True. 
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Figure 9. Maximum Nonlinear Least Squares Four-dimensional Variational Data Assimilation algorithm (NLS-4DVar) iteration 

sensitivity experimental results: a. monthly total flux; b. monthly total flux deviation; c. daily root-mean-square error (RMSE) of 

CO2 concentration between the simulation/assimilation results and True. 5 
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Figure 10. Localization radius sensitivity experiment results: a. monthly total flux; b. monthly total flux deviation; c. daily root-

mean-square error (RMSE) of CO2 concentration between the simulation/assimilation results and True.  
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