
Responses to Reviewer Fabien Gillet-Chaulet 

 

We thank the reviewer for their constructive review. We agree with the majority of the suggestions and 
appreciate all the comments raised. We believe the comments can be addressed in revision by including: 

a. A complete clarification and review of the numerical model used and its underlying assumptions, 
including its place in the hierarchy of complexity for fabric evolution models. We agree with the 
reviewer and comments by reviewer Montagnat that the discussion between Faria (2008) and 

Gagliardini (2008) can be clarified here. Finally, we will be more explicit in the text to clarify that 
the model presented here is a fabric evolution model only; consequently, it is not set-up, nor are 
we seeking within the scope of the present work, to solve a coupled full-Stokes system. We do 
agree that such a model including a coupled Stokes system would be a good next step, hence we 
are happy to add in the discussion a future perspective of how this can be done. 

b. Clarification that the discussion of vorticity numbers derived from two-dimensional strain rates in 

Fig. 1 was primarily intended to motivate the basic need to look beyond the limiting endmembers 
of simple shear and compression. We are not suggesting there is a direct link between the 
predicted 2D fabrics and these regions, and appreciate that the motivation to show Fig. 1 was not 
made sufficiently clear in the original submission. As correctly noted by the referee, there is the 
potential for significant three-dimensional deformations. We admit that the previous version did 

not clarify this sufficiently. As stated in our reply to reviewer Montagnat, we aim to use this figure 
primarily as a motivation for exploring deformations away from pure and simple shear, and 2D 
deformations are a logical first step away from this. Furthermore, following a comment here we 
realise that a clearer motivation for our 2D analysis arises from considering a vertical cross-section 
(in the (x,z) plane) of an ice sheet, for which simulations are often performed. This would 
encompass regions involving pure shear and simple shear and all intermediate cases between 

these endmembers (as noted by the reviewer), which will arise through the depth of the ice sheet. 
Again, not all regions of the ice sheet will conform to this regime precisely due to the presence of 
horizontal deformations, but the case of 2D deformations we consider provides a necessary first 
step for the systematic documentation of fabrics, which we would like to emphasise in revision. 

This paper present an application of specCAF, a numerical model of fabric development based on a 

continuum theory by Faria and Placidi, and described in Richards et al. (2021). Compared to previous 
works on ice fabric evolution, this paper discuss the fabric patterns obtained for a wide range of vorticity 
numbers, including highly rotational flows, using synthetical 2D experiments. To justify this approach, the 
authors have computed the vorticity number from observed horizontal surface velocities in Antarctica. 

They obtain big (>1) vorticity numbers in large portions of the ice -shelves with curved stream lines, and 

a conclusion of the paper is that in such regime the fabric should remain nearly isotropic. 

We remark that the surface vorticity number from Antarctica is merely intended as an illustrative 

example. For any complex flow field ice will experience deformations away from pure shear and simple 

shear. The presented work acts as a first and currently unexplored step towards deformations away 

from these endmember flow regimes, and as a first step we limit the analysis to 2D. In revisions, the 

later will be made explicit. 



As mentioned in our reply to Reviewer Montagnat, we seek to correct the statement that curved 
streamlines necessarily lead to vorticity numbers >1. However, according to our analysis vorticity numbers 
>1 should lead to a weak fabric.  

My main comment, is that I remain very sceptical about this conclusion and the interpretations of the 
results for fabrics in natural flow. The authors claim that most previous studies have focused on pure and 
simple shear, this is true, but they forgot to mention that the justification is that something between pure 
shear and uni-axial compression in the « vertical « direction is supposed to dominate in the upper ice 
layers while simple shear (parallel to the bed) is supposed to dominate in the lowest layers, at least in the 
central parts of the ice sheets where ice cores have been drilled and direct fabric observations are 
available. 

We agree and, on reading this (and a similar comment received from reviewer Montagnat), appreciate 
that we – in the initial submission – failed to be sufficiently clear about the purpose of Fig. 1. It is used for 
motivating the analysis from first order observations. Indeed, vertical strain likely applies widely due to 
thickness variation of the ice sheet, and shear will indeed apply (particularly the lower 50%) of central 
parts of the ice sheet (with no slip at the base), and hence the direct application of fabric predictions in 
2D cannot be attributed directly to these regions, at least without further quantification of the role of 
three-dimensional deformations. 

Our intention with Fig. 1 was only to provide a basic quantitative indication of the diversity of deformation 
styles in natural ice flows beyond the idealised situations of simple shear and compression (whether two-
dimensional or three-dimensional) on which experimental analysis has focused to date. It was not our 
primary intention to attribute the fabrics arising from two-dimensional deformations directly to these 
regions. The essential indication of the diversity of deformation styles is nonetheless helpful to motivate 
the study, particularly, we believe, for the benefit of highlighting the limitations of current experiments. 
We will address this in revision. As remarked above, our results here provide a first step towards 
documenting the full range of fabrics that can apply, since (for example) pure shear in the vertical can be 
included with just one additional parameter alongside the horizontal vorticity number W. Given that the 
exploration of 2D fabrics is already highly rich, it is sensible to retain the scope of 2D deformation alone 
for one paper before this additional complication is added. 

That said, it is still interesting to discuss where two-dimensional deformations may apply to good 
approximation in the case of natural ice flows. As highlighted by the referee, we would expect, for 
example, that in approximately horizontally one-dimensional ice sheet flow, the vertical cross-section of 
the flow will experience a spectrum bridging simple shear at the base and pure shear near the surface. 
Indeed, this spectrum corresponds directly to the range of deformations we explore in this paper. In this 
case, horizontal deformations would affect this profile, and more work would be needed to address these 
more complex situations. Nonetheless, the motivation based on deformations experienced in the vertical 
plane is straightforward, and we would like to include it in revision with appropriate explanation of 
caveats; we are grateful to the reviewer for highlighting it here. 

As an incidental point, we also remark that in a vertical cross-section of a horizontally one-dimensional 
flow, the relevant endmember for pure shear is the two-dimensional (confined) version that we report 
here, not uniaxial (radially symmetric) compression, the latter being the focus of experiments of 
compressed or extended cylindrical samples of ice. In fact, the fabrics produced in confined (two-

dimensional) compression differ significantly from those in uniaxial compression, and it is the two-
dimensional form included in our analysis here that is the one which is the most relevant endmember to 
discuss in the context above. Uniaxial compression by contrast requires radial spreading of a compressed 



cylinder of ice. This situation does not readily correspond to anything in natural ice flows (perhaps flow at 
the centre of an ice dome would be one, very rare, instance of this). We will clarify this important point in 
a revised manuscript, giving yet further motivation for our work. 

 It’s not clear from section 2.2 how the spin and strain – rate tensors are computed for the observed 
Antarctic horizontal surface velocities? It is assuming plane strain in the horizontal plane? I don’t think 
that an horizontal 2D plane strain would be a good approximation of the natural conditions in ice shelves. 
I still would expect to have a compression component in the vertical direction, so the interpretation of 
the results presented here in term of fabrics in natural conditions need better justifications. 

We certainly agree with the referee. In this section it was not our intention to assert that the surface 
velocities represent the full deformation field, but merely to illustrate that two-dimensional vorticity 
numbers away from 0 and 1 (including >1) derived from horizontal velocity fields alone motivates analysis 
of fabrics beyond those that have been analysed from existing laboratory configurations. As noted above, 
a one-dimensionally flowing ice shelf would indeed involve a pure shear flow in the vertical along-flow 
(flow line) cross-section (x,z). In such a case the vertical compression is equal in magnitude to the 
horizontal extension (by incompressibility). Although we had not mentioned it previously, this range of 
two-dimensional deformations arising in the vertical cross-section of a horizontally one-dimensional ice 
flow (in both central and floating regions of the ice sheet) will generally involve pure shear in the vertical 
cross-section, simple shear near the base, and a mixture of pure shear and simple shear elsewhere; these 
are precisely  the regimes and spectrum of deformations we have studied. As noted above, this is a further 
and potentially clearer and more straightforward motivation for our analysis of two-dimensional fabrics 
than the illustration of horizontal surface deformations alone. Hence, we aim to include the 
aforementioned arguments/reasoning in the revisions.  

In the late 1990 and early 2000 it was recognized in the geological community that flow in rocks cannot 
be approximated by endmember plane strain flow models alone. There is now an extensive literature 
within structural geology which developed conceptual models and analytical techniques to predict and 
recognize natural flow with vorticities between 0 and 1. In contrast, in the ice flow community, such 
analysis is not yet common place – here pure shear and simple shear has dominated discussions for both 
flow and fabric development models/interpretations. This may be mainly due to the fact that such 

endmember scenarios are a) experimentally straightforward to achieve and are the only experiments in 

the literature so far and, b) the two endmembers can – as a first approximation - be associated with 

different "ice flow scenarios”. In the revisions, we suggest to include a short review of the geological 

vorticity literature. 

I read the comments from the other reviewers and the author responses. The debate between Gagliardini 
and Faria has not really been clarified and I think that this papers could be a good opportunity to clarify 
the assumptions behind the continuum approach and how it compares with homogenisation models. Two 
points seems to require clarifications. 

We agree with the reviewer that our paper provides a nice opportunity to clarify the assumptions behind 
continuum modelling of fabrics, particularly the relationship between the model and those for single 
crystals, and its relationship to the process of homogenisation (we elaborate below).  

First, the classical approach in ice flows model is to solve the Stokes equations (or some shallow 
approximations) for a given flow law, i.e. a relation between the macroscopic strain-rates and stresses, 
that are then solution of the problem. It is not clear here how such a relation could be obtained from 

specCAF. Faria (2006a,b) gives some homogenisation rules to compute the macroscopic stresses, but it 
seems that is has never really been used. Instead Seddik and others (2008, 2011), using the CAFFE model, 



parameterized an « enhencement » factor as a function of the polycrystal deformability that depends on 
the fabric. Using the same argument as for the strain rates, i.e. the volume contains an infinitely large 
number of grains, Seddik and others (2008) claim that the stress tensor do not depend on the orientation. 
So it is not clear, (i) how both the stresses and strain -rates at the level of the species (i.e. using Faria’s 
terminology in is reply to Gagliardini) can be equal to the macroscopic equivalent, but still with a viscosity 
tensor that would depend on the orientation, and (ii) if the macroscopic stresses computed this way would 
be solution of the continuum model, i.e. the balance equations that are derived in Faria’s papers? 

The model considered here is for fabric evolution only for given deformations, which (for this purpose) 
does not require coupling to a flow model. While not the focus of the present paper, we nonetheless 
agree with the reviewer that methods for coupling SpecCAF with an anisotropic viscosity, to simulate the 
coupled fabric/full Stokes flow, are worth discussing, and we would like to do this in revision. We 
nonetheless emphasise that we are concerned here only with fabric evolution, and the details of this 
discussion, while worth discussing, do not concern the results of the present paper where the focus is on 
predicting fabric evolution under different specified strain fields per se, not its coupling to ice flow. 

Second, an anisotropic model must be able to describe how the fabric evolves. Here, the model includes 

several processes, including rotation of the ice crystals due to basal-slip deformation. The equation used 

to take into account this effect (Eq. 5) at the scale of the species in the continuum approach, is based on 

equations that have been derived for single crystals. According to the description of their model (Richards 

et al., 2021) : « If this equation is applied to an individual grain, it describes the c-axis rotation rate (Gödert 

and Hutter, 1998; Svendsen and Hutter, 1996) under the Taylor hypothesis (neglecting grain-grain 

interactions). However, since we are using a continuum model that assumes a large number of grains 

within any solid angle of orientation, any grain-grain interactions are smeared-out (Faria et al., 2008). In 

this continuum model, we do not therefore require the Taylor hypothesis. », From that I understand that 

the continuum approach would give a fabric evolution similar to an homogenisation model that uses the 

Taylor hypothesis? So maybe, strictly speaking the continuum model do not use the Taylor hypothesis 

because it does not have grains, but at the end the equations that are used for the species (i.e. the 

orientations) come from single crystals models? As the model has been calibrated against experiments, 

this could potentially affect the interpretation of the relative contributions of the different 

recrystallisation mechanisms that are included in the model? 

We agree the fabric evolution due to basal-slip deformation derived from the continuum is similar to that 

produced by the Taylor hypothesis, and this could have some effect on the values of the parameters (ι, β, 

λ). The equation comes from assuming a linear dependence on D (the strain-rate tensor) as Placidi (2010) 

does. The term [Dijnj – Djknknj] is then valid for any plastic spin induced by deformation and is not 

necessarily linked to the Taylor bound but appears in other fields, such as fibres rotating in a flow (Dafalias, 

2001). 

The continuum framework also allows us to include the effect of migration recrystallization on the fabric. 

We note that no other fabric evolution model has been able to reproduce the detailed features seen in 

experiments (which also occur in the natural world), even full-field models which are much more 

computationally expensive.  

We agree that care should be taken on interpretating the contribution of different recrystallization 

mechanisms on the grain-scale from the model parameters, as the parameters represent the contribution 

to the change in the distribution function and are do not directly correspond to grain behaviour.  

I have few other detailed comments listed below: 



 

• Sec. 2.2 : see my main comment, the procedure to compute the vorticity number needs to be 

better explained and justified especially if it’s only done in 2D. Ice is incompressible, so tr(D) must 
be zero is  this enforced? Also it’s not clear of me on which length scale the velocity 
gradients are computed, directly using a finite difference from the original grid resolution? 

Thank you for highlighting this. The vorticity number is calculated based on the 2D horizontal velocity 
gradients derived from the observations of surface velocity, even though dw/dz can also be calculated 

from the surface velocities due to incompressibility as you say. As other derivatives (du/dz, dv/dz, dw/dx, 
dw/dy) cannot be estimated but are likely to be non-zero, hence we decided not to include dw/dz as it 
would underestimate the vorticity number. The derivatives are found using second order accurate central 
differences on the original grid resolution and then averaged over a 10x10 block as described in section 
2.2.2. 

The figure below shows the surface vorticity number including the calculated contribution from dw/dz, 

which makes very little difference. 

 

• Sec 2.3 : « At the other end of the scale, models such as presented by Gillet-Chaulet et al. (2005) 
track the evolution of tensorial descriptions of the fabric, without including migration 
recrystallization. These cannot accurately reproduce detailed fabric patterns but are 
computationally cheap enough for integration into large-scale models (Gagliardini et al., 2013). ». 



Gillet-Chaulet et al. (2005) only present the flow relation, i.e. the anisotropic tensorial relation 
between the macroscopic stresses and strain-rates, so there is no fabric evolution at all. The 
equations for the fabric evolutions are presented in Gillet-Chaulet et al. (2006). The fact that it do 
not includes migration recrystallisation is not a limitation of the procedure itself. Seddik et al. 
(2011) also derive an equation for the evolution of the orientation tensors from the CAFFE model 
; so in principle migration recrystallisation, as it is represented here, could be included within the 
same framework. 

Thank you, we will correct this reference to 2006. Migration recrystallization as represented here is a 

4th order process, so cannot be represented by frameworks solving for the 2nd order orientation 

tensor. If an evolution equation for the 2nd order orientation tensor is derived by taking the 2nd 

moment from the CAFFE fabric evolution equation, the term for migration recrystallization depends on 

the 6th order orientation tensor. Furthermore, the 2nd order orientation tensor does not contain 

sufficient information to distinguish between ODFs produced by migration recrystallization (such as 

cone shapes or secondary clusters) and simpler fabrics such as single maxima, due to the limited 

information. 

We note further that migration recrystallisation requires the temperature-dependent pre-factor β to 

have been defined to be used in simulating fabrics. A new development in SpecCAF (Richards et al. 

2021) was to provide this through a regression analysis with laboratory data. This, in addition to the 

solution providing the full ODF field, allows the important process of migration recrystallisation to be 

implemented. 

Sec. 3.2 : explain what is y here and in Fig. 5 and what are the deformation principal axes with 
respect to this reference frame for the pole figures. 
 

Thank you for highlighting this, we will clarify the strain γ here. The deformation is the same as defined in 
eq (10) in section 4.1. The principal axes are orientated at 45 degrees relative to the to the x and z (out of 
the page) directions of the pole figure. We will define the strain and grad u earlier to avoid confusion. 
 

• Sec. 3.2 : give the expression for the computation of the strain (\gamma) from the strain-rates. 

We define the strain-rate in Section 4.1, as above to avoid confusion we will define it earlier. 

• Page 9, last line : « Furthermore the pre-factor », I’m not such which pre-factor ? 

We mean the factor of sqrt(2)/2, we will clarify this in the text. 

• Fig. 5 : Maybe the schema for the single maxima is a bit misleading at it  shows a single maxima 

in the vertical direction, while it is directed at 45 degrees. 

We are happy to change this. 

• Line 209 : give the definition of the J-index before using it. 

Thank you for highlighting this. 

• Sec. 5.4 : « The model SpecCAF used in our paper can be coupled with an anisotropic 
 viscosity formulation to include directional variation in viscosity ». Provide more details 



 on the exact procedure, i.e. how the stresses are computed with SpecCAF, and the 
assumptions that would be required for this step. 

We believe the reviewer has slightly overestimated the scope of SpecCAF. SpecCAF is limited to fabric 
evolution, and we make no attempt here to compute the stresses (through a viscosity formulation). As it 
is purely a fabric evolution equation, it can in principle be combined with a variety of viscosity formulations 
should one wish (see below).  
 

Sec. 5.4 : « This has been done with simplified fabric evolution models which do not include 
recrystallization and temperature dependence (Martin et al., 2009). » This gives the impression 
that Martin et al. use the continuum model while they are using an homogenisation model with 
the static (uniform stresses) assumption. Also, from the CAFFE model, Seddik et al. (2008,2011) 
derive an anisotropic flow law where stresses and strain-rates remain colinear. So if the same 
method is used here (depending oon the previous comment), it is not so clear that this model 
would also produce the syncline patterns in the isochrones that are mentioned few lines latter. 

 
SpecCAF could be combined with either the Static viscosity formulation or the viscosity formulation from 
the CAFFE model. When we comment on Martin et al. (2009), we refer only to the fabric evolution part of 
the model and not the viscosity formulation. We will be sure to clarify this in the text. 
 
We agree it is an interesting open question whether a co-linear (or other alternative viscosity 
formulations/homogenisations) could produce the syncline patterns seen in Martin et al. (2009). 
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