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S1: Schematic diagram of the BioSNICAR_GO model structure
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Supp Info 2: Mineral dust sampling and particle size distribution (PSD).

High algal biomass ice samples were collected in sterile sample bags and melted at ambient
temperatures (5-10 0C). The thawed samples were filtered onto glass fiber filters (0.7 J;Izlm pore
size), from which the solids were removed into a glass jar using a stainless steel spatula. In 50 mL
centrifuge tubes, the samples were treated using 30% H,O, (w/w) (Honeywell Fluka™) to remove
the organic fraction. The samples (1-2 g) were sonicated (VWR ultrasonic cleaner) in 45 mL of the
H,0, treatment for 10 min to disaggregate the material. The samples were left in the H,O, treatment
for 48 h, after which they were centrifuged for 10 min at 4000 rpm (Eppendorf centrifuge 5810).
The supernatant was removed, and the H,O, solution was replaced. This process was repeated up to
ten times until no more organic oxidation was observed. The remaining mineral fraction was
washed three times in water (Sartorius ariuml pro ultrapure water), with centrifugation after each
wash.

A 5 mg of H,O,-treated sample was suspended in 10 mL of ultrapure water. The sample was
sonicated to disaggregate the grains. The suspension was dispersed onto a 0.2 J?(m polycarbonate
filter (Sartorius Track-Etch Membrane, 0.2 J?(m). Once dry, a section of each filter was adhered to a
stainless steel SEM stub using an adhesive carbon tab. The sample was coated with 8 nm of Ir
(Agar high resolution sputter coater). The PSD was determined using a Zeiss Ultra Plus field
emission scanning electron microscope (FE-SEM) operated at 20 kV. Automated particle counting

software was used to determine the PSD in an area of approximately 1 mm?®.



Supp Info 3: Schematic diagram of the classification method
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Supp Info 4: A) Performance metrics for supervised classification algorithms on training data
using five bands coincident with MicaSense Red-Edge multispectral imagery, plus the final
model performance on the test set; B) Performance metrics for supervised classification
algorithms on training data using eight bands coincident with Sentinel-2 multispectral
imagery, plus the final model performance on the test set.

A:

Model Accuracy [Precision [Recall F1 Score
K-Nearest Neighbours 0.90 0.74 0.78 0.76
Naive-bayes 0.90 0.80 0.81 0.80

Support Vector Machine 0.94 0.89 0.87 0.88
Random Forest 0.99 0.99 0.95 0.97
Ensemble 0.92 0.76 0.81 0.78

RF performance on test set 0.90 0.91 0.90 0.90

B:

Model Accuracy [Precision [Recall F1 Score
IK-Nearest Neighbours 0.89 0.90 0.89 0.87
INaive-bayes 0.89 0.89 0.89 0.89

Support Vector Machine 0.96 0.96 0.96 0.96
Random Forest 0.99 0.99 0.99 0.99
Ensemble 0.93 0.93 0.93 0.93

RF performance on test set 0.92 0.93 0.92 0.93




Supp Info 5: A) Hourly radiative forcing for Hy;, and Ly, ice; B) Mea depth of absorption
feature for Hyio, Lbis, CI and SN sites; C) p-values for spectral Bonferroni-corrected t-tests for
albedo between each surface class; D) t-statistics for spectral Bonferroni-corrected t-tests for
albedo between each surface class.
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Supp Info 6: Confusion matrices and normalised confusion matrices for the final RF model
applied to UAV (A,B) and Sentinel-2 (C,D) multispectral data. Confusion matrices show
predicted class on the y-axis and actual class on the x-axis. The score at the intersections
shows the frequency of instances — i.e. higher scores along the top-left to bottom-right
diagonal indicate a more accurate classifier.
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