
Dear reviewers, 

Thank you all very much for the time you have spent on reading our manuscript, and in particular 

for your constructive comments, which helped to improve our manuscript. Please find a point-to-

point reply to each of your comments below, sorted per reviewer.  

 

 

 



Reply to reviewer 1: 
 

Page 1, line 6: Replace "enables to estimate" by "enables the estimation of information". 

We have replaced this as suggested. 

 

Page 7, line 7: "free-tropospheric mixing ratios". I disagree, free tropospheric mixing ratios are not 

difficult to obtain by observations. There are numerous surface sites measuring greenhouse 

gases concentrations around the globe. 

Many surface sites indeed measure greenhouse gas concentrations, these measurements 

however often take place relatively close to the surface (e.g. measurement tower). With ‘free-

tropospheric’ we want to indicate the concentration in the free troposphere above the boundary 

layer, a quantity that determines entrainment. However, measurement towers seldomly extend 

beyond the boundary layer. Therefore, the free-tropospheric concentrations are not always 

straightforward to obtain in our view. 

Page 1, line 19: Add an s after exchange. 

Adapted 

Page 1, line 21; Strictly speaking, the second part of the sentence (the well known atm...) is false. 

The atmospheric boundary layer exists even though the daytime conditions are not sunny. 

Indeed, we now changed the sentence into “Surface heating under sunny daytime conditions 

usually leads to the growth of a relatively well-mixed layer close to the land surface, the 

convective boundary layer (CBL).” 

Page 2, line 30: Add after scalars (e.g. wind speed and temperature). 

We have changed the line into “relatively strong vertical gradients of scalars (e.g. specific 

humidity and temperature) …” 

Page 2, line 30: For which time scale and horizontal resolution these assumptions are valid? 

Regarding the time scale, the model performs best during the convective daytime period, the 

assumptions on advection etc. should be valid for the whole modelled period. Regarding the 

horizontal scale: The model performs best on fair-weather days. The absence of deep convection 

etc. should ideally hold on a scale large enough that it does not influence the model simulation 

location. In practice, days are often not ‘ideal’, e.g. a time-varying advection can be present. This 

does not necessarily mean the model cannot be applied to that day, but, performance is likely to 

be worse. 

We have added info about this to the introduction. 

Page 2, line 35: Parenthesis within parenthesis. Use "for instance at Cabaw".. 

We have adapted the sentence to avoid parenthesis within parenthesis 

Page 2, line 40: Here, you can mention the problems of equifinallity (Tang et al., 2008) and 

overfitting. 



We have added “The estimation of parameters is further complicated by possible over- 

fitting and the problem of parameter equifinality (Tang and Zhuang, 2008), the latter especially in 

case not enough types of observations are used” 

Page 2, line 42: Replace Inital by Initial. 

Thanks for spotting this typo, adapted 

Page 2, line 42: Replace e.g. by for instance. 

The sentence now reads “Some parameters can be obtained directly from observations (for 

instance initial mixed-layer humidity), but, for example, estimating free-tropospheric lapse rates 

or stomatal conductances is often more challenging.” 

Page 3, line 66: This is also illustrated in Ziehn et al. (2012) with the assimilation of atmospheric 

CO2 data in BETHY LSM. 

Around line 66 our manuscript has the following text: “The non-linearity causes numerically-

calculated cost function gradients to deviate from the true analytical gradients, since the cost 

function can vary erratically with a changing model parameter value. This is hampering proper 

minimization of the cost function when using numerically calculated gradients.” 

The suggested reference is interesting, but we could not find the location in the paper of Ziehn et 

al. where these authors illustrate this point about numerical gradients.   

Page 3, line 62: Above all, it is the iterative process that allows to find the local miminum of the 

cost function in case of linearity. 

We have extended Figure 2 to make the iterative cycle clearer, see later in this document, as this 

cycle is indeed important. 

Page 3, line 65: The choice of using variational methods compared to other technics dealing with 

the non linearity (e.g. Particule filters) could be discussed here. The advantages of using an 

adjoint compared to a numerically computed gradient could be also added. For instance, the 

adjoint model is a tool that allows to obtain the sensitivities of model outputs to land surface 

parameters with more efficiency. The adjoint computation is also less expensive than computing 

the cost function gradient. 

We have added the following: “This approach furthermore allows to efficiently retrieve the 

sensitivity of model output to model parameters. Also, using an analytical gradient is generally 

computationally less expensive compared to using a numerical gradient (Doicu et al., 2010, p17).” 

 

It is not our intention to provide an overview of possible methods here, as a proper overview 

would soon become quite extensive, and the paper is already quite substantial in length. 

Page 4, scheme: By storage flux, do you mean tendency of the scalar (e.g dc/dt)? 

Yes, We have adapted ‘storage flux’ into tendency now 

Page 4, line 109: It would be worth defining what is Jarvis-Stewart approach compared to the a-

gs module. 

We have adapted the text as follows: “As an alternative for a-gs, a Jarvis-Stewart approach 

(Jarvis, 1976; Stewart, 1988) can also be used for calculating H2O exchange. The latter approach 

is more simple: stomatal conductance is calculated as a maximum conductance multiplied with a 

set of factors between 0 and 1 (Jacobs, 1994). In CLASS, there are 4 factors included, which 



represent limitations due to the amount of incoming light, temperature, vapour pressure deficit 

and soil moisture.” 

Page 4, line 120: I disagree. Within a Bayesian framework, inverse modelling does not necessarily 

involve any prior information. 

It can indeed be done without prior info, although adding the extra prior information often 

improves the solution or avoids ill-defined situations. We have slightly adapted the sentence: 

“Inverse modelling is based on using observations and, ideally, prior information to statistically 

optimise a set of variables driving a physical system (Brasseur and Jacob, 2017).” 

Page 4, line 122: Delete others. 

Deleted 

Page 5, line 125: Does it mean that the land surface model parameter are not optimised? 

No. Here we wanted to make a distinction between model parameters that are optimised and 

those that are not optimised (but still can have an influence on the model output).  The first 

group are part of the state and thus vector xm. The latter group of parameters are part of vector p. 

At this point in the paper we do not make a choice on which parameters to optimise and which 

not, that depends on the specific optimisation problem one wants to use ICLASS for, and can be 

chosen by the user. The full list of parameters that can be optimised is quite large (given in 

manual), and includes land surface model parameters as well. 

Page 5, line 138: The reference Chevallier et al., 2010 seems to me more appropriate than 

Chevallier et al. 2007 here. I would justify this assumption in an other sentence using . 

We have changed the Chevallier et al. 2007 reference into the Chevallier et al., 2010 reference. 

The remark “I would justify this assumption in an other sentence using .” was not fully clear to us. 

Page 6, line 149: Add a coma after at this point. 

Added 

Page 6, line 150: What is the point of adding some weights instead of inflating observational 

errors? 

Indeed identical changes can be made to the cost function by adapting weights or changing the 

observational errors.  However, the observational error standard deviations are also used in the 

ensemble for estimating posterior errors (see section 5.2). When the observational errors are no 

longer realistic due to inflating/deflating these errors, the observations are not properly perturbed 

anymore. This problem is avoided when using weights. The latter can be used, for example, when 

you have 15 temperature observation streams, but only one CO2 observation stream. In this case 

adding a weight of 1/15 to the temperature observation streams can make the observation 

streams more balanced, while keeping a realistic error for the observations. We have added an 

additional sentence to the text of the paper: “In principle, the observational error variances could 

also be adapted for this purpose, but by using weights we can keep realistic error estimations 

(important for Sect. 5.2).” 

Page 6, line 156: Explain how si is distributed in Equation 5. 

We have changed the sentence below eq 5 “These errors are assumed to be independent of each 

other.” into “These errors are assumed to be independent of each other and normally distributed.” 



Page 6, line 165: Above all, this method is adapted for minimizing a non-linear cost function. 

Please specify the algorithm used. For instance, Raoult et al. 2016 used the L-BGFS-B algorithm 

as many others (see also Bastrikov et al., 2018; Kuppel et al 2014; Bacour et al., 2015). 

The text now reads “The framework uses by default a truncated Newton method, the tnc 

algorithm (The SciPy community; Nash, 2000), for the optimisations. Truncated Newton methods 

are suitable for nonlinear optimisation problems (Nash, 2000). The chosen algorithm allows for 

specifying hard bounds…” 

Page 7, Figure 2: The figure should be more illustrative. As such, it does not help to understand 

the framework. At least, add the formula in the box. The iterative process should be also 

illustrated. See Figure 1 for instance of Thanwerdas et al., 2021. 

The figure was indeed very limited. The new figure: 

 

Page 8, line 1: Specify why you optimize FracH instead of ϵeb. 

In our application example, ϵeb (the energy balance residual, see eq 8) is explicitly calculated 

from the observations, since we had radiation observations available. Optimising FracH ensures 

that the energy balance in the observations closes, as the difference between net radiation and 

the sum of all new heat fluxes becomes 0. If we would optimise ϵeb this would not be the case. 

We have slightly adapted the text below eq 10: “This implies that the energy balance closure 

residual is added partly to the sensible, partly to the latent heat flux.” is changed into “This 

implies that the energy balance closure residual is added partly to the sensible, partly to the 

latent heat flux, thereby closing the energy balance in the observations.” 

Page 8, line 229: It is well known that depending on prior parameters the optimisation can get 

stuck in a local minimum. Please cite a textbook here. See also Santaren et al., 2014 and 

Bastrikov et al., 2018. 

As we don’t readily have a clear textbook example to cite, we added some more references, the 

text now reads: “The highly nonlinear nature of the optimisation problem can cause the 

optimisation to get stuck in a local minimum of the cost function (Santaren et al., 2014; Bastrikov 



et al., 2018; Ziehn et al., 2012). This means that the resulting posterior state vector can depend 

on the prior starting point (Raoult et al., 2016), and the resulting posterior state can remain far 

from optimal.” 

Page 8, line 236: Cite Tarantola after the word approach. 

Adapted 

Page 11, line 284: Specifify that the adjoint is computed for each iteration. 

At line 162-165 in chapter 3, the following text is present: “In the statistical optimization, we 

attempt to find the values of the state vector x such that the function in Eq. (6) reaches its 

absolute minimum. This is done starting from an initial guess (x = xA), after which the state vector 

is improved iteratively. The cost function and the gradient of the cost function (derivatives with 

respect to all parameters) are computed for different combinations of parameters in the state 

vector (Fig. 2).” We herein also refer to figure 2 (see higher up in this document), which we have 

extended, and wherein we made the iterative cycle clearer. Since line 284 belongs to a section 

that is more about illustrating the employed technique of adjoint coding, we prefer to not mention 

this in that section. The latter section will be moved to the supplementary material, in response to 

comments of other reviewers. 

 

Page 13, line 362: Specify what are the arguments checkpointinit and model. 

‘model’ is a forward model object passed as argument to the function, this is just a technical 

Python implementation, we have removed this argument in the example for simplicity. 

checkpoint_init[i] contains stored forward model variables, as explained in Sect. 4.3, We have 

added this info to the text.   

Page 13, line 362: The optimized emission factor can become negative as well.. 

We assume this is about page 14, line 378? This is indeed true, but the emissions are not simply 

multiplied with a factor. Bergamaschi et al 2009 use the following formula for emissions (their eq 

4):  

 
The emission parameter (x) itself is unbounded, but the emissions (e) cannot become negative. 

To make it more clear, we have changed the text as follows: 

“Their solution was to make the emissions a function of an emission parameter that is being 

optimised, instead of optimising the emissions themselves. By their choice of function, the 

emissions cannot become negative, even though the emission parameter is unbounded.” 

Page 14, line 390, Remove one of the two "to". 

Removed 

Page 16, line 425: Specify that the chi 2 is only an indicator that can be misleading in particular 

when off diagonal terms are involved in the observation error matrix (Chevallier , 2007). 

We have added a similar statement to the text: “Note however that the χ2 statistic can be 

misleading, in particular when observational errors are correlated (Chevallier, 2007)” 



Page 17, line 470: Remove in after reads. 

The text now reads “… in this file observations are loaded, the state vector defined, etc.” 

Page 18, line 483: "similar to Honnorat et al. , 2007". This is a standard test, please cite a 

textbook here or more references. 

The gradient test is indeed widely applied, but to our knowledge few papers give a detailed 

formula like Honnorat et al. (2007), that is similar to our formula. We now also refer at this place 

in the text to Elizondo et al. (2000). 

Page 18, line 490: It would be nice to show in a tabular the values of α and the associated results 

for the left and right sides of the equation. 

The paper now includes the following table: 

 
Page 19, line 523: RevealS. 

Adapted, thanks for spotting the typo 

Page 19, line 527: OSSEs are classic to test the ability of the system to properly estimate model 

parameters.. 

We have added “This type of experiments is classic to test the ability of the system to properly 

estimate model parameters.” 

Page 19, line 530, Start a new sentence after complexity and remove the coma after experiments. 

Adapted 

Page 19, line 535: ""In the cost function..true parameters". The sentence need to be explained as 

prior information means to avoid the parameters taking unrealistic values. 

This is specifically for the OSSEs. We first define ‘true’ parameters, which we use to create 

observations. Then, we start from a different prior state, and we want to try to find the true 

parameters back, using the observations we created earlier. Now, if we would include the 

background part of the cost function, i.e. a penalty for deviating from the prior, this would mean 

that we will not be able to find back the true state. This is because the true state would give the 



best fit to the observations, but due to the penalty for deviating from the prior, this would 

normally not correspond to the minimum in the cost function. Therefore, we leave out the 

background part of the cost function. 

We have added some info to the text: “In the cost function, we do not include the background 

part, to make sure that it is possible to find back the "true" parameters. This is because the 

background part of the cost function implies a 'penalty' for deviating from the prior state. This 

penalty implies that, when the model is run with the true parameters, the cost function would still 

not be zero, and the minimum of the cost function might be shifted.” 

Page 19, line 543: Add a coma after experiment. 

Added 

Page 20, table 1: Previously, you wrote that you removed prior information. What does the prior 

column correspond to? 

The prior starting state. Even though the deviation from the prior is not included in the cost 

function (see our response about your comment about Page 19, line 535), the optimisation still 

needs a starting point. 

Page 21, line 566: as many iterations WERE needed. 

Sentence now reads “In this case, convergence is notably slower, e.g. more than six times as 

many iterations were needed to reduce the cost function to less than …” 

Page 21, line 570: Add a coma after setup. 

Added 

Page 23, line 596: Are shallow clouds represented in the forward model? 

In the configuration we used, the model does not take shallow (or any other) clouds into account. 

This can give rise to some deviation between observations and model, but we still expect the 

model grasps the main physics governing the boundary layer state. But see also our reply to your 

comment about Page 22, line 590. 

Page 23: Combine Figures 3 and 4 . 

Combined 

Page 26: Combine Figures 5 and 6. 

Combined 

Page 22, line 590: On Figure 5, the height and relative humidity show a less good fit to 

observations around noon. Is it because of the formation of shallow clouds? 

In radiation measurements of that day we see a reduction in incoming shortwave radiation for 

many data points around noon (see fig below). Earlier we wrote in the paper at line 604 about 

cumulus clouds. However, a colleague of us recently provided us with a satellite image of the day, 

the image suggests that high clouds were present instead. We have therefore adapted the text. 

The high clouds might play a role in the less good fit, although this issue is not easy to examine. 



 
Page 28, line 644: "The use .. model" Please explain this sentence (this is done through the use of 

OSSE such as e.g. Stinecipher et al., 2022). 

We have added the following: “This is done through the use of observation 

system simulation experiments, similar to e.g. Ye et al. (2022)”. We could not find a Stinecipher 

2022 reference with OSSEs, therefore we used a different reference. 

Page 28, line 657: "It avoids..." Please explain. 

See also line 40-44, what we wanted to say here is that, with a framework like this, we avoid the 

need of manually fitting parameters of the forward model to obtain a good fit to observations 

(People using CLASS had to do this before this framework was built). Manually fitting parameters 

can be time-consuming and subjective. We have changed the sentence into “It avoids the need of 

manual trial-and-error in choosing parameter values for the model when fitting observations, 

thereby providing more objectivity.” 

Page 30, line 672: Give an example of small scale processes which are not represented. 

The text now reads “… we cannot expect a relatively simple model to capture all small-scale 

processes playing a role in the atmospheric boundary layer and in land surface--atmosphere 

exchange (e.g. heterogeneous surface heating and evaporation, influence of individual thermals, 

...).” 

Page 30, conclusion: You could also emphasize that the inverse framework serves at determining 

which observations are needed through the use of OSSEs. 

Thanks for this suggestion, we have added the following text to the concluding discussion: 

“ICLASS can also help in the planning of observational campaigns, to determine in advance which 

observation streams are needed to better constrain model processes.” 
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Reply to reviewer 2 
 

General comments 

 

The introduction to the paper is off the mark. It does not explain the links between 

ICLASS and the efforts of other models but contains a lot of more or less technical 

information (e.g. on the tangent-linear and adjoint). I think that readers interested in a 

variational inverse modelling framework may already know about the TL and adjoint. If 

the aim is to teach users of CLASS what is an inversion and how they can use it, it may 

not be best done with a paper in GMD. 

To place the variational framework of this paper in comparison with other efforts in the 

scientific community, we now added a paragraph linking parameter estimation in land-

surface models in other studies with ICLASS. Here, an important point we make is that 

the fully coupled land-atmosphere in ICLASS helps to infer land surface characteristics 

from atmospheric observations, something that is often not the focus of other variational 

frameworks. 

The more technical text mentioning the adjoint in the introduction, is limited to one 

paragraph, discussing the challenge that non-linearity is posing.  

 

The order for presenting the variables and various definitions is not always very logical 

or at least, easy to follow for the reader, particularly in Section 3. The whole of Section 4 

and most of Section 8 are not relevant, as well as some theoretical paragraphs in 

Sections 3 and 5 (see Specific comments for more details). 

In response to this valid comment, and a similar comment from another reviewer, the 

content of chapter 4 has been moved to the supplementary material. See specific 

comments for sections 3, 5 and 8. 

The validation (Section 9) must deal with more relevant tests and show the 

uncertainties. 

The simple OSSEs in the paper mainly focus on retrieving parameter values, prior 

uncertainties were not used. We will add a more sophisticated OSSE, including a test for 

the bias correction. See also specific comments. We will use an ensemble in the new 

OSSE, providing posterior uncertainties. 

 

The same remark applies to the application example (Section 10): no posterior 

uncertainties are shown even though ICLASS can estimate them with its Monte-Carlo 

scheme. 

Here we would like to point to table 3 and figure 9. In the last column of table 3, we 

show the posterior standard deviation of every parameter. In Figure 9 we picked out 2 

parameters and show the full posterior pdfs.  

Finally, some very practical information is missing, e.g. about the computation costs. 

We will add info on the computation costs. Note that some brief info on computation 

costs relative to CLASS is already given on lines 647-653. 

 

 

 

 

 

Specific comments: 

 

Introduction 

 

The introduction should be rewritten to include more of the general context surrounding 

ICLASS e.g. how is it linked to the efforts around other models. Nevertheless, in case 

they are useful, here are some remarks on specific points: 

-p.2 l.31-34: what is the typical frequency of the "golden days" in a year? How are they 



distributed? At least in the area where the example application is located. 

The model performs best during the convective daytime period, the assumptions on 

advection etc. should be valid for the whole modelled period. Since the model performs 

best on fair-weather days, the absence of deep convection etc. should ideally hold on a 

spatial scale large enough that it does not influence the model simulation location. In 

practice, days are often not ‘ideal’, e.g. a time-varying advection can be present. This 

does not necessarily mean the model cannot be applied to that day, but, performance is 

likely to be worse. We have added info about this to the introduction. Determining the 

frequency of ‘ideal’ days is quite complex, as then advection etc. has to be known. Even 

though the model does not perform well in all meteorological situations, this and similar 

models have been successfully applied in numerous studies, see 

https://classmodel.github.io/publications.html. 

-p.2 l.39-40: this is not true: neural networks or statistical models have no physics at all 

and their results can be consistent with measurements... 

The results of those models can indeed be consistent with a set of measurements, but 

the point we want to illustrate here is the following: If you tune the parameters of the 

(CLASS) model using e.g. only CO2 mixing ratio observations, you might easily manage 

to get a good fit to those observations. Several choices of parameter sets might give you 

similar results, as one parameter can compensate for another when only looking at one 

specific type of observations. But then, when keeping the same set of parameters 

chosen earlier, and comparing your model output also with humidity and temperature 

observations, likely your model will perform poorly. This means your model physics are 

not correct, but if you would only compare to CO2 mixing ratios, this internal problem 

would remain hidden. If instead you fit model parameters using a wide range of different 

types of observations, you are likely to end up with model physics that are more correct, 

i.e.: it becomes less likely that one bad parameter can compensate for another. Of 

course, the essential physical processes should be well represented in the model, 

otherwise even the best set of parameters might not lead to a good fit.  

In case of statistical models fitted with CO2 mixing ratio observations, there will be no 

model output for variables other than CO2 mixing ratio, they have no internal physics, so 

our statement in the paper “When model results are consistent with a diverse set of 

measurements, this gives more confidence that the internal physics are robust and the model has 

been adequately parameterised to reliably simulate reality” cannot be applied to those 

models. 

 

-p.2 l.49 "capable of correcting observations for biases": this is a bit misleading as to 

what is done by ICLASS. Any inversion set-up can "correct observations for biases" if a 

control variable is created for it. The issue is whether the resulting corrections have any 

physical meaning. 

The text reads “The above text illustrates the need for an objective optimisation framework, 

capable of correcting observations for biases. We therefore present here a description of ICLASS, 

an inverse modelling framework built around the CLASS model, including 

a bias-correction scheme.” 

It is indeed true that more complex bias patterns cannot be handled. There is however a 

capacity to physically correct observations for biases, and we would like to point to 

Figure 7 for this. The surface heat flux observations, which are often assumed to be 

prone to underestimation (see e.g. Foken 2008), are adapted in the direction one would 

expect. 

We changed the text into “The above text illustrates the need for an objective optimisation 

framework, capable of correcting observations for biases.  We therefore present here a 

description of ICLASS, an inverse modelling framework built around the CLASS model, including a 

bias-correction scheme for specific bias patterns.” 

  



-p.3 l.64-65: beware, non-linear is not random (which I assume to be the meaning of 

"erratically" here). 

“The non-linearity causes numerically-calculated cost function gradients to deviate 

from the true analytical gradients, since the cost function can vary erratically with a changing 

model parameter value.” 

What we wanted to say here is that in this case the cost function can (theoretically) 

change in a very non-linear way with a change in parameter value, e.g. increases and 

decreases of the cost function can alter with very small changes in the parameter, the 

shape of the cost function can be very irregular. We have changed erratically into 

irregularly. 

Forward model 

Please check which pieces of information are actually relevant for the inversion 

framework. If an option is not used in the tests or example application, it may not be 

explained here. 

-p.4 l.96: how is the cloud mass flux included? Or is it not relevant here? 

In the beginning and the end of the section we refer to Vilà-Guerau De Arellano et al 

(2015), where these details can be found. We do not include the cloud mass flux in the 

example, we shortly mentioned it here for completeness. Also, for readers who want to 

perform a study with a bigger focus on cumulus clouds, using ICLASS, it might be good 

to know it can be included. 

-p.4 l.98: how are cloud effects on the BLH accounted for? Or is it not relevant here? 

Idem to comment above 

-p.4 l.101: do you use the option for the Monin-Obukhov similarity? 

Yes, we consider this layer very important for correctly interpreting observations. We 

have now explicitly added ‘we included the surface layer option in the model’ to the 

section of the application example. Also for the OSSEs we now made clear that the 

surface layer was turned on. 

-p.4 l.102-105: this very long sentence is not clear, please rephrase. 

The two original sentences were “In the original CLASS surface layer, scalars, the zonal 

wind speed and the meridional wind speed are evaluated at 2 m height.  For some scalars, we 

have extended this to multiple user-specified heights, as this allows to compare model output to 

observations of chemical mixing ratios and temperatures at different heights (e.g. along tower).” 

We changed it into “In the original CLASS surface layer, scalars such as temperature are 

evaluated at 2 m height.  For some scalars, we have extended this to multiple user-specified 

heights. This allows to compare observations of chemical mixing ratios and temperatures at 

different heights (e.g. along a tower) to model output.”  

-p.4 l.107: do you use this option? 

Yes, both in the OSSEs and in the application example. 

-p.4 l.107-108: "a-gs" module and big-leaf method are not defined/referenced 

anywhere. 

Is it supposed to be commonly known methods? 

Within the carbon community, these are relatively well known, but it is good to provide 

references for both. For a-gs we refer to (Jacobs, 1994; Ronda et al., 2001), for big-leaf 

approach we added a reference to Friend (2001). 

-p.4 l.111: from which data does the model dynamically compute the long and short 

wave radiations? 

We have added the following sentence: “In this module, shortwave radiation is 

calculated using the date and time, cloud cover and albedo. For longwave radiation the 



calculation uses surface temperature and the temperature at the top of the surface 

layer.” 

 

We turned this feature on in both the OSSEs and application example. 

-p.4 l.114: where do the surface temperatures come from? 

The model calculates the surface temperature from solving the energy balance, the use 

of outgoing longwave radiation from the previous timestep makes this more simple 

(outgoing longwave radiation is a 4th power function of surface temperature).  

We have adapted the referred sentence into: “The soil heat flux to the atmosphere is 

calculated based on the gradient between soil and surface temperature, the latter is 

obtained from a simplified energy balance.” 

Inverse modelling framework 

-p.4 l.122-123: please clearly list the inputs and/or put them in Fig.1 

We assume figure 2 was meant here (since figure 1 is about the forward model)? We 

have reworked figure 2 (also based on comments of another reviewer) into the 

following: 

 
The prior input vectors xb and xm are shown in the figure. In case the reviewer meant 

Figure 1, the model has more than 50 parameters that could be optimised, more than 

can be properly shown in a figure. 

 

-p.4 l.123: "[y]our bias correction scheme" has not yet been described. Moreover, the 

remaining parts of this subsection deals only with xm: please try to make the layout 

easier to follow for the reader. 

Bias correction is elaborated in section 3.2 (which comes after), but it is already 

introduced in the introduction. In response to this comment we now refer forward to 

section 3.2. 

-p.5 l.125-126: what are the "model parameters that are not part of the state"? If they 

don't, why are they in the model at all? 

The model has more than 50 parameters that can be optimised. Usually, the user will 

only want to optimise a subset of all these parameters, to reduce the complexity of the 

optimisation problem. Thus, only a subset of all model parameters is in the state. The 

other parameters, even though they are kept constant, still have an influence on the 

model output and thus the cost function. If they were given other constant values, the 

model output might be different. Those parameters, that are not part of the state vector, 

but still have an influence on the model output, we place in a vector p. Brasseur and 

Jacob (2017) also use a vector p in their notation (see their eq 11.1). 



-p.5 l.126seq: your notations are not conventional - at least, not from the atmospheric 

inversion conventions. We use R and B for the covariance matrices, for example. 

Different communities prefer different notation. We based our notation on Brasseur and 

Jacob (2017), and their notation is to a large extent based on Rodgers (2000). 

-p.5 l.132-p.6 l.148: all this is part of the general theory of the inversion, it is not 

particular to ICLASS so I think it must be omitted. Only the information that the 

observation errors are uncorrelated is relevant. 

We understand the point of view of the reviewer, who wants to make this section more 

concise. We argue however that some of this information, like the splitting up of the 

observational error variance in different parts, is relevant for the ICLASS user, who has 

to provide values of σI and optionally σM and σR. Next to that, some of the potential 

users of ICLASS are not very experienced with inverse modelling, this extra information 

might be very helpful to them. 

In response to this comment, we have moved the equation of the a-priori error 

covariance matrix and the accompanying text to the supplementary material, as this is 

common knowledge. 

-p.6 l.154: how can these factors be optimised? 

They can be optimised similarly to the other parameters, by iteratively calculating the 

gradient of the cost function (eq 13 gives the derivative with respect to a scaling factor) 

and the cost function itself for various values of the scaling factor. They are also part of 

the state when included in the optimisation. 

-p.6 l.158-165: this is again part of the general theory of the inversion. 

We consider Equation 7 non-standard since it contains an observation scaling factor 

-p.7 3.2: put the definitions of xm before l.125. Maybe xb also. 

Both are shortly introduced at lines 120-125. Moving the explanation from lines 175-180 

to a location before line 125 is very difficult, since the observation scaling factors are not 

yet defined at that point. 

-p.7 l.179: where do FracH appear in J? This is only indicated in Eq.11. 

FracH influences part of vector y (see eq 9 and eq 10), which appears in J (eq 4). In 

principle we could write y in eq 4 as y(FracH). FracH is however not yet introduced at the 

moment the cost function is defined, and y is only a function of FracH if the user decides 

to include the energy balance closure bias-correction.  

-p.7 l.180: "this is the topic of the next section": this is not a valid transition between 

sections. It is useless or may indicate that the sectionning and order of the sections is 

not logical enough. 

The transition is altered, the text now reads “The second possible method of bias 

correcting (Sect. 3.3) is implemented specifically for the energy balance closure problem 

(Foken, 2008; Oncley et al., 2007; Renner et al., 2019), it involves a parameter "FracH" 

(-) that can be optimised.” 

 

Note that in this section we want to give an overview on what sorts of parameters can 

be optimised, the bias correction for energy balance closure is explained in the section 

that follows. We however include this one parameter from the next section, to be 

complete. 

-p.7 l.186-197: why may the user desire to specify their own observational energy 

balance closure residual? 

All the measurements appearing in Eq. 8 might not always be available for all studies 

-p.8 l.193: can you conclude on the advantages and limitations of this bias correction? 

We have added the following: 

“Limitations of this approach are that we assume the radiation and soil heat flux 

measurements to be bias-free, and the FracH parameter constant during the day.”  

Regarding the advantages, we changed the following sentence “This implies that the 

energy balance closure residual is added partly to the sensible, partly to the latent heat 

flux” into   

“This implies that the energy balance closure residual is added partly to the sensible, 

partly to the latent heat flux, thereby closing the energy balance in the observations.” 

-p.8 l.195-211: this is the general theory of the adjoint, it is not particular to ICLASS. 



Equation 13 is the derivative to the observation scaling factor, which we think is not a 

standard equation. Eq 12 defines the forcing vector, which is used in eq 13 and 14 that 

deal with the bias correction.  

-p.8 l.214: what are "forcing vectors"? 

These are defined in eq 12, they contain the model-data mismatch, and are used as 

forcing for the adjoint (eq 11). See also Brasseur and Jacob (2017). 

-p.8 l.215-217: this is not clear: what is the link between FracH, FH, the observation 

scaling factors? Please clarify the vocabulary. 

It becomes indeed quite confusing with so many variables playing a role. FracH is 

specific for the energy balance closure problem, and explained in section 3.3. FH is a 

forcing vector for the H (sensible heat flux) observations, the definition of a forcing 

vector is given in eq 12. FH is used in the derivative of the cost function to the FracH 

parameter (eq 14). The observation scaling factors are introduced in eq 6, they are 

unrelated to FracH. Note that we have now added a table in the appendix describing all 

inverse modelling variables from section 3. 

-p.9 l.226: what are the advantages and limitations of the numerical derivative 

compared to the analytical gradient? 

An analytical gradient is generally computationally less expensive compared to using 

a numerical gradient (Doicu et al., 2010). In the case of ICLASS, we are not aware of 

any advantage of using the numerical derivative. Comparing the numerical and analytical 

derivative however can provide an extra check on the analytical derivative, and it can be 

interesting to see at which step size the differences become big. Also, in the OSSEs we 

use the numerical derivative at one point (line 565) to compare with our adjoint, so it 

might be useful to keep the employed formula in the paper 

-p.9 l.228-230: general theory, remove. 

This is indeed well-known within the inverse modelling community. It however serves 

here as the introduction of the section on convergence challenges, and as an argument 

on why the Monte-Carlo ensemble is useful. 

-p.9 l.230-232: if the forward model crashes, aren't there any other issues than the 

inversion? 

The forward model is very non-linear, certain combinations of input parameters lead to 

unphysical situations or numerical instabilities. Since CLASS is a simple model, it does 

not have advanced systems to prevent or deal with this kind of issues. Still, this and 

similar models have been successfully applied in numerous studies, see 

https://classmodel.github.io/publications.html.  

-p.9 l.233: "on which state vectors are tested": a missing word? 

Indeed a confusing sentence, now it reads “After starting from a user-specified prior 

state vector, the tnc algorithm autonomously decides which parameter values are tested 

during the rest of the optimisation.” 

-p.9 l.236-239: general explanation on the Monte-Carlo principle, not particular to this 

work. 

This section is about what we have done to handle convergence challenges. The short 

explanation (4 lines) might indeed be quite general, but important to understand what is 

done. Furthermore, what is specific (not unique) to ICLASS is that we use the variational 

approach (our minimisation procedure) within the Monte Carlo approach (ensemble). 

We would like readers to more or less understand how ICLASS works, without having to 

read other papers. We would like to keep this (in our opinion) important information in 

the paper. 

Figure 1: please indicate also the inputs and outputs. 

We assume this is about figure 2, we have reworked this figure (see higher up in this 

document). 

Adjoint model 



I appreciate the very pedagogical drive regarding the adjoint but I think that this section 

must be removed altogether since I don't think the reader of such a paper expects a 

lecture on the adjoint. 

This section is moved to the supplementary material 

Error statistics 

-p.14 l.381-383: does it invalidate the approach not to keep in the normality 

assumption? 

Why? 

In the derivation of the commonly used general cost function equation, it is assumed 

that both prior and observational errors follow a (multivariate) normal distribution 

(Tarantola 2005). We however cannot keep the normality assumption, because we use 

hard bounds for state values via the tnc algorithm. This induces a certain inconsistency, 

and the degree of error will depend on the degree of truncation etc. However, there are 

more studies that apply hard bounds, e.g. Raoult et al. (2016). Even though the 

normality assumption is violated, we think the results can still be useful. We added a 

sentence: “For a parameter following a truncated normal prior distribution, the prior 

variance used in the cost function is not (fully) equal to the variance of the actual prior 

distribution. The extent to which this is the case, depends on the degree of truncation.” 

-p.14 l.384-392: make a graph? Also please check that you don't need to repeat 

information already given previously or to anticipate. 

There is some repetition of earlier info at the beginning of this paragraph. One example: 

before the sentence “The instrument and representation error are taken from user input, 

the model error can either be specified by the user or estimated from a sensitivity 

analysis.” we say  

“Equation 5 states that the observational error consists of an instrument error, a model 

error and a representation error.” This is intended to make the paper more readable, 

given the large amount of information in the paper, the reader might not remember 

everything from earlier sections. Moreover, this repetition does not take a lot of space. 

 

It is not clear to us how a graph would clarify this portion of the text. 

 

-p.14 l.395-p.15 l.419: "it will be shortly explained here": not necessary if it is the same 

as Chevallier et al. (2007), only detail the differences if any. 

We understand the view of the reviewer, who wants to make the paper more concise. 

However, we would like readers to more or less understand how ICLASS works, without 

having to read other papers. This paper will also serve as a reference paper to which 

future studies using ICLASS can refer. We therefore would like to keep this crucial 

information in the paper. 

Output 

-p.15 l.422: "in ICLASS": what is the difference with the general definition of the 

chisquare? 

The denominator differs depending on the situation, see Michalak et al. (2005). There is 

also difference between Χ² and Χ²r, e.g. compare Meirink et al. (2008) with Michalak et 

al. (2005). Our variable is Χ²r, we have adapted this. 

-p.15 l.426: what does "default" mean? That the user can choose otherwise? 

Yes, as is done in our OSSE example, in this case the cost function is only determined by 

the model observation fit 

-p.16 l.412-452: a lot of this is generally known and used. Please keep to what is 

particular to ICLASS. Maybe also use tables. 



We have now added a table in appendix with the output variables defined in this section. 

However, as the text also includes the employed formula and explanation, we cannot 

simply replace the text with this table. 

 

-p.16 l.453- p.17 l.464: please use a graph or a list of a table. 

Although this is in itself a good suggestion, there is a sequence here, with accompanying 

text in between. It is not clear to us how a graph, list or table would clarify and shorten 

this portion of the text.  

Technical details of the code 

-p.17 l.467seq: here again, please use a graph or a list or a table 

In response to this comment, we have now used a list. 

-p.17 l.477: "can easily be adapted": wouldn't netcdf be easier to use than pickle? 

Thanks for this suggestion. In my (Peter) own experience netcdf is very useful for 

storing arrays with several dimensions (e.g. latitude, longitude,time). What we do with 

pickle here is merely to store the full Python objects so they can be loaded again later. 

Those objects are diverse, I think it might be more work to read/store these using 

netcdf. 

Adjoint model validation 

-p.17 l.480 - p.18 l.506: this is the general theory and must be removed. 

See reply to next comment 

-p.18 l.509 - p.19 l.519: same remark. 

These sections seem important to us, as it provides a validation of the extensive adjoint 

code, with an example. The adjoint test and gradient tests are indeed common tests, yet 

the exact formula for the gradient test used here is, to our knowledge, not occurring in 

many places in literature. One other reviewer suggested us to extend this chapter with a 

table showing results of the gradient test. Presenting the results of the gradient test 

without including the formula of the test and a little explanation might not be the best 

solution. Given that this paper also serves as the reference paper for ICLASS, we think it 

can be useful to include the information on how the adjoint code was validated.  

-p.19 l.522: how many is "the vast majority"? What about those that don't pass? What 

does "executed in this file" mean? How could you deal with numerical noise? 

The file we talk about is a Python script, when running the file, a lot of tests are 

‘executed’. There is a default configuration of this file, but the user can adapt which sets 

of tests to run, as well as the model configuration and the number of time steps tested. 

The tests also involve random numbers used in formula 30, therefore the resulting 

output of the adjoint tests is slightly varying as well. Last time we ran the adjoint and 

gradient tests over multiple timesteps, we had two failing tests (on a total of more than 

600 tests), one adjoint test that fails and one gradient test. The adjoint test resulted in a 

value in equation 30 of 3x10-12. The part of the code tested involves a while loop, which 

might introduce extra numerical noise. The failing gradient test results in a value of -

2.148466824970594e-97 using the tangent linear (LHS Eq. 28), while it results in a 

value of 0 using finite differences (RHS Eq. 28) with alpha=1e-5 or 1e-6 or 1e-7 or 1e-9 

or 1e-12. Although this is labelled as a failure by our code, numerical noise is a likely 

explanation. 

Additionally, besides the gradient and adjoint tests over multiple timesteps, we have 

tests for every separate module of CLASS, where we test more of the code. Some of 

these tests result in a reported failure when ran, they however require closer inspection. 

Looking at the following example output for testing a variable called ‘fxdif_part1’: 

dfxdif_part1 : 



7.847354016599084e-09 (finite difference output for first value of alpha) 

7.844627725184239e-09 (finite difference output for second value of alpha) 

7.845113447757512e-09 (…) 

7.820133429703446e-09 

4.163336342344337e-09 

tl :7.844681884985882e-09 (this is the tangent linear output) 

GRADIENT TEST FAILURE!! dfxdif_part1 

Several increasingly smaller values for alpha (eq 28) are tested here consecutively. 

However, looking at this output it seems that it is merely numerical noise, since only for 

the smallest tested value of alpha (1e-8) the tangent linear output strongly diverts from 

the finite difference output.  

Testing several values of alpha in the gradient tests (as we do) can be seen as a 

strategy to deal with numerical noise. Adjoint tests can also be ran multiple times with 

different random numbers. 

Invese modelling validation: OSSE 

 

The tests described in this section are useful but they are only very basic tests since, for 

example, I understand that four out of five are set-up without any perturbations of the 

observations. The error statistics are not described: are they the "true" ones or are they 

mis-specified in some tests? The convergence criteria are not discussed, which makes it 

difficult to compare the tests. Moreover, without the posterior uncertainties, the results 

are not complete nor comparable. 

The tests are indeed basic, they were intended to show the capacity to fit observations 

and find good parameter values, not to test the statistics. Note that the posterior 

uncertainties are only estimated when performing an ensemble of optimisations (Monte 

Carlo approach). Given the focus of these basic OSSEs, we did not use an ensemble. We 

will add an OSSE that focuses more on statistics and the bias correction. This OSSE will 

have mis-specified error statistics. We also added a table that quantifies the fit for the 

OSSE with the perturbed obs, and lists the employed measurement error standard 

deviations. 

 

The procedure for those simple OSSEs is described in the beginning of the section: “We 

first run the model with chosen values of a set of parameters we want to optimise. A set 

of model output data from this simulation then serve as the observations, while the 

parameters used to create these observations are referred to as the "true" parameters. 

Then we perform an optimisation using these observations, starting from a perturbed 

prior state vector.”. 

 

There is indeed only one experiment with perturbed obs, in this experiment we perturb 

the obs using the specified measurement error standard deviation, see line 540. The 

model and representation errors are set to 0 in all experiments. (we added this info to 

the paper now) 

-p.19 l.527: what does "constructed adjoint" mean? 

The adjoint they have constructed (coded). We left the word out now to avoid confusion. 

-p.19 l.530: 5 experiments is a bit too small a number for actual validation of a code. 

True, we will add another OSSE, focusing on statistics and bias correction. But note 

validation of the adjoint code is also done in chapter 8. 

-p.19 l.535-536: keeping out the background makes them very basic tests. 

Indeed, but in these first four tests, the goal is to test the capacity to find back the true 

parameters. We have added some info to the text: “In the cost function, we do not 



include the background part, to make sure that it is possible to find back the "true" 

parameters. This is because the background part of the cost function implies a 'penalty' 

for deviating from the prior state. This penalty implies that, when the model is run with 

the true parameters, the cost function would still not be zero, and the minimum of the 

cost function might be shifted.” 

In the new, more complex OSSE that we will present, the background part will be 

included 

-p.19 l.547-548: you can quantify the influence of a state parameter with the adjoint. 

Indeed, but given that the OSSEs are simple and do not require a lot of computation 

time there was no need to test this in advance  

-p.20 l.549: what is "a very good fit"? How can it be defined without the uncertainties? 

The basic OSSEs were intended to show the capacity to fit observations and find good 

parameter values, not to test the statistics (we will add an OSSE with a stronger focus 

on statistics). When looking at figure 3 it is clear that the model matches the 

observations very well, the difference between observations and model output is very 

hard to see by eye. For the prior this is by far not the case. Even though we are not 

quantitatively describing the fit, one can call this “a very good fit” in our opinion. Adding 

a quantitative measure of fit such as the root mean square error does not add much 

here in our opinion, neither does the cost function (partly determined by observational 

error standard deviations that are simply chosen by us). For the OSSE with perturbed 

observations, we have added a table showing the prior and posterior RMSE. 

-p.20 l.552: "a more complex problem": the problem is not well defined but is it 

complex? 

What we mean here is more complex relative to the tests described before, because of 

an increased number of state parameters (all state parameters have a prior value 

different from the ‘true’ value). 

-p.20 l.553-554: if the parameters have no influence on the cost function (which can be 

checked with the adjoint), then the inversion is useless. 

Indeed, but given that the OSSEs are simple and do not require a lot of computation 

time there was no need to test this in advance. From the result of the OSSE in table 1, 

we can see that the optimised parameters are all different from the prior parameters, 

which indicates that the cost function is sensitive to all parameters, proving our 

hypothesis.  

 

-p.20 l.554-55: the parameter interdependency issues are not the only ones which may 

arise in this case. 

Since we can give a clear example of the interdependency issue that arises, we choose 

to mention that. But this might indeed not be the only possible issue that could have 

arisen. 

-p.21 l.567-568: why does the analytical gradient perform better than the numerical 

calculation? 

It is a very non-linear model, having exact gradient calculations seems to improve 

performance. 

-p.21 l.573: the framework finds a minimum, not the minimum of the cost function. 

The exact true parameter values would give a cost function of 0 (because of the set-up 

of the discussed OSSEs), since the framework approaches the true parameter values 

very well, the framework approaches the global minimum (in these simple OSSEs).  

-p.21 l.575: what is "a good fit"? 

Qualitatively, the fit is not as good as in Figure 3, since the observations are now 

perturbed and impossible to exactly reproduce with the model. We agree that some 

more quantitative info can be useful here, we therefore added a table that shows that 

the root mean squared error lies close to the prescribed measurement error standard 

deviation. Given that these measurement error standard deviations were used to create 

the random perturbations for the observations, this confirms the good fit quantitatively.  

Figure 3: what about the uncertainties? 



In this figure we did not include the specified observational error standard deviations. 

The first four simple OSSEs are about finding back the true parameters, in our opinion, 

the (artificial) observational error did not seem very important to include. In Figure 4 

however, where observations are perturbed, we do include error bars. 

Application example 

-p.21 l.584-586: this is strangely put: observations are "derived" from other 

observations 

What we want to say here is that we compute certain observation variables from other 

variables in the dataset. For instance, specific humidity is obtained using dew point 

temperature etc. This happens before assimilating the observations. 

- it looks like you use the same word for actual observations i.e physical variables that 

are measured and "observations" in the modelling framework i.e. variables of which the 

model computes an equivalent for comparison. 

Throughout the paper, we intended to use ‘observations’ for physical variables that are 

measured, irrespective of whether they are assimilated or not. The variables computed 

by the model, to be compared with observations, are in vector H(x), we never intended 

to indicate the contents of this vector as observations. If we have done so otherwise by 

mistake, please let us know the line number so we can adapt it. 

-p.21 l.587: what are the "non-state parameters"? Put them in the table? 

The CLASS model has over 50 parameters, putting them all in a table will take a lot of 

space. The user decides on which parameters to include in the state and which ones not. 

-p.22 l.589: "the detailed settings on chosen model errors, etc" are crucial information, I 

think they should be put in the main text or at least in an appendix. 

We will add the error specifications to either the tables in main text (prior), or to 

appendix (the others) 

-p.22 l.591: 591-592: what about the uncertainties of the prior and posterior? Without 

them, "a much better fit" cannot be defined. Moreover, fitting the observations is not the 

reason why inversions are run. The aim is to reduce the uncertainty on the optimised 

parameters, which is not shown in the figures. 

For the prior, we did not include the uncertainty in Table 3, we will add that. For the 

posterior uncertainty, we would like to point to table 3 and figure 9. In the last column of 

table 3, we show the posterior standard deviation of every parameter. In Figure 9 we 

picked out 2 parameters and show the full posterior pdfs. In figures 5 and 6, we included 

the observational error standard deviations of the shown subset of observations. 

-p.22 l.594: what could be done about the non-optimal error specifications? Lacking 

information on the computing cost of the inversions, it is not possible to assess whether 

a number of error set-ups could be tested. 

Here, we mention non-optimal error specifications as a possible reason why chi-squared 

is slightly low. As common in inverse modelling, exactly estimating all uncertainties is a 

difficult task. Testing different error set-ups is possible on an HPC-cluster (the 

application example uses an ensemble of 174 perturbed members), but is not the focus 

of this application example. 

-p.22 l.595 - p.23 l.597: why are some observation streams different from the others 

with respects to the variance? 

This is about the ratio of model and observation variance. There are some observation 

streams were this ratio is far from 1, and the model thus does not reproduce the 

variance well (this is also not always desired, the observations are influenced by 

measurement errors). There is no reason why this ratio would always be the same 

among observation streams, the model can have more difficulties reproducing one 

observation stream then another. Further analysis would be needed to determine why 

some observation streams are fitted better than others, but this section is just an 

application example. 

-p.23 l.599-600: I don't understand the link between "the model also has a closed 

energy balance" and the "good fit". 

This is indeed not very clear, our reasoning is as follows:  



The energy balance equation is given by Eq 8 in the paper: residual = Rn – (H + LE + G) 

From figure 7 it is clear that (generally) the model, both prior and posterior, has a higher 

sum of H+LE than what the uncorrected observations show.  

The correction on the H and LE observations is based on measured net radiation (see eq 

8, 9 and 10). The sum of H+LE in the model is also based on net radiation, which the 

model calculates. Thus, if we assume that the difference between measured and 

modelled soil heat flux (G) will be small in absolute numbers, and we assume measured 

and modelled net radiation to be comparable, it would mean that the sum of H+LE in the 

model would correspond to the sum of H+LE in the corrected observations quite well 

(although there is usually also a small linearisation error in the model fluxes, making 

energy balance closure imperfect). This explains the link between the closed energy 

balance and the good fit. 

 

We now adapted the text to improve the clarity. 

-p.23 l.601-602: this sentence is not clear. 

We want to say here that the error in the energy balance in the measurements is 

relatively large,  by comparing the errors (LHS equation 8) to the measured sensible 

heat flux. The term ‘measured sensible heat flux’ is however slightly ambiguous because 

we ‘correct’ observations, so we added between brackets ‘without applying Eq. 9’. 

-p.23 l.603 - p.24 l.604: aren't there any data available to check the cumulus clouds or 

the drop in net radiation? 

We have adapted the text here, a colleague provided us with a MODIS satellite image, 

showing that high clouds are a more likely explanation. We also see a drop in incoming 

shortwave radiation around noon of that day: 

 
-p.24 l.608-609: is this assumption very limiting? 

We left out the sentences ‘Such a bias can be accounted for in the framework, by adding 

a scaling factor for the surface CO2 flux observations to the state. This however implies 

the assumption that the bias takes the form of a fixed fraction of the observed surface 

CO2 flux.’  

Regarding the question on whether this assumption is very limiting, this question cannot 

be readily answered by us, see e.g. Liu et al. (2006) and Deventer et al. (2021) for a 

discussion of CO2 flux biases. 

-p.25 l.614: "we shortly return to this later in this section": avoid this with a more 

explicit division in subsections? 

Thanks for this suggestion to improve readability. We have now divided the section 

about the application example into several subsections, and refer to the specific 

subsection. 

-p.26 l.627-628: this sentence calls for a discussion on the impacts of the 

misspecification of prior errors. 

This analysis is about correlations between posterior parameters. Concerning the 

importance of correctly specifying the prior errors: we think that this is a well-known 

problem in inversions. 

The impact of the prior in this example will be relatively modest, given that the nr of 

observations (multiplied with their respective weights) is about 10 times larger than the 

number of state parameters (although of course this also depends on the specified error 

variances). 



-p.26 l.630: what does "relatively strongly" mean? 

We have changed the sentence into “it can be noted that the advCO2 parameter is 

relatively strongly correlated with both the ΔCO2 and  

γCO2 parameters (Fig. 6: corr. = -0.65 and -0.8 respectively)” 

-p.26 l.632: what are these differences? 

This is about differences in how entrainment is handled. From the paper of Casso-

Torralba et al (2008): “Observations of thermodynamic variables and CO2 mixing ratio 

as well as vertical profiles of the turbulent fluxes are used to retrieve the contribution of 

the budget terms in the scalar conservation equation. On the basis of the daytime 

evolution of turbulent fluxes, we calculate the budget terms by assuming that turbulent 

fluxes follow a linear profile with height” 

 

Their estimate of advection we compare with (their Figure 9), is obtained as a residual 

budget term. The other terms in their budget are storage and flux divergence. The latter 

one includes entrainment, although they do not explicitly calculate it for Figure 9. 

 

In our case, the entrainment fluxes are calculated as follows: First, the buoyancy 

entrainment flux is taken as a fixed fraction of the surface flux of this quantity, to which 

entrainment driven by shear can optionally be added. From this virtual heat entrainment 

flux, an entrainment velocity is calculated. The entrainment flux for a specific scalar (e.g. 

CO2) is than obtained by multiplying the entrainment velocity with the size of the 

(inversion-layer) discontinuity for the respective scalar.  

-p.27 l.637: is 0.05 the average? 

Indeed, the text states “The average absolute value of difference between the non-

diagonal matrix entries when using the subsample and the non-diagonal matrix 

entries when using the full successful perturbed ensemble amounts to 0.05” 

 

To explain the text: This is about the differences in the correlation matrix when using the 

full successful perturbed ensemble compared to when using a subsample. We take the 

absolute value before averaging, otherwise positive and negative differences can 

compensate each other. We only look at non-diagonal entries of the matrix, since the 

correlations on the diagonal are always 1.  

-p.27 l.638: what does "reasonably robust" mean? 

It is difficult to exactly pinpoint the number of members needed to get a good estimate 

of the correlation matrix. But we showed here that, when using only 75 of the 150 

successful members, the non-diagonal matrix entries change on average by only 0.05 (in 

abs value), which is not a lot. This gives a certain level of confidence that 150 is enough, 

but hard to exactly quantify how much confidence. 

-p.27 l.642: is there is "no clear reduction in uncertainty", then the inversion was 

useless. It may not have failed mathematically but its results are not interesting as such. 

(The fail may be interesting to ask for more observations.) 

We partly agree with this statement. One could say that, for the γq parameter, the 

inversion was useless, as the posterior is about as uncertain as the prior. This is however 

just one parameter, in the example 14 parameters are optimised simultaneously, e.g. 

the advθ parameter in Figure 9 does show a clear reduction in uncertainty.  

-p.27 l.642 - p.28 l.643: this is not clear to me. 

The sentence reads “The wide posterior pdf implies that similar results can be obtained 

over a relatively wide range of γq, possibly by perturbing other parameters with a similar 

effect”. 

It is important to realize here how the posterior uncertainties were obtained. This was 

done by running an ensemble in which both the prior and the model-data mismatch was 

perturbed. This results in ensemble of posterior states, from which uncertainties were 

derived (using only members with post chi² <=2). 

 

A wide posterior pdf means that there was quite some spread in the posterior values of 

γq. Each posterior ensemble member obtaining a good chi² can be seen as providing a 

similar result (in terms of its fit). Thus, similar results can be obtained over quite a range 



of γq values. Next to that, as the correlation matrix has shown us, there are correlations 

among parameters, also involving γq. Thus, e.g. a large value of γq can be largely 

compensated by a small value of another parameter, explaining the last part of the 

sentence. 

-p.27 l.647-654: this should come sooner in the text. 

We will mention this earlier in the application example, in a separate subsection. 

Tables 1 and 3: what about the convergence criteria? What about the uncertainties (prior 

and posterior)? 

Table 1 is about the simple OSSEs. Prior uncertainties were not used here, and posterior 

uncertainties not calculated (we did not run an ensemble), as the focus was on the 

capacity to obtain good parameter estimates. 

We will add the prior uncertainty to Table 3 (the application example), the posterior 

uncertainty is already included (column Post. st. dev.) 

 

Regarding convergence criteria, this is rather complex: There are multiple ways in which 

the optimisation can come to a stop. The SciPy algorithm optimize.fmin_tnc can consider 

an optimisation as converged (we use the default tolerances, see 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_tnc.html).  

The ICLASS user can however specify a desired threshold of the cost function. In case 

the optimize.fmin_tnc considers an optimisation as converged and the threshold is not 

yet reached, the optimize.fmin_tnc algorithm will then be restarted from the best state 

so far, the maximum number of times a restart will be performed is also given by the 

user.  

It can also happen that a maximum number of function evaluations is reached within the 

optimize.fmin_tnc algorithm, before an optimisation is considered as converged by the 

algorithm.  

In case an optimisation shows very little change in the cost function over a certain 

number of iterations, the optimize.fmin_tnc algorithm can be terminated (depending on 

a setting) and possibly restarted (criteria as above). 

A model crash can also lead to an early termination, in this case no restart is attempted. 

The user can control the convergence criteria of the optimization to a certain extent, 

through settings in the standard tnc routines and by specifying an optional desired cost 

function threshold and the maximum number of restarts. 

Table 2: how much are the sensible and latent heat flux observations corrected? 

Here we would like to refer to Figure 7, which shows the original and corrected 

observations. 

Figures 4,5 and 6,7: what about the uncertainties? 

The observational error and measurement error standard deviations are shown with 

error bars in these figures (for Figure 4 measurement errors equal observational errors). 

For the application example we also estimate posterior uncertainties on the optimised 

parameters using a Monte-Carlo approach, shown in table 3 and (for some params) in 

Figure 9. The uncertainty in the state parameters leads to an uncertainty in model 

output, but this is not readily available in ICLASS. In principle, one could run the model 

using the obtained posterior parameter values of a successful ensemble member, and 

repeat this for all successful ensemble members. From this ensemble of model output, 

uncertainty estimates on the model output could be made.  

Figure 9: what about the Gaussian assumption? 

We only assume the prior to be a (truncated) Gaussian, we do not make any 

assumptions on the shape of the posterior pdfs (nonlinear model), except that we place 

hard outer bounds on some parameters. Regarding the prior, note that the prior 

distribution is determined from the sample of priors in the ensemble, which has a 

component of randomness. This explains why the prior pdfs do not have a perfect 

(truncated) Gaussian shape. 

Concluding discussion 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_tnc.html


-p.28 l.657-658: general theory of inversions. 

Indeed rather general, but in our opinion it is useful to indicate these 

advantages/limitations of the framework, especially for those less familiar with inverse 

modelling.  

-p.28 l.659: what could the more advanced error estimation methods be? 

For instance, the measurement error could be more based on instrument errors 

belonging to the used devices and representation error could take spatial variability in 

measurements into account. For e.g. CO2 mixing ratio errors, the residual 

standard deviation of flask samples around a smooth curve fit could be used (Michalak et 

al., 2005). Model error variance estimations might possibly be obtained from analysing 

the model behaviour compared to precise observations in specific situations, but in 

practice this might prove very hard. In literature, more methods can be found; e.g. 

Michalak et al., 2005. 

-p.30 l.679-680: the correction of biases is a very complex topic. It is often done outside 

the inversion framework. a bias correction scheme such as tested here probably cannot 

be expected to deal completely with the issue. 

We fully agree with this statement, the bias correction scheme is useful but cannot 

correct for all possible complex bias patterns. We have added the following to the 

concluding discussion: “The correction of biases is however a very complex topic. There 

are limitations to the level of complexity that our scheme can handle, ICLASS cannot be 

expected to deal completely with all bias issues.” 

- please add information on the computation costs. 

The section on the computation costs in the application example will be extended, it is 

also turned into a separate subsection. 

Technical comments: 

-p.3 l.76 and others: why is the term "adjoint" in italics? 

We removed the italics at line 76, we now only keep the very first occurrence of adjoint 

in the introduction in italics, for emphasis. 

-p.6 l.156: what are the (-)? Also found elsewhere. 

Between brackets we indicate the units of the variable, in this case the variable is 

dimensionless. In the latex source code we wrote (\unit{-}) 

-p.16 l.436: "similar to" instead of "similar as"? 

We have adapted the sentence 
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Reply to reviewer 3 
 

Introduction and bibliography 

The introduction is not well-balanced and lacks pieces of bibliography. The reader would expect 

an extensive "review" of what has been done in parameter estimation in land-atmosphere 

exchanges, and not only with simple models. For instance, there 

has been some work on parameter estimations with full-physics models, such as ORCHIDEE or 

JS-BACH. The advantages vs drawbacks of simple models such as CLASS, compared to full-

physics models should be more thoroughly presented. The scientific "ecosystem" of the present 

study should be better presented. There is a full field of studies using data assimilation, 

machine learning, etc. 

To place the variational framework of this paper in comparison with other efforts in the scientific 

community, we now added a paragraph linking parameter estimation in land-surface models in 

other studies with ICLASS. We briefly discuss advantages/disadvantages of CLASS vs models 

with more complex physics. An important point we make is that the fully coupled land-

atmosphere in ICLASS helps to infer land surface characteristics from atmospheric observations, 

something that is often not the focus of other variational frameworks.  

The balance between giving only hints or extensive details is also clumpsy. For instance, in 

paragraph p.2 l. 34-48, the authors start giving information on the model itself compared to other 

models, but without going to the details. What is an "extensive set of observations"? What 

observations are better used than other models? 

About this example: CLASS has both a land-surface representation and a mixed-layer 

representation, which is an advantage compared to other uncoupled models. This also means 

that it can use information from a variety of observation types, as CLASS models both fluxes and 

mixing ratios. We cannot list all possible obs types here, but think of temperatures at multiple 

heights, humidity at multiple heights, CO2 mixing ratios, heat fluxes and CO2 fluxes, … We have 

changed the text into “A model like CLASS, containing both a mixed-layer and land-surface part, 

can be used to fit an extensive set of observation streams simultaneously.” We are not claiming 

that CLASS uses observations in a better way than other models would do, but we indicate that 

many studies only use a small part of the available observations. The example study we refer to 

applies CLASS without an inverse modelling framework, which makes it difficult to include a lot of 

observation types. 

 

 

Energy balance and conditions of applicability of CLASS 

The CLASS model is a simplified model with all its benefits and drawbacks. In particular, what are 

the conditions of applicability of CLASS? The authors mention "golden days" several times in the 

text. What are these? How frequent are they? If there is only a few such days per year, the model 

is not really suitable for purpose... 



About the energy balance and further assumptions, it is not fully clear what is the domain of 

applicability of such assumptions. In particular, the advection and entrainment in the model are 

extremely simplified. What values and variables are used to constrain the processes? 

At line 32 we define golden days: “Those are days in which advection is either absent or uniform in 
time and space, deep convection is absent, and sufficient incoming shortwave radiation heats the 
surface allowing for the formation of a prototypical convective boundary layer.” 
 
We understand that this raises questions about the frequency of these days etc. We therefore added 
the following: “The model performs best during the convective daytime period, the assumptions on 
advection etc. should be valid for the whole modelled period. Since the model performs best on fair-
weather days, the absence of deep convection etc. should ideally hold on a spatial scale large 
enough that it does not influence the model simulation location. In practice, days are often not ‘ideal’, 
e.g. a time-varying advection can be present. This does not necessarily mean the model cannot be 
applied to that day, but, performance is likely to 
be worse.”  
 
We want to stress also that it is not our intention to provide a complete detailed description of the 
CLASS model itself, we already included about 1 page of info on CLASS itself in the paper. CLASS is 
an existing model, successfully used in several studies. For details about the model, we refer to Vilà-
Guerau De Arellano et al. (2015). In the introduction, we also include the following text “This and 
similar models have been applied frequently, e.g. for understanding the daily cycle of 
evapotranspiration (van Heerwaarden et al., 2010), studying the effects of aerosols on boundary layer 
dynamics (Barbaro et al., 2014), studying the effects of elevated CO2 on boundary layer clouds (Vilà-
Guerau De Arellano et al., 2012) or for studying the ammonia budget (Schulte et al., 2021).”.  
 
See also https://classmodel.github.io/publications.html. There has also been a 2019 GMD paper 
employing (an adapted version of) CLASS: (Wouters et al., 2019, https://doi.org/10.5194/gmd-12-
2139-2019) 
 

Regarding the question “In particular, the advection and entrainment in the model are extremely 

simplified. What values and variables are used to constrain the processes?”: 

 
Advection is indeed represented in the model in a simple way. Advection of e.g. temperature is given 
by a single parameter. To constrain this parameter, traditionally the model is tuned by hand to 
available observations such as temperature and possibly mixed layer height. This is where ICLASS  
offers a great improvement, as it allows to more objectively use all the available observations to 
optimise this parameter.  
 
Regarding entrainment, there was a mistake in the text, we now write:  
“Above the mixed layer a discontinuity occurs in the scalar quantities, representing an infinitely small 
inversion layer. Above the inversion, the scalars are assumed to follow a linear profile with height in 
the free troposphere (Fig. 1). The entrainment fluxes are calculated as follows: First, the buoyancy 
entrainment flux is taken as a fixed fraction of the surface flux of this quantity (Stull, 1988, p 478), to 
which entrainment driven by shear can optionally be added. From this virtual heat entrainment 
flux, an entrainment velocity is calculated. The entrainment flux for a specific scalar (e.g. CO2) is than 
obtained by multiplying the entrainment velocity with the size of the (inversion-layer) discontinuity for 
the respective scalar.” 
 

 

Section 3.1 and mathematical notations 

Please make your mathematical notations consistent with the rest of the community. 

https://classmodel.github.io/publications.html


 
Different communities prefer different notation. We based our notation on Brasseur and 

Jacob (2017), and their notation is to a large extent based on Rodgers (2000). 

 

The components of the state vector are described in section 3.2, there is also a table 

added now describing all inverse-modelling variables included in chapter 3, including 

those relating to the state vector. There are more than 50 parameters that can be 

optimised, we cannot list them all in the paper, this is done in the manual. Choosing 

which parameter to optimise and which ones to keep fixed (and thus what is in the 

state) is eventually up to the user, this varies with the study to be performed with 

ICLASS. 
 

Overall, Section 3.1 is very hard to understand. It is not clear at all what is optimized or not.  

In section 3.2 we give an overview of the types of parameters that can be optimised in ICLASS, 

thereby splitting the state vector into a bias-correction part and a model parameter part. There 

are more than 50 parameters that can be optimised, we cannot list them all in the paper, this is 

done in the manual. Choosing which parameter to optimise and which ones to keep fixed is 

eventually up to the user, this varies with the study to be performed with ICLASS. 

The section gives some general information about the inversion framework, but does not go to 

the necessary level of details about what exactly is in each mentioned vectors and operators. The 

dimension and content of all operators and matrices should be detailed. 

We now added a long table in the appendix that list the dimensions, units and a short description 

of most variables of this chapter. We try to describe the vectors in the main text as well where 

they are introduced. 

The weights on observations or "regularization factors" are clumsy and not justified. If one 

observation is less worthy than another, then the uncertainty should just be scaled up, with no 

need for an extra complicated parameter. 

Indeed identical changes can be made to the cost function by adapting weights or changing the 

observational error variances.  However, the observational error standard deviations are also used 

in the ensemble for estimating posterior errors (see section 5.2). When the observational errors 

are no longer realistic due to inflating/deflating these errors, the observations are not properly 

perturbed anymore. This problem is avoided when using weights. The latter can be used, for 

example, when you have 15 temperature observation streams, but only one CO2 observation 

stream. In this case adding a weight of 1/15 to the temperature observation streams can make 

the observation streams more balanced, while keeping a realistic error for the observations. We 

have added an additional sentence to the text of the paper: “In principle, the observational error 

variances could also be adapted for this purpose, but by using weights we can keep realistic error 

estimations (important for Sect. 5.2).” 



Equation (6) is too implicit. The author should fully detail the "background" term, including what 

they optimize or not. 

Equation 6 gives the cost function as used in ICLASS. The first term of this equation is the 

background term, wherein vector x is the state, containing the variables to be optimised (and xA is 

the prior state). In section 3.2 we give an overview of the types of parameters that can be 

optimised in ICLASS, thereby splitting the state vector into a bias-correction part and a model 

parameter part. There are more than 50 parameters that can be optimised, we cannot list them all 

in the paper, this is done in the manual. Choosing which parameter to optimise and which ones to 

keep fixed is eventually up to the user, this varies with the study to be performed with ICLASS. 

Similarly, for the a-priori error covariance matrix SA, the user chooses the variances/covariances, 

and the size of this matrix varies with the chosen state vector size.  

 

Uncertainties and OSSEs 

Please provide extensive details on the uncertainties you specify for the inputs and parameters 

and some justification for the corresponding uncertainties. In particular, for parameters, the 

normal distributions are not necessary the most obvious choice. This should be justified and 

detailed. 

The tests are indeed basic, they were intended to show the capacity to fit observations and find 

good parameter values, not to test the statistics. The prior information is not used in these simple 

OSSEs, thus the prior uncertainty is irrelevant in these simple tests. We will add an OSSE 

focusing more on statistics, were we will provide the uncertainties. The employed observational 

error standard deviations for the OSSE with perturbed observations is shown in Figure 4, and we 

added these now in a table as well. Note that the form of the cost function does not allow for 

using e.g. uniform priors. However, as is mentioned in section 5.1, it is possible to perturb 

parameters that are not part of the state, using a "normal", "bounded normal", "uniform" or 

"triangular" distribution. 

The OSSEs are rather simple and do not fully allow to validate the model. More OSSEs should be 

made more systematically to show what is the influence of a given parameter in a given set-up. 

The author can perturb a parameter but not optimize it, etc. 

Since the forward model CLASS is an existing model, successfully used in other studies, we do 

not intend to validate the CLASS model itself, or test its sensitivities to parameter values. The 

OSSEs are rather intended to focus on the parameter optimisation framework. But the OSSEs are 

indeed rather basic, and we will add a more involved OSSE, taking also posterior uncertainties 

and bias correction into account. 

Besides, I may have missed the information, but I have the impression that the bias correction is 

not evaluated in the OSSEs. This should be added. 

The bias correction was indeed missing (although the bias-correction was to some extent tested 

in the application example), we will add an OSSE that tests the bias correction. 

Regarding the posterior uncertainties, having truncated Normal distributions means that the 

minimum of the cost function is the node of the posterior distribution, which is not the mean or 



median, contrary to full normal distributions. Therefore, the authors should give further details on 

how the compute and analyze posterior distributions. 

We only assume the prior to be a (truncated) Gaussian, we do not make any assumptions on the 

shape of the posterior pdfs (nonlinear model), except that we place hard outer bounds on some 

parameters. We use a Monte Carlo technique to sample the posterior pdfs, see section 5.2 and 

Fig. 9. We have slightly adapted section 5.2 to make this more clear. 

Details on the model 

There is critical information missing about the CLASS and iCLASS models. Some of this 

information is given in the documentation of iCLASS, but not comprehensively. The reader cannot 

be expected to read the non-reviewed documentation to understand the article and how the 

adjoint is built. In particular, there should be full details on the inputs and parameters of the 

CLASS models. What are the resolutions of each inputs? Where do they come from? Are they 

given by in-situ measurements? Meteorological forcing fields? 

Similarly, what are the exact outputs of the model? How the output is compared to observations. 

Finally, what is computed by the model? And what is given as inputs? 

We understand that, without background knowledge on CLASS, these questions arise. However, as 
mentioned earlier in this document, CLASS is an existing model, successfully used in several studies, 
although we made some changes to the model (listed in the manual). We give about 1 page of 
information on the model itself in the paper, for details about the model itself, we refer to Vilà-Guerau 
De Arellano et al. (2015). In the introduction, we also include the following text “This and similar 
models have been applied frequently, e.g. for understanding the daily cycle of evapotranspiration (van 
Heerwaarden et al., 2010), studying the effects of aerosols on boundary layer dynamics (Barbaro et 
al., 2014), studying the effects of elevated CO2 on boundary layer clouds (Vilà-Guerau De Arellano et 
al., 2012) or for studying the ammonia budget (Schulte et al., 2021).”.  
 

CLASS requires a set of input parameters to be chosen, e.g. free-tropospheric lapse rates of 
temperature, specific humidity, initial CO2 mixing ratio in mixed layer, but also land-surface-model 
parameters such as roughness length for momentum, leaf area index, and initial soil moisture 
content of top layer. Where the user obtains these inputs from is up to the user, this does not 
matter for ICLASS itself. The inputs can come from in-situ measurements, but e.g. reanalysis data 
might also be used. Note that the model is a slab model, it has no horizontal resolution, this 
simplifies the required inputs. The full list of input variables that can be included in the state is given 
in the ICLASS manual, the list is too long to include in the main text. We give a few examples of input 
parameters in section 3.1 and section 3.2. 
 
We do not transform any model output into observation space, we directly compare the model 
output to observations. With the in-situ observations we used in the application example this was 
well possible, in case the user uses different observation types, he/she should take care to perhaps 
make the observations suitable for comparison to the model output. 
Model output includes time-series of mixed-layer potential temperature, specific humidity, CO2 
mixing ratio,…, but also heat fluxes, CO2 fluxes, Inversion strength,… The full list of output variables 
that can be compared to observations is given in the manual, it is too long to give in the main text. 
We give one example in section 3.1. 

 

 
6 Superfluous sections and elements 

The text is made hard to follow by numerous superfluous details. 

For instance, section 4 is mainly made of a technical lecture on how to code an adjoint. This can 

be removed altogether. 



In response to this valid comment, and a similar comment from another reviewer, section 4 is 

moved to the supplementary material. 

 

Technical comments 

1. p.1 l.9: replace "the core physics to model" by "the core physics to simulate" 

Adapted 

2. p.3 l.63: The example is rather a negative feedback but not an obvious non-linearity. There are 

probably better examples. 

The example itself is indeed a negative feedback. A negative feedback can only occur in a non-

linear model, proving the non-linearity.  We tried to make the non-linearity more clear now in the 

text: “An important challenge for the optimisation framework is the strong non-linearity of the 

model. As an example, the change in mixed-layer specific humidity (q) with time is a function of q 

itself: a stronger evapotranspiration flux leads to an increased specific humidity in the mixed 

layer, which in turn reduces the evapotranspiration flux again (van Heerwaarden et al., 2009).”  

Another example we could think of is e.g. CO2 uptake being a non-linear function of incoming 

radiation. 

3. p.3 l.66: "Analytical" is ill-chosen and refers to analytical inversions in the inversion framework. 

The adjoint is simply needed to compute explicitly and efficiently the gradient of the cost 

function, without relying on, e.g., finite-element estimations 

We understand the confusion with ‘analytical inversions’, we however talk about an analytical 

gradient of the cost function, not an analytical solution to the minimisation problem. The adjoint 

is a tool that helps us obtain an analytical gradient of the cost function. In our view, the two 

classes of methods for computing a gradient of any function is either ‘analytically’ or 

‘numerically’, i.e. involving finite differences. The term ‘analytical gradient’ is also used in Raoult 

et al. (2016), see also Doicu et al. (2010).  

4. Section 8: the validation of the adjoint using the gradient test and the test of the adjoint is 

really appreciated! The results of the test of the adjoint is generally reported as a N times the 

machine epsilon (1016 in present machines) 

We have updated the sentence: “When we evaluated Eq. (30) on this part of the code, the result 

was less than 1 × 10−15 (which corresponds to 10 × machine precision), meaning that the test 

passes” 

5. p.15 eq.20: xA is modified in the Monte Carlo. 

Thanks for spotting this, we had not indicated this in the equation. We replaced xA now with  

, the p indicating perturbed. 

6. p.15 eq.22:  formula is wrong for two reasons. First the chi-square diagnostics can be applied 

only with normal distributions. Truncated-Gaussians break the diagnostics; but for not so 

truncated Gaussians, it may still be valid. 

We indeed allow truncated Gaussians distributions for the prior parameters. In some cases this 

might indeed have a significant impact on the validity of the calculated Χ²r, we have added the 

following text to the paper: “Furthermore, as mentioned in Sect. 5.1, prior parameters can follow a 



truncated normal distribution, violating the normality assumption. The impact of this depends on 

the degree of truncation, but also on the number of observations etc. It can lead to an ideal χ2r 

value diverting from 1.” 

Note that we call the variable the reduced chi-squared statistic now. 

Second, the authors mixed two versions of the chi-square diagnostics: one from, e.g., from 

Michalak et al. 2005 (doi:10.1029/2005JD005970), the other from, e.g., Zupanski et al. 2006 

(https://doi.org/10.1175/MWR3125.1). In one version the chi-square has a mean of n (nb obs) 

and in the other n+m (nb obs + parameters). As written in eq.22, the expected mean is n, or the 

authors compute the other version, but should explain more clearly what is done. 

It is optional to include a background part of the cost function, usually the background part is 

included, but e.g. in the simple OSSEs it was not. When the background part is included in the 

cost function, we expect a posterior cost function of size (approximately) n+m (see **), if it is not 

included we expect a posterior cost function of size (approximately) m. Therefore, as in both 

cases we want an optimal value of 1 for Χ²r, the denominator in eq 22 is taken as n+m when the 

background part is included, and m if it is not included, as mentioned in the paper. 

The expected value of m+n for a cost function with background part included corresponds to the 

case described in paragraph 20 of Michalak et al (2005).: “the residuals are expected to follow 

the statistical distributions specified in the covariance matrices R and Q.”  

 

**Our reasoning is given here. In a simple case where all weights are 1 and the prior errors are 

uncorrelated, the posterior cost function of size n+m can be understood as follows: The average 

value of the ith posterior observation residual squared, (H(xm,post,p)i - si yi)², should be close to σ²O,I, 

and the average value of the ith posterior data residual squared, (xpost,i - xA,i)², should be close to 

the ith diagonal element of the a-priori error covariance matrix when the optimisation converges 

well and errors and prior parameters are properly specified. We have m observation residuals, and 

n data residuals (if background part included). In this example with a diagonal SA matrix, the 

residuals are assumed to be independent of each other. Each squared residual contributes on 

average a value of approximately 1 to the cost function, summing to approximately m+n, and thus 

Χ²r ≈ 1. If e.g. we have 15 uncorrelated parameters and all posterior parameters would deviate a 

lot more then σA from the prior, the prior parameters and/or errors are very likely not properly 

specified. This can be understood from the following: The prior distribution specifies that the true 

value of a parameter xi  (which is approximated by the posterior value) should in approx. 68% of 

the cases be located at xA,i +/- σA,i (normal distribution, although truncated normal distributions 

might deviate from this), if e.g. all 15 parameters are outside this range, there is a very unlikely 

situation. 

We have added more explanation to the text in the paper. 

 

 

 



References 
Brasseur, G. and Jacob, D.: Inverse Modeling for Atmospheric Chemistry, in: Modeling of Atmospheric 

Chemistry, pp. 487–537, Cambridge 

University Press, Cambridge, https://doi.org/10.1017/9781316544754.012, 2017. 

Doicu, A., Trautmann, T., and Schreier, F.: Numerical Regularization for Atmospheric Inverse Problems, 

Springer Praxis Books in environmentral sciences, https://doi.org/10.1007/978-3-642-05439-6, 2010. 

Michalak, A. M., Hirsch, A., Bruhwiler, L., Gurney, K. R., Peters, W., and Tans, P. P. (2005), Maximum 

likelihood estimation of covariance parameters for Bayesian atmospheric trace gas surface flux inversions, J. 

Geophys. Res., 110, D24107, doi:10.1029/2005JD005970. 

 

Raoult, N. M., Jupp, T. E., Cox, P. M., and Luke, C. M.: Land-surface parameter optimisation using data 

assimilation techniques: The adJULES system V1.0, Geoscientific Model Development, 9, 2833–2852, 

https://doi.org/10.5194/gmd-9-2833-2016, 2016. 

Rodgers C. D. (2000) Inverse Methods for Atmospheric Sounding, World Sci., 

Tokyo. 

 

Stull, R. B.: An introduction to boundary layer meteorology, Kluwer Academic Publishers, Dordrecht, 1988. 

van Heerwaarden, C. C., Vilà-Guerau de Arellano, J., Moene, A. F., and Holtslag, A. A. M.: Interactions 

between dry-air entrainment, surface evaporation and convective boundary-layer development, Quarterly 

Journal of the Royal Meteorological Society, 135, 1277–1291, 

https://doi.org/10.1002/qj.431, 2009. 

 

Vilà-Guerau De Arellano, J., Van Heerwaarden, C. C., Van Stratum, B. J., and Van Den Dries, K.: Atmospheric 

boundary layer: Integrating air chemistry and land interactions, Cambridge University Press, 

https://doi.org/10.1017/CBO9781316117422, 2015. 

 

Wouters, H., Petrova, I. Y., van Heerwaarden, C. C., Vilà-Guerau de Arellano, J., Teuling, A. J., Meulenberg, V., 

Santanello, J. A., and Miralles, D. G.: Atmospheric boundary layer dynamics from balloon soundings 

worldwide: CLASS4GL v1.0, Geoscientific Model Development, 

12, 2139–2153, https://doi.org/10.5194/gmd-12-2139-2019, 2019. 

 


