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Abstract. Assimilation of remote sensing products of sea ice thickness (SIT) into sea ice-ocean models has been shown

to improve the quality of sea ice forecasts. Open
:::
Key

:::::
open questions are whether the assimilation of rawer

:::::::::
assimilation

:::
of

:::::::::
lower-level

::::
data

:
products such as radar freeboard (RFB) can achieve yet a better

:::::
further

::::::::
improve

:::::
model

:
performance and

what performance gain
::::
gains

:
can be achieved by the joint assimilation

::::::
through

:::::
joint

::::::::::
assimilation

::
of

:::::
such

::::
data

:::::::
products

:::
in

::::::::::
combination

:
with a snow depth product. The Arctic Mission Benefit Analysis (ArcMBA) system was developed to address5

this type of question. Using the quantitative network design (QND) approach, the system can evaluate, in a mathematically

rigorous fashion, the observational constraints imposed by individual and groups of data products.

We present assessments of the observation impact (added value)
:
of

::::::::
different

:::::
Earth

::::::::::
Observation

:::::
(EO)

:::::::
products

:
in terms of

the uncertainty reduction in a four-week forecast of sea ice volume (SIV) and snow volume (SNV) for three regions along

the Northern Sea Route by
:::::
using a coupled model of the sea ice-ocean system. The assessments cover

:
,
:::::::::
specifically

:::
the

:::::
Max10

:::::
Planck

:::::::
Institute

::::::
Ocean

::::::
Model.

:::
We

::::::
assess seven satellite products, ;

:
three real products and four hypothetical products. The real

products are monthly SIT, sea ice freeboard (SIFB), and RFB, all derived from CryoSat-2 by the Alfred Wegener Institute.

These are complemented by two hypothetical monthly laser freeboard (LFB) products (one with low accuracy and one with

high accuracy)
::::
with

:::
low

::::
and

::::
high

::::::::
accuracy, as well as two hypothetical monthly snow depth products (again one with low

accuracy and one with high accuracy)
::::
with

:::
low

::::
and

::::
high

:::::::
accuracy.15

On the basis of the per-pixel uncertainty ranges that are provided with the CryoSat-2 SIT, SIFB, and RFB products, the SIT

achieves
:::
and

:::::
RFB

::::::
achieve

:
a much better performance for SIV than the SIFB product, while the performance of RFB is more

similar to that of SIT. For SNV, the performance of SIT is only low, the performance of SIFB higher and the performance of

RFB yet higher. A hypothetical LFB product with low accuracy (20 cm uncertainty) lies in performance
::::
falls between SIFB
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and RFB
:
in

:::::::::::
performance for both SIV and SNV. A reduction in the uncertainty of the LFB product to 2 cm yields a significant

increase in performance.

Combining either of the SIT/freeboard products with a hypothetical snow depth product achieves a significant performance

increase. The uncertainty in the snow product matters: A higher accuracy product achieves an extra performance gain. The

provision of
:::::::
Providing

:
spatial and temporal uncertainty correlations with the EO products would be beneficial not only for5

QND assessments, but also for assimilation of the products.

1 Introduction

Over the last
:::
few decades the state of the Arctic climate system has undergone a rapid change. Most pronounced are decreases

of the
:::::
major

::::::::
decreases

::
in summer sea ice extent and of the year-round sea ice volume

:::::::::
throughout

:::
the

::::
year. This transformation

is affecting marine ecosystems and coastal communities in an unprecedented way. Economic activities such as resource ex-10

traction, maritime transportation, and tourism may benefit from these changes provided that risks, e.g. of sea ice hazards, can

be managed. In this context, the performance of short-term to seasonal forecasts of sea ice conditions is of crucial importance

::::::::::::
(Eicken, 2013).

Forecasts of the sea ice-ocean dynamics
::
ice

::::
and

:::
the

:::::
ocean

::::
state

:
are routinely performed by coupled sea ice-ocean mod-

els that are driven by prescribed atmospheric conditions. Such forecastssuffer from uncertainty
::
In

:::::
order

::
to

::::::
derive

:::::::
reliable15

::::::::
forecasts,

:::::::::::
uncertainties in the model ’s initial state,

::
of

:
the atmospheric boundary conditions, and the parametrisation

::
in

:::
the

::::::::::::::
parameterisations

:
of physical processes . Only observations can help to

::::
need

::
to

:::
be

:::::::::
minimised.

:::::::::::
Observations

::::
can

::::
help reduce

such uncertainties and, thus, improve the forecast quality. Recently Earth observation (EO) products of sea ice thickness (SIT)

have been shown to provide particularly valuable constraints (Lisaeter et al., 2007; Yang et al., 2014; Day et al., 2014; Kauker

et al., 2015; Xie et al., 2016). The constraint from rawer EO products that
:::::::::
constraints

::::
from

::::::::::
lower-level

:::
EO

:::::::
products

::::
(i.e.

:::::
rawer20

:::::::
products

:::
that

:::::
more

:::::::
directly

::::::
related

::
to

:::
the

:::::
actual

::::::::::::
measurement)

::::
that are used to derive SIT products may be even stronger, be-

cause these rawer products
::::
such

:::::::
products

:::
that

::::::::
conform

::::
more

::::::
closely

::
to
:::
the

::::
raw

:::
EO

::::
data are typically more accurate. In

:::
For the

example of the CryoSat-2 SIT product (Ricker et al., 2014) retrieved at
::
by

:
the Alfred Wegener Institute (AWI) the uncertainty

in the radar freeboard (RFB) product underlying their SIT retrieval is smaller by about two orders of magnitude
::::::::
compared

::
to

::
the

:::::::
derived

:::
ice

::::::::
thickness

::::::
product

:
(Figure 13). This

::::::::
difference

:
is a consequence of uncertainty in assumptions in particular on25

::
the

::::::::::
uncertainty

:::::::::
associated

::
in

::::::::
particular

::::
with

:
snow and ice density and snow depth, which are used to retrieve SIT from RFB.

For direct assimilation of RFB these variables can be taken
::::::::
extracted from the model into which the data are assimilated, but

still they are uncertain
::::
even

::
in

:::
this

::::::::
approach

:::::::::
significant

:::::::::
uncertainty

:::::::
remains. Hence, the trade-off between assimilation of SIT

or RFB requires a rigorous quantitative assessment. This is even more important, when the products are assimilated jointly

with products of further variables such as snow depth (SND) that bring in
::::::::
introduce complementary information.30

Such rigorous assessments can be performed in an efficient manner by the quantitative network design (QND) approach.

QND allows
:
,
:::::::
allowing

:::
for an objective evaluation of observation impact on

::
the

:::::
added

:::::
value

::
of

:::::::::::
observations

::
for

:
a given aspect of

a model simulation or forecast. The technique originates from seismology (Hardt and Scherbaum, 1994) and was first applied to
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the climate system by Rayner et al. (1996), who optimised the spatial distribution of in situ observations of atmospheric carbon

dioxide
::
to

:::::::
achieve

::::::::
minimum

:::::::::
uncertainty

::
in

:::::::
inferred

::::::
surface

:::::
fluxes. After an initial QND study that demonstrated the feasibility

of the approach for remote sensing of the column-integrated atmospheric carbon dioxide concentration (Rayner and O’Brien,

2001) QND is now routinely applied in the design of CO2 space missions (e.g., Patra et al., 2003; Houweling et al., 2004;

Crisp et al., 2004; Feng et al., 2009; Kadygrov et al., 2009; Kaminski et al., 2010; Hungershoefer et al., 2010; Rayner et al.,5

2014; Bovensmann et al., 2015). For the western Arctic domain, the QND approach was successfully demonstrated through the

evaluation of the combination of hypotheticalairborne altimeter/radar observations
:::
has

::::
been

:::::::::::
successfully

::::::
applied

:::
to

:::::::
evaluate

::
the

::::::
impact

:::
of

:::::::::::
(hypothetical)

:::::::
airborne

::::::::::::
measurements

:
of SIT/SND

::
in

::::::::
improving

:::
sea

:::
ice

::::::::::
predictions (Kaminski et al., 2015). The

study evaluated two idealised flight transects derived from NASA’s Operation IceBridge airborne
::::::::
altimeter ice surveys in terms

of their potential to improve ten-day to five-month forecasts of sea ice conditions,
::::::::
including

:::
for

::::::::::
operational

:::::::
purposes.10

The present study describes the implementation of the QND methodology into a system for Arctic mission benefit analysis

(ArcMBA) and then applies the system to investigate the impact of a series of EO products onto
::
on

:
forecasts of snow and

ice volume over three regions along the Northern Sea Route
:::::
(NSR). It addresses products of SIT, SIFB, RFB, laser freeboard

(LFB), and SND. The layout of the remainder of this article is as follows: Section 2 will describe the methodological aspects,

including the QND approach, the coupled sea ice-ocean model, and the EO products. Section 3 will present the simulated sen-15

sitivities of target quantities and observation equivalents to the model’s control vector that is composed of process parameters,

initial and boundary conditions. Section 5 will present the QND assessments, followed by their discussion
:
a
:::::::::
discussion

::
of

:::::
these

::::::
findings

:
in Section 6. Finally, Section 7 provides a summary and conclusions.

2 Methods

2.1 Quantitative Network Design
::::::::
network

:::::
design20

The QND methodology is presented by Kaminski and Rayner (2017), partly based on algebra by Tarantola (2005) and Rayner

et al. (2016). For the sake of self-containedness we provide a shortened form of the presentation by Kaminski and Rayner

(2017). As mentioned,
:
the QND formalism performs a rigorous uncertainty propagation from the observations via the control

vector to a target quantity of interest through a dedicated modelling chain. Hence, it is worth recalling the four influence factors

which produce
::::::
relying

:::
on

:::
the

::::::
indirect

::::
link

::::
from

:::
the

:::::::::::
observations

::
to

:::
the

:::::
target

::::::::
variables

:::::::::
established

:::
by

:
a
:::::::::
numerical

::::::
model.

:::
We25

:::::::::
distinguish

:::::::
between

::::
four

::::::
sources

::
of

:
uncertainty in a model simulation:

1. Uncertainty caused by the formulation of individual process representations and their numerical implementation (struc-

tural uncertainty).

2. Uncertainty in constants (process parameters) in the formulation of these processes (parametric uncertainty).

3. Uncertainty in external forcing/boundary values (such as surface winds or precipitation) driving the relevant processes.30

4. Uncertainty in the state of the system at the beginning of the simulation (initial state
:::::::::
uncertainty).
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The first factor
:::::::
category

:
reflects the implementation of the

::::::
relevant

::::::::
processes

::::
into

:::
the

:
model (code) while the others can

be understood as
:::::::::
represented

:::
by

:
a
:::
set

:::
of input quantities controlling the behaviour of a simulation using the given model

implementation. The QND procedure formalises
::
the

::::::::
selection

::
of

:
these input quantities through the definition of a control

vector, x. The choice of the control vector is a subjective element in the QND procedure. A good choice covers all input factors

::::::::
quantities with high uncertainty and high impact on simulated observations dmod or target quantities y (Kaminski et al., 2012;5

Rayner et al., 2016).

Figure 1. Data flow through two-step procedure of QND formalism. Ovals
:::
Oval

:
boxes denote data, rectangular boxes denote processing.

Figure taken from Kaminski and Rayner (2017)
:
.

The target quantity may be any quantity that can be extracted from a simulation with the underlying model , i.e. any potential

model output (in the current study regional integrals of predicted sea ice and snow volumes, see Section 2.2), but also any

component of the control vector, for example a process parameter such as the albedo of the snow
::::
snow

::::::
albedo. In the general

case, where the target quantity is not part of the control vector, the QND procedure operates in two steps (Figure 1). The first10

step (inversion step) uses the observational information to reduce the uncertainty in the control vector, i.e. from a prior to a

posterior state of information, and the
:
.
:::
The

:
second step (prognostic step) propagates the posterior uncertainty forward to the

simulated target quantity.

In this procedure we take uncertainty into account by representing all variables, i.e. the prior and posterior control vectors

as well as the observations, their equivalents simulated by the model, and the simulated target quantity by
::::::
Within

:::
the

:::::
QND15

:::::::::
formalism,

:::
we

::::::
present

:::
all

:::::::
involved

::::::::
quantities

:::
by

:
probability density functions (PDFs). We typically assume a Gaussian form

for the prior control vector and the observations, if necessary after a suitable transformation. The Gaussian PDFs’ covariance

matrices express the uncertainty in the respective quantities, i.e. C(x0) and C(dobs) for the prior control vector and the ob-

servations.
::
In

:::
the

::::::
context

::
of

:::::
these

:::::
PDFs

:::
we

::::
will

:::
use

:::
the

::::
term

::::::::::
uncertainty

::
to

::::
refer

::
to

:::
its

:::
full

:::::::::
covariance

::::::
matrix

::
in

:::
the

::::
case

::
of

::
a

:::::
vector

:::::::
quantity,

::::
and

::
in

:::
the

::::
case

::
of

:
a
::::::
scalar

:::::::
quantity

::
or

:
a
:::::
given

::::::
vector

:::::::::
component

::
it

:::::
refers

::
to

:::
the

::::::
square

:::
root

:::
of

:::
the

::::
entry

:::
on

:::
the20

:::::::
diagonal

::
of

:::
the

:::
full

:::::::::
covariance

::::::
matrix

::::::::::::
corresponding

:
to
::::
that

::::::::
particular

:::::
vector

::::::::::
component.

::
In

:::
the

:::::
latter

:::
case

:::
the

::::::::::
uncertainty

:::::
refers
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::
to

:::
one

:::::::
standard

::::::::
deviation

::
of

:::
the

::::::::
marginal

::::
PDF

::::::::::::
corresponding

::
to

::::
that

::::::::::
component,

:::
and

:::
we

:::
use

:::
the

:::::::
notation

:::::
σ(d2):::

to
::::::
denote,

:::
for

:::::::
example,

:::
the

:::::::
standard

::::::::
deviation

:::
of

::
the

:::::::
second

:::::::::
component

::
of

::
d.

:

For the first QND step we use the model
:
a
::::::::
mapping M as a mapping from control variables onto equivalents of the obser-

vations. In our notation the observation operators that map the model state onto the individual data streams (see Kaminski and

Mathieu (2017) and Section 2.5) are absorbed
:::::::::::
incorporated in M .

::::
Here

:::
we

::::
refer

::
to
:::
M

::
as

::::::
model.

:
Let us first consider the case5

of a linear model, for which we denote by M′ the Jacobian matrix of M , i.e. the derivative of M with respect to x. In this

case
:
, the posterior control vector is described by a Gaussian PDF with covariance

:::::::::
uncertainty C(x), i.e. the uncertainty

:::::
which

is given by

C(x)−1 =M′
T
C(d)−1M′+C(x0)

−1 (1)

where the data uncertainty C(d) combines
:
is

:::
the

::::::::::
combination

:::
of

:::
two

::::::::::::
contributions:10

C
:
(d) =
::::

C
:
(dobs)+
::::::

C
:
(dmod)
:::::

(2)

:::
The

::::
term

:
C(dobs) with the uncertainty

::::::::
expresses

:::
the

:::::::::
uncertainty

:::
in

:::
the

::::::::::
observations

::::
and C(dmod) ::

the
::::::::::
uncertainty in the simu-

lated equivalents of the observations M(x):

C(d)2 =C(dobs)
2+C(dmod)

2

:
. The first term in Equation (1) expresses the observational constraint

:::::
impact

::
of

:::
the

:::::::::::
observations and the second term the prior15

information content
:::::
impact

::
of

:::
the

:::::
prior

::::::::::
information. In the non-linear case we use Equation (1) as an approximation of C(x).

In the secondstep, the Jacobian matrix N′ of the model (now used as a
:::
The

::::::::
mapping

::
N

:::::::
involved

::
in

:::
the

::::::
second,

:::
the

::::::::::
uncertainty

::::::::::
propagation

::::
step,

:
is
:::
the

:
mapping from the control vector onto target quantities and denoted by a

:::::
target

::::::::
quantity,

::
y.

:::
The

::::::::
Jacobian

:::::
matrix

:::
N′

::
of
::::

the
:::::::
mapping

:
N ) is employed to propagate the

::::::::::
approximate

:::
the

::::::::::
propagation

::
of

:::
the

:
posterior uncertainty in the

control vector C(x) forward to the uncertainty in a target quantity,
:
σ(y) :

:::
via20

σ(y)2 =N′C(x)N′
T
+σ(ymod)

2 . (3)

If the model was
::::
were perfect, σ(ymod) would be zero. In contrast, if the control variables were perfectly known, the first term

on the right hand
:::::::::
right-hand side would be zero. The terms C(dmod) in Equation (2) and σ(ymod) in Equation (3) capture the

structural uncertainty as well as the uncertainty in those process parameters, boundary and initial values that are not included

in the control vector. These two terms typically rely on subjective estimates. When comparing the effect of different data sets25

in the same setup, σ(ymod) acts as an offset (for the respective variance) in Equation (3)). To sharpen the contrast between the

products we remove it from the assessment and report two plausible estimates separately.

To conduct a valuable QND assessment, the requirement on the model is not that it simulates the target quantities and

observations under investigation realistically, but the requirement is
::::
rather

:
that it provides a realistic sensitivity of the target

quantities and observations under investigation with respect to a change in the control vector. If these sensitivities ,
:::
(As

::
a30

::::::::::
hypothetical

:::::::
example

:::
we

::::
can

:::::
think

::
of

::
a
::::::
perfect

::::::::
regional

:::::
tracer

::::::
model

:::
that

::
is
::::

run
::::
with

:::
an

:::::
offset

::
in
::::

the
:::::
initial

::
or

:::::::::
boundary

5



::::::::
conditions

:::
for

::
a

::::::
passive

:::::
tracer.

::::
The

::::::::
simulated

:::::
tracer

::::::::::::
concentration

:::
will

:::::
carry

::::
this

:::::
offset,

:::
but

:::
all

::::::::::
sensitivities

:::
will

:::
be

:::::::
perfect.)

::
If

::
the

::::::::::
sensitivities

::
of

:::
the

:::::
target

::::::::
quantities

::::
and

::::::::::
observations

:
(i.e. the Jacobians,

:
) are realistic, but the simulation of target quantities

and observations incorrect, we can always make
:::::
obtain a valuable QND assessment with appropriate model uncertainty. The

result of the assessment may then be that a particular data stream is not useful in constraining a particular target quantity

given current modelling capabilities. In this situation we could operate
:::::
Under

::::
such

::::::::::::
circumstances,

:
the QND system

::::
could

:::
be5

:::::::
operated with reduced model uncertainty to explore which accuracy

::
the

::::
level

:::
of

:::::::
accuracy

:::::::
required

:
of the model is required for

a data stream to be
::::
serve

::
as a useful constraint on a given target quantity. In particular when it comes to new

:::::
newly

::::::::
available,

:::::::::
unvalidated

:
data streams and target quantities the accuracy of both, the simulation and the sensitivities, are

:
is
:

hard to assess.

In the case of a model that misses
:::
does

:::
not

:::::::
capture

:
relevant processes we may expect errors in both the simulation and the

sensitivities, and consequently also in the QND assessment.10

Figure 2. Schematic Presentation
:::::::::
presentation

:
of

::
the QND procedure

:
:
::::
Each

:::::::
coloured

:::
line

:::::::
illustrates

::
a
:::::
model

:::::::
trajectory

::::
that

:::::::
simulates

:::
for

:
a
::::
given

:::::
value

::
of

:::
the

::::::
control

:::::
vector

:::
(x)

::::::::::
counterparts

::
of

:::
the

:::::::::
observations

::::
(d1 :::

and
:::
d2)

:::
and

::
a
::::
target

:::::::
quantity

:::
(y).

::::::
Through

:::
the

::::::
model,

:::
the

:::::::::
observations

:::
act

::
as

::::::::
constraints

::
on

:::
the

::::::
control

:::::
vector,

:::::
which

::::::
reduces

::
its

:::::::::
uncertainty

::::
from

:::::
C(x0)::

to
:::::
C(x).

::::
This

::::::::
uncertainty

::::::::
reduction

::
on

:::
the

:::::
control

:::::
vector

:::::::
translates

::::
into

::
an

::::::::
uncertainty

:::::::
reduction

::
in
:::
the

::::
target

:::::::
quantity

::::
from

:::::
σ(y0) :

to
::::
σ(y)

.
:

6



Our performance metric is the (relative) reduction in posterior target uncertainty σ(y)2 with respect to a reference. To

compare against the case without any observations we use
:::::::
compute, as the reference, the prior target uncertainty

:
,
:::::
σ(y0),:::

via
:

σ(y0)
2 =N′C(x0)N

′T +σ(ymod)
2 . (4)

The uncertainty reduction with respect to the prior,

σ(y0)−σ(y)
σ(y0)

= 1− σ(y)

σ(y0)
, (5)5

quantifies the impact of the entire network. A schematic illustration of the approach with the prior and posterior uncertainty

ranges is shown in Figure 2. The observations d1 and d2 render a range of trajectories unlikely, which in the first step leads

to a reduction of uncertainty in the control vector (from C(x0) to C(x)) and in the second step to a reduction in the target

uncertainty (from σ(y0) to σ(y)).

We note that (through Equation (1) and Equation (3)) the posterior target uncertainty solely depends on the prior and data10

uncertainties, the contribution of the model error to the uncertainty in the simulated target variable, σ(ymod), as well as the

observation and target Jacobians (quantifying the linearised model responses of the simulated observation equivalent and of

the target quantities). The QND formalism does not require real observations and can thus
:::::
Hence,

:::
the

:::::
QND

:::::::::
formalism

:::
can

:
be

employed to evaluate hypothetical candidate networks. Candidate networks are defined by a set of observations characterised

by observational data type, location,
:::::::
sampling

::::::::
frequency

::::
and time, and data uncertainty

::
but

:::
not

:::
the

::::::::::::
observational

::::
value. Here,15

we define a network as the complete set of
::
the

:::::::::::::
characterisation

:::
of

:
observations, d, used to constrain the model. The term

network is not meant to imply that the observations are of the same type or that their sampling is coordinated. For example, a

network can combine different types of in situ and satellite observations.

In practice, for pre-defined target quantities and observations, model responses can be pre-computed and stored. A network

composed of these pre-defined observations can then be evaluated in terms of the pre-defined target quantities without any fur-20

ther model runs. Only matrix algebra is required to combine the pre-computed sensitivities with the data uncertainties
:::::::::
uncertainty.

This aspect is exploited in our ArcMBA system.

2.2 Target Quantities
:::::::::
quantities

For this study we selected target quantities that are particularly relevant for maritime transport, namely predicted sea ice volume

(SIV) and snow volume (SNV) over three regions along the Northern Sea Route (NSR)
::::
NSR. These three regions are displayed25

in Figure 3 and respectively denoted as “West Laptev Sea” (WLS), “Outer New Siberian Islands” (ONSI), and “East Siberian

Sea” (ESS). We perform these predictions for May 28, 2015, a point in time at which there is still sufficient snow cover for our

prediction to be relevant. These predictions are started on April 1 and are constrained by observational information until April

30, i.e. we perform
::
the

::::::::::
assimilation

:::::::
window

::
in

:::::
April

::
is

:::::::
followed

:::
by a four-week prediction

:::::
period

:
(Figure 4).

2.3 Model
:::
Sea

::::::::
ice-ocean

::::::
model30

7



Figure 3. Target regions along the Northern Sea Route
::::
NSR.

::::
Black

::::
cross

:::::::
indicates

:
a
:::::::
location

::
for

:::::
further

:::
use

::
in

:
Figure 14.

The requirement on the dynamical
::
To

:::::::
simulate

:::::::::::
observation

:::::::::
equivalents

::::
(M

::
in
:

Equation (1))
::::

and
:::::
target

:::::::::
quantities

:::
(N

:::
in

Equation (3)
:
)
:::
we

:::::::
employ

::
a

:::::::
coupled model of the coupled sea ice-ocean systemis that it simulates in a realistic manner

:
.

:::
The

::::::
model

::
is

:::::::
required

::
to
:::::::

provide
:::::::
realistic

::::::::::
simulations

::
of

:
the sensitivity of the observation equivalents and the target quan-

tities to changes in the control variables. In the present study we use the Max-Planck-Institute Ocean Model (MPIOM)

(Jungclaus et al., 2012, 2013; Haak et al., 2003)
::::::::::::::::::::::::::::::::::::::::::::::
(MPIOM, Jungclaus et al., 2012, 2013; Haak et al., 2003), i.e. the sea ice-ocean5

component of the Max-Planck-Institute Earth System Model (MPI-ESM) (Giorgetta et al., 2013)
::::::::::::::::::::::::::::
(MPI-ESM, Giorgetta et al., 2013).

MPI-ESM regularly provides climate projections for the Intergovernmental Panel on Climate Change (IPCC) in particular to

the IPCC’s 5th assessment report (Stocker et al., 2013) and the upcoming 6th assessment report (AR6) and within the seasonal

8



Figure 4. Time line of experimental
:::::::::
assimilation

:::
and

::::::
forecast

:
setup.

to decadal prediction system (Müller et al., 2012). In the following we provide a brief description of the model
::::::
current

::::::
model

::::::::::
development

:::::
status, largely following Jungclaus et al. (2006) and Niederdrenk (2013).

MPIOM is based on the primitive equations, a set of nonlinear differential equations that approximate the oceanic flow and

are used in most oceanic models. They consist of three main sets of balance equations: A continuity equation representing

the conservation of mass, the Navier-Stokes equations ensuring conservation of momentum, and a thermal energy equation5

relating the overall temperature of the system to heat sources and sinks. Diagnostic treatment of pressure and density is used to

close the momentum balance. Density is taken to be a function of model pressure, temperature and salinity (UNESCO, 1983).

Recent development of the model
::::::
Recent

:::::::::::
development

::
of

:::
the

::::::
ocean

::::
part

::
of

:::
the

::::::
model includes the treatment of horizontal

discretisation which has undergone a transition from a staggered E-grid to an orthogonal curvilinear C-grid. The treatment of

subgridscale mixing has been improved by
::::::
through the inclusion of a new formulation of bottom boundary layer slope convec-10

tion, an isopycnal diffusion scheme, and a Gent and McWilliams style eddy-induced mixing parameterisation . Along-isopycnic

:::::::::::::::::::::::::
(Gent and McWilliams, 1990).

:::::::::::::
Along-isopycnal

:
diffusion is formulated following Redi (1982) and Griffies (1998). Isopycnal

tracer mixing by unresolved eddies is parameterised following Gent et al. (1995). For the vertical eddy viscosity and diffusion

the Richardson number–dependent scheme of Pacanowski and Philander (1981) is used. An additional wind mixing propor-

tional to the cube of the 10-m wind speed (decaying exponentially with depth) compensates for too low turbulent mixing close15

to the surface. Static instabilities are removed through enhanced vertical diffusion.

A viscous–plastic rheology (Hibler, 1979) is used for the sea ice dynamics. The thermodynamics is
:::
Sea

:::
ice

::::::::::::::
thermodynamics

::
are

:
formulated using a Semtner (1976) zero-layer model relating changes in sea ice thickness to a balance of radiant, turbulent,

and oceanic heat fluxes. In the zero-layer model the conductive heat flux within the sea ice/snow layer is assumed to be directly

proportional to the temperature gradient across the sea ice/snow layer and inversely proportional to the thickness of that layer,20

i.e. the sea ice does not store heat. The effect of snow accumulation on sea ice is included, along with snow–ice transformation

when the snow/ice interface sinks below the sea level because of snow loading (flooding). The effect of ice formation and

melting is accounted for within the model assuming a sea ice salinity of 5 psu.
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MPIOM allows for an arbitrary placement of the model’s poles on an orthogonal curvilinear grid. In the setup used here

(taken from Niederdrenk (2013); Mikolajewicz et al. (2015); Niederdrenk et al. (2016)) the poles are located over Russia and

North America (as can be seen in Figure 5). Placement over land avoids numerical singularities that for poles over the ocean

would be caused by the convergence of the meridians, and the non-diametric placement allows to reach high resolution (average

of about 15 km) of
::
in the Arctic. In the following we will call the model in that configuration

::::
This

:::::
setup

:::::::
achieves

::
a
::::::
spatial5

::::::::
resolution

::
as

::::
high

::
as

::::
that

::
of

:::
the

:::
EO

:::::::
products

:::
we

:::::::
analyse

::
(in

::::
fact

::::
over

:::
the

:::::
target

::::::
regions

:::
the

::::::
model

::::::::
resolution

::
is

::::::
higher)

:::::::
without

:::::
major

::::::::::::
computational

:::::::::
constraints,

::::::
which

:::::
allows

:::
an

:::::::::
evaluation

::
of

:::
the

:::
full

::::::
spatial

::::::::::
information

::::::
content

::::::::
provided

::
by

:::
the

:::::::::
respective

:::
EO

::::::::
products.

::::
Here,

:::
we

::::
will

::::
refer

::
to

::::
this

::::::::
particular

:::::
model

:::::::::::
configuration

:::
as Arctic MPIOM.

As forcing data at the ocean’s surface, the model needs heat, freshwater
:
, and momentum. These data are taken from

ECMWF’s ERA-Interim reanalysis (Dee et al., 2011). ERA-Interim is a global atmospheric reanalysis (of the period from10

1979 to present) that is produced by a 2006 release of the Integrated Forecasting System (IFS – version Cy31r2) and applies

a 4-dimensional variational analysis with a 12-hour analysis window. The spatial resolution of the data set is approximately

80 km (T255 spectral) on 60 vertical levels from the surface up to 0.1 hPa. ERA-interim surface variables to
:::
that force Arc-

tic MPIOM are 2-meter temperature, 2-meter dew point temperature (surrogate of 2-meter specific humidity – not delivered

:::::::
provided

:
by ECMWF), 10-meter zonal and meridional wind velocity (to calculate the wind speed), total cloud cover and the15

following fluxes (delivered
:::::::
provided

:
in accumulated form over the 12-hourly forecast window): surface downward solar radi-

ation, surface downward thermal radiation, total precipitation, zonal and meridional wind stress. Land runoff into the ocean is

taken from the German Ocean Model Intercomparison Project (OMIP, Röske, 2001).

In this study, all model experiments will be started
:::
For

:::
the

:::::::::::
computation

::
of

:::
the

::::::::
jacobians

::::
M ′

:::
and

:::
N ′

::::::::::
(introduced

:::
in Sec-

tion 2.1
:
)
:::
that

::
is
:::::::::

described
::
in Section 3

::
we

:::
run

::::::
Arctic

:::::::
MPIOM

:
from a restart file

::
for

:::::
April

::
1,

:::::
2015.

::::
This

::::::
restart

:::
file

::
is

::
in

::::
turn20

generated from a hindcast run of Arctic MPIOM which
:::
that

:
is initialised on 1.1.1979 (start time of ERA-Interim).

:::::::
January

::
1,

:::::
1979. This initialisation is based on a set of observations that consists of a topography data set (ETOPO5 5-minute gridded

elevation data (NOAA, 1988))
::::::::::::::::::::::::::::::::::::::::::::::
(ETOPO5 5-minute gridded elevation data, NOAA, 1988), and a hydrographic climatological

data set (Polar science center Hydrographic Climatology, PHC3; Steele et al., 2001) containing potential temperature and

salinity. The ocean is assumed to be at rest. Sea ice is assumed to be present if the sea surface temperature falls below the freez-25

ing temperature of sea water. 100% ice cover and a sea ice thickness of 2m is assumed where sea ice is present
:::
and

:::
sea

:::
ice

::
is

:::::::
assumed

::
to

::
be

::
at

:::
rest. From this initial state the model is integrated with the ERA-Interim surface forcing until 31.3.2015

:::::
March

:::
31,

::::
2015

::::
(the

::::::::
beginning

::
of

::::
our

::::::::::
assimilation

:::::::
window). While a 34

::
36 year integration is certainly too short to spin up the deep

ocean, it is sufficient for the purpose of this study, because the spinup time of sea ice and the upper ocean (depth above about

500m) is generally assumed to be only a few decades.30

:::
For

:
a
:::::::::
successful

:::::
QND

::::::::::
assessment

:
it
::

is
::::::::

essential
::::
that

:::::::
MPIOM

:::::::
provides

:::::::
realistic

:::::::::::
sensitivities

::
of

:::
the

::::::::::
observation

:::::::::
equivalent

:::
and

:::
the

:::::
target

::::::::
quantities

:::
to

:::
the

:::::::
changes

::
in

:::
the

::::::
control

::::::
vector

:
(Equation (1)

:::
and Equation (3)

::
).

::::::::
However,

:::::::::::
observations

:::
are

:::
not

:::::::
available

::
to

:::::::
validate

::::
these

:::::::::::
sensitivities.

:::
The

::::
only

::::::::
validation

:::
of

:::::::
MPIOM

:::::::
possible

:
is
:::::::
against

::::::::::
observations

::
of

:::
the

::::
state

::
of

:::
the

:::
sea

:::
ice

:::
and

::::::
ocean.

::
In

:::
the

::::::::
following

:::
we

::::::
present

:::::::::::
comparisons

::::
with

:::::::
selected

::::::::::
observation

:::::
based

:::::::
products

::::
first

:::
for

:::
the

::::::::::
hindcasting

::::::
period,

:::
and

::::
then

:::
for

:::
the

::::::::::
assimilation

:::::::
window

:::
and

:::
the

:::::::::
forecasting

::::::
period.

:
35
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Figure 5. Model grid, global (upper panel) and over the Arctic (lower panel); Upper panel shows
::::
mesh

:::::::
indicates

:
groups of 4 by 4 grid

cellsand lower panel groups of 2 by 2 grid cells.

:::
The

:::::::
hindcast

:::::
with Arctic MPIOM has been validated against remotely sensed ice concentration from the reprocessed OSI

SAF
:::::
Ocean

::::
and

:::
Sea

::::
Ice

:::::::
Satellite

::::::::::
Application

:::::::
Facility

::::
(OSI

:::::
SAF)

:
sea ice concentration product (Eastwood et al., 2015) and

against a combination of in-situ
::
in

:::
situ

:
and remotely sensed ice thickness observations. In-situ

::
In

:::
situ

:
observations of sea

ice thickness still have a high uncertainty and each data source has its own strengths and weaknesses. As of today the most

reliable information about pan-Arctic sea ice thickness stems
::::
data

::
set

::
is
::::::
derived

:
from a combination of various sources of in-situ5

observation
:
in

:::
situ

:::::::::::
observations and remotely sensed satellite sea ice thickness products by Lindsay and Schweiger (2015)

:::::::::::::::::::::::::
(Lindsay and Schweiger, 2015).

The reprocessed OSI SAF sea ice concentration product is available daily on a 10 km spatial grid and includes spatially and

temporally varying uncertainty estimates. For an assessment of the performance of the Arctic MPIOM, the sea ice concentration

has been compared to the long-term means of the March, June
:
, and September monthly means for the period 1990 to 2008

(Figure 6). In March (panel d) and June (panel e) only small
::::::::
relatively

:::::
small

::::
scale

:
misfits to the OSI SAF ice concentration are10

found
:::
but

::::
they

:::
can

:::::
reach

::
up

::
to

::::
50%

:::::
(here

::::
and

::
in

:::
the

::::::::
following

:::
we

:::
use

:::
the

::::
term

:::::::
“misfit”

:::
for

:::
the

:::::::::::::::
model-observation

:::::::::
difference).

The sea ice margin in the Nordic Seas and Barents Sea is captured well. The anomalies apparent in March correspond to the

results of a study performed with the MPIOM version of the Max-Planck-Institute’s Earth System model MPI-ESM-LR (Notz

et al., 2013), for which the MPIOM was forced with the same atmospheric forcing data set as used in our study (ERAinterim)

(see panel f of their Figure 3).15

In September large misfits to the OSI SAF sea ice concentration are obtained (Figure 6 panel f). Especially over the

Eurasian basin the model’s sea ice margin is located too far north but also over the central Arctic the model is underestimating

::::::::::::
underestimates

:
the sea ice concentration. In our target reions

:::::
regions

:
the misfit remains relatively small. The aforementioned

analysis by Notz et al. (2013) shows similar misfits (see panel f of their Figure 4) to a different sea ice concentration data set,

namely NSIDC-CDR (National Snow and Ice Data Center Climate Data Record).20

An evaluation of the hindcast simulation with Arctic MPIOM with respect to the modelled SIT is much more difficult,

because the observation-based products exhibit large uncertainties reflecting the corrections imposed by the respective mea-

surement principle. For example, Electro-magnetic
::::::::::::::
electro-magnetic Air-EM measurements detect the air-snow interface, and

11



Figure 6. The long-term mean sea ice concentration [%] of the Arctic MPIOM for 1990 to 2008 for March, June and September (panel a to

c) and the misfit to the OSI SAF sea ice concentration (panel d to f).
::
In

:::::
panels

:
d
::
to

:
f,
:::

red
::::::
colours

::::::
indicate

::::::::::::
underestimation

:::
and

::::
blue

::::::
colours

:::::::::::
overestimation

::
of

::
sea

:::
ice

::::::::::
concentration

::
in

:::
the

:::::
model.

not the interface between snow and sea ice, introducing significant errors in the SIT estimates that are corrected by assumptions

or measurements of snow depth. Moored and submarine ULS measurements have to be corrected for the first return echo. Dif-

ferences in the observed and measured spatial scales further complicate the comparison. The aforementioned study of Lindsay

and Schweiger (2015) synthesises all available in-situ
::
in

::::
situ and remotely sensed satellite SIT products in an ice thickness

regression procedure (ITRP) for the time period 2000 to 2012. Low order spatial and temporal polynomials are fitted to the5

available sea ice thickness measurements. The resulting sea ice thickness regression product describes the evolution in the

central Arctic and is linear in time plus a quadratic time-dependent component, i.e. it does not contain year-to-year variability.

Uncertainty ranges are deduced from the uncertainty of the individual regression coefficients. The year-to-year variability is

reflected in this uncertainty. Lindsay and Schweiger (2015) could show for example that the ICESat ice thickness product from

12



the Jet Propulsion Laboratory (ICESat-JPL, Kwok and Cunningham (2008)), which is widely used for model validation, had a

large positive bias.

Here we compare the modelled long-term mean (2000 to 2012) sea ice thickness of the Arctic MPIOM model experiment

:::::::
hindcast to the ITRP sea ice thickness for the two-months periods February/March and October/November. We selected these

two-month periods, because the availability of the ICESat satellite product ensures a high data coverage in the ITRP. The5

long-term mean sea ice thickness of the the Arctic MPIOM hindcast simulation for February/March and October/November is

depicted in Figure 7 (panel a and panel b) together with the misfit to the ITRP ice thickness (panel c and panel d). A prominent

feature is a strong underestimation of the Arctic MPIOM sea ice thickness north and west of Fram Strait and in the strait itself.

In the regions of interest of
::
for our QND study , in (the areas around the Northern Sea Route,

:::::
NSR) the misfit is moderate in

February/March (overestimation of about 25%) with the exception around the East
::::
New Siberian Islands where the misfit can10

reach more then
:::
than 1 meter (overestimation of about 50%). In October/November the misfit is very moderate in these areas

except for Bering Strait where Arctic MPIOM underestimates the sea ice thickness by more then
:::
than

:
50cm.

As we base our QND experiments on simulations from April 1 to May 28, we
::::
Next

:::
we

::::::
address

::::::
Arctic

:::::::
MPIOM

:::::::::::
performance

:::
over

::::
our

::::::::::
assimilation

:::
and

:::::::::
forecasting

::::::
period

::::
(see Figure 4

:
).

:::
We show the April mean and the May 28 mean of the modelled SIT

and the misfit of the April mean thickness to that retrieved from CryoSat-2 (Figure 8).
:::
For

:
a
::::::::::
comparison

::
of

:::::::::
CryoSat-2

::::::::
thickness15

::
to

::
in

:::
situ

:::::::::::
observations

:::
we

::::
refer

::
to

:::::::::::::::
Haas et al. (2017).

:
The misfit to the CryoSat-2 ice thickness in April 2015 is similar to the

misfit to the ITRP shown in Figure 7: a strong underestimation north of the Canadian Archipelago and North and West
::::
north

:::
and

::::
west

:
of Fram Strait and a moderate overestimation in the area of the target quantities of about or less then

:::
than

:
50cm

(about 25% relative error). Figure 9 depicts the April mean and the May 28 mean of the modelled snow depth and the misfit

to the modified Warren climatology (Warren et al., 1999) that is used in the CryoSat-2 retrieval
:::
(see

:
Section 2.5

:
).
::::
The

:::::
main20

::::::::
challenge

:::
for

:::
sea

::
ice

::::::::
thickness

:::::::
retrieval

::::
with

:::::::
satellite

:::::::::
altimeters

:
is
:::
the

::::::::::::::
parameterisation

::
of

:::::
snow

:::::
depth

:::
on

:::
sea

:::
ice,

:::::
which

::
is
::::
still

:::
not

::::::::
measured

::::::::
routinely.

::::
The

::::::
current

:::::::::
CryoSat-2

:::::::
retrieval

::::
uses

:
a
::::::::
modified

::::
snow

::::::::::
climatology

::::
that

::::::::
addresses

::::::::::::
shortcomings

::
of

:::
the

::::::::::::::::::::::::::
Warren et al. (1999) climatology

::::
that

:::
was

::::::
based

::::::
largely

::
on

::::
data

:::::
from

::::::
drifting

:::::::
stations

::::::
mainly

:::
on

:::::::::
multi-year

:::
sea

:::
ice

::::::::
collected

:::
over

::::
the

::::
past

:::::::
decades,

::::
and

:::::
hence

::
is

:::
not

::::::::
reflective

:::
of

:
a
::::::

much
:::::::
younger,

:::::
more

::::::::
seasonal

:::::
Arctic

:::
ice

::::::
cover.

:::::
Given

:::
the

:::::::::
increased

::::::
fraction

::
of

::::::::
first-year

:::
ice

::
in

:::
the

:::::
Arctic

::::::
Ocean,

:::
the

::::::::
approach

::::::::
proposed

::
by

::::::::::::::::::::::
Kurtz and Farrell (2011) is

::::
used

::::
and

:::
the

::::::::::::
climatological25

::::
snow

:::::
depth

::::::
values

::::
used

::
in

:::
the

:::::::
retrieval

:::
are

:::::::::
multiplied

::::
over

::::::::
first-year

:::
ice

::
by

::
a
:::::
factor

::
of

:::
0.5. Note that on May 28 parts of

::::
over

the target regions are almost snow free already
:
a
:::::
large

:::::::
fraction

::
of

:::::
snow

:::::
cover

:::
has

::::::
already

::::::
melted. The misfit to the modified

Warren climatology in the target area East Siberian Sea is on the order of about 10cm (50% relative error) but much less for

the other target areas.

Overall,
:

the misfits of the Arctic MPIOM are acceptable in particular for our target regions along the Northern Sea Route30

::::
NSR

:
(Figure 3) and are comparable to misfits found in sea ice-ocean model intercomparison projects (e.g, Chevallier et al.

(2017)).

2.4 Control Vector
::::::
vector
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Figure 7.

The long-term mean (2000 to 2012) of the simulated
::
sea ice thickness [m] for the two-month periods February and March and October and

November (panel a and b) and the misfit (model – observation
:::::::::
observations) to the ITRP .

:::::
(panel

:
c
:::
and

::
d).

::
In
:::::
panels

::
c
:::
and

::
d,

::
red

::::::
colours

::::::
indicate

::::::::::::
underestimation

:::
and

::::
blue

:::::
colours

::::::::::::
overestimation

::
of

::
sea

:::
ice

:::::::
thickness

::
in

::
the

::::::
model.

The definition
::::::
Criteria

::
for

:::
the

::::::
choice of the control vector and the specification on prioruncertainty follow Kaminski et al. (2015):

The components and their prior uncertainty are
:::
are

::::::::
presented

::
in

:
Section 2.1.

::::
The

:::::::::::
specification

::
of

:::::
prior,

::::
both

:::::
mean

::::
(x0)

::::
and

:::::::::
uncertainty

::::::::
(C(x0)), ::::::

follows
:::::::::::::::::::
Kaminski et al. (2015),

::::
and

::
is listed in Table 1. The largest possible control vector in our mod-

elling system is the superset of initial and surface boundary conditions as well as all parameters in the process formulations, in-

cluding the observation operators.
:::
As

::::::::
described

::
in Section 3,

:::
the

:::::::
Jacobian

:::::::::::
computation

:::::::
requires

::
an

::::
extra

:::
run

:::
for

::::
each

:::::::::
additional5

:::::::::
component

::
of

:::
the

::::::
control

::::::
vector. To keep our ArcMBA system numerically efficient, two and three-dimensional fields are par-

titioned into regions. More precisely, we divide the Arctic domain into nine regions (shown in Figure 10). In each of these

regions we add a scalar perturbation to each of the forcing fields (indicated in Table 1 Table 1 by “f” in the type column-
:
); the

perturbation is applied for the entire simulation time). Likewise we add a scalar perturbation to six initial fields (indicated in

:::::::
indicated

::
in
:
Table 1 by “i” in the type column). For the ocean temperature and salinity the size of the perturbation is reduced10

with increasing depth (and zero below 500m
:::
500

::
m). Finally we have selected 29 process parameters from the sea ice–ocean
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Figure 8. The a) modelled mean April 2015 sea ice thickness [m], b) the modelled sea ice thickness on May 28 2015, and c) the mean April

2015 misfit of the modelled sea ice thickness
:::::
relative to the CryoSat-2 sea ice thickness.

:
In

::::
panel

::
c,
:::
red

::::::
colours

::::::
indicate

::::::::::::
underestimation

:::
and

:::
blue

::::::
colours

:::::::::::
overestimation

::
of

:::
sea

::
ice

:::::::
thickness

::
in

:::
the

:::::
model.

:

model plus two parameters from the observation operators for freeboard products (see Section 2.5 for details). This procedure

resulted
:::::
results

:
in a total of 157 control variables. We assume the prior uncertainty to have diagonal form, i.e. there are no cor-

relations among the prior uncertainty
::::::::::
uncertainties

:
relating to different components of the control vector. The diagonal entries

are the square of the prior standard deviation. For process parameters this standard deviation is estimated from the range of

values typically used within the modelling community. The standard deviation for the components of the initial state is based5

on a model simulation over the past 37 years and computed for the 37 member ensemble corresponding to all states on the same

day of the year. Likewise the standard deviation of the surface boundary conditions is computed for the 37 member ensemble

corresponding to the April-October means of the respective year.

2.5 Data Sets
:::
sets

:
and Observation Operators

::::::::::
observation

:::::::::
operators

The study evaluates three data sets retrieved by the AWI (Ricker et al., 2014) from observations provided by the CryoSat-210

mission, two data sets characterising hypothetical LFB products, and two data sets characterising hypothetical SND products.
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Table 1. Control variables. Column 1 lists the quantities in the control vector; column 2 gives the abbreviation for each quantity; column 3

indicates whether the quantity is an atmospheric boundary field (forcing, i.e. f), an initial field (i), or a process parameter (p); column 4 gives

the name of each quantity; column 5 indicates (the standard deviation of) the prior uncertainty and the corresponding units
:::::
(unless

:::::::
unitless)

and provides the magnitude of the parameter value in parenthesis, where applicable; and column 6 identifies the position of the quantity

in the control vector – for initial and boundary values (which are differentiated by region) this position refers to the first region, while the

following components of the control vector then cover regions 2 to 9.

Index # Name Type Meaning Prior uncertainty (value) Start
1 hiccp p (alias pstar) ice strength (devided by density) 15(20) [Nm−2 kg−1] 1
2 hibcc p (alias cstar) ice strength depend. on ice conc. 5.0(20.0) 2
3 hicce p (alias eccen) squared yield curve axis ratio 0.5(2.0) 3
4 rleadclose1 p extra lead closing (Notz et al., 2013) 0.2(0.25) 4
5 rleadclose2 p extra lead closing (Notz et al., 2013) 1.0(3.0) 5
6 rleadclose3 p extra lead closing (Notz et al., 2013) 1.0(2.0) 6
7 h0 p lead closing 1.0(0.5) [m] 7
8 hmin p mimimal ice thickness 0.04(0.05) [m] 8
9 armin p minimal ice compactness 0.15(0.15) 9
10 hsntoice p limit on flooding 0.45(0.45) 10
11 sice p salinity in sea ice 2.0(5.0)[psu] 11
12 albi p freezing ice albedo 0.1(0.75) 12
13 albm p melting ice albedo 0.1(0.70) 13
14 albsn p freezing snow albedo 0.1(0.85) 14
15 albsnm p melting snow albedo 0.1(0.70) 15
16 rhoice p density of sea ice 20(910)[kg/m3] 16
17 rhosn p density of snow 20(330)[kg/m3] 17
18 cw p ocean drag coeff. 2.0× 10−3(4.5× 10−3) 18
19 av0 p coeff vertical viscosity 1.× 10−4(2.× 10−4)

:::::::::::::::::::
1.× 10−4(2.× 10−4)[m2/s] 19

20 dv0 p coeff vertical diffusitiv
:::::::
diffusitivity

:
1.× 10−4(2.× 10−4)

:::::::::::::::::::
1.× 10−4(2.× 10−4)[m2/s] 20

21 aback p background coeff vertical viscosity 3.× 10−5(5.× 10−5)
:::::::::::::::::::
3.× 10−5(5.× 10−5)[m2/s] 21

22 dback p background coeff vertical diffusivity
:::::::
diffusitivity

:
1.× 10−5(1.05× 10−5)

:::::::::::::::::::::
1.× 10−5(1.05× 10−5)[m2/s] 22

23 cwt p vertical wind mixing parameter tracers 2.0× 10−4(3.5× 10−4)
:::::::::::::::::::::
2.0× 10−4(3.5× 10−4)[m2/s] 23

24 cwa p vertical wind mixing parameter momentum 0.4× 10−3(0.75× 10−3)
::::::::::::::::::::::
0.4× 10−3(0.75× 10−3)[m2/s] 24

25 cstabeps p vertical wind mixing stability parameter 0.03(0.06) 25
26 cdvocon p coefficient for enhanced vertical diffusivity 0.1(0.15) 26
27 bofric p linear bottom friction 2.× 10−4(3.× 10−4)

:::::::::::::::::::
2.× 10−4(3.× 10−4)[m2/s] 27

28 rayfric p quadratic bottom friction 0.5× 10−3(1.× 10−3)
:::::::::::::::::::
0.5× 10−3(1.× 10−3)[m2/s]

:
28

29 jerlova p jerlov atten - ocean-water types 0.04(0.08) 29
30 jerlovb p jerlov bluefrac - ocean-water types 0.20(0.36) 30
31 albw p open water albedo 0.05(0.1) 31
32 sit i initial ice thickness 0.5[m] 32
33 siconc i initial ice concentration 0.1 41
34 sicsno i initial snow thickness 0.2[m] 50
35 thetao i initial ocean temperature 0.5[K] (vertically decreasing) 59
36 so i initial salinity 0.5[psu] (vertically decreasing) 68
37 zos i sea level elevation 0.08[m] 77
38 cloud f cloud cover 0.07 86
39 prec f total precipitation 0.4× 10−8 [ms−1] 95
40 swrad f solar downward radiation 6. [W m−2] 104
41 tdew f dew pointe

:::
point

:
temperature 1.1[K] 113

42 tem f 2m air temperature 1.2[K] 122
43 wind10 f 10m scalar wind speed 0.6[ms−1] 131
44 wix f zonal wind stress x component 0.02[Nm2] 140
45 wiy f meridional wind stress y component 0.02[Nm2] 149
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Figure 9. The a) modelled mean April 2015 snow depth [m], b) the modelled snow depth on May 28 2015, and c) the mean April 2015

misfit of the modelled snow depth
::::::
relative to the modified Warren climatology used in the CryoSat-2 sea ice thickness retrieval.

::
In

::::
panel

::
c,

::
red

::::::
colours

::::::
indicate

::::::::::::
underestimation

:::
and

::::
blue

::::::
colours

:::::::::::
overestimation

::
of

::::
snow

::::
depth

::
in

:::
the

:::::
model.

:

In the following
::::::
Below, we describe these data sets and the simulation of their model equivalents, i.e. the respective observation

operators that provide the link
::::
links

:
from the model’s state variables (Kaminski and Mathieu, 2017) .

:
to

:::
the

::::::::
respective

::::
data

::::
sets

::::::::::::::::::::::::::
(Kaminski and Mathieu, 2017) .

:::::
Recall

::::
that

:::
the

:::::::::::
(combination

:::
of)

::::
data

:::::
set(s)

:::::
enters

:::
the

:::::
QND

::::::::
algorithm

:::::::
through

::
its

::::::::::
uncertainty

::::
C(d)

::::
and

:::
that

:::
the

::::::::::
observation

:::::::
operator

::
is

::::::::::
incorporated

::
in
:::
the

::::::
model

:::
M

:::
(see

:
Section 2.1

:
).

The three products derived by AWI from CryoSat-2 are SIT (hi), SIFB (fi), and RFB (fr). Their definition is illustrated in5

Figure 11 together with that of LFB (fl).
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Figure 10. Sub-regions for spatial differentiation of initial and boundary values in the control vector. 1 (light plum): central Arctic; 2 (dark

blue): North Atlantic; 3 (blue) Barents Sea; 4 (light blue) Kara Sea; 5 (green) Laptev Sea, 6 (light green) East Siberian Sea; 7 (yellow):

Bering Strait/Chukchi Sea; 8 (orange): Beaufort Sea; 9 (red): Baffin Bay.
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Figure 11. Schematic illustration of sea ice thickness and different freeboard variables.

19



Figure 12. Overview on
::
the

:
processing chain for CryoSat-2 product retrievals (left hand

::::::
left-hand

:
side) and

::
the

:
chain for modelling product

equivalents (right hand
::::::::
right-hand side). Oval boxes denote data and rectangular boxes processing steps. Green colour indicates

::::::::
emphasises

remote sensing products and violet colour model variables.
:::::
Yellow

::::::::
diamonds

::::
mark

:::
the

:::::::::
assessment

::
of

:::
the

:::
EO

:::::::
products

::::
with

:::
the

:::::
QND

:::::::
algorithm.

:::::
MSS:

::::
mean

:::
sea

::::::
surface

:::::
height.

: 20



The retrieval chain is described in detail by Ricker et al. (2014) and Hendricks et al. (2016). Recall that for each product,

in order to run an assessment
:
,
:
we need the spatio-temporal coverage as well as the uncertainty ranges. The left-hand side

of Figure 12 summarises the main steps in the retrieval chain, starting with the rawest
:::::::::::
(lowest-level)

:
product (RFB) on top.

When descending from RFB via SIFB to SIT each step adds further assumptions, which contribute to the product uncertainty.

The other element required to evaluate a given product is the observational Jacobian, i.e. the sensitivity of the model sim-5

ulation to a change in the control vector. The right-hand side of the graph illustrates how this Jacobian is derived from the

Jacobians of the
:::
the

:::::::::
equivalents

:::
of

::
the

:::::::::
respective

:::::::
products

:::
are

:::::::::
simulated

::::
from

:::
the

:::::::
relevant model variables, which are denoted

in violet colour. On this side of the graph, the complexity increases from bottom to top, i.e. from SIT via SIFB to RFB. For

example, in the assessment of the SIT product, the uncertainty in quantities needed to apply the Archimedes’ principle (in-

cluding that of snow depth derived from climatology) is contained in the retrieval product, whereas the observation operator10

that extracts the product equivalent from the model is relatively simple
:::::::::::
(Archimedes’

::::::::
principle

::
is

::::::::
described,

:::
for

::::::::
example,

:::
by

:::::::::::::::::::::::
Guerrier and Horley (1970)). We note that, while retrieved SIT is the effective SIT (hi,eff ), i.e. refers to the average over the

ice-covered area of a grid cell, simulated SIT refers to the grid-cell average, i.e. for the Jacobian calculation it has to be divided

by the simulated sea ice concentration (SIC,
:
denoted by c):

hi,eff = hi/c. (6)15

Likewise for snow depth:

hs,eff = hs/c. (7)

At the level of RFB, by contrast, it is the observation operator that includes
:::
inter

:::::
alias, on the modelling side

:::::
branch, the

application of Archimedes’ principle , for which it requires simulated snow depth and the densities of snow (ρs), sea ice

(ρi), and water (ρw), while the retrieval product is relatively raw. In particular the
::
this

:
retrieval product is not affected by20

uncertainties caused by assumptions on
:::
due

::
to

::::::::::
assumptions

::::::::::
concerning

:::
the snow depth, ρs, ρi, and ρw.

The observation operators for fi, for fr, and for fl are:

fi = hi/c− (ρihi/c+ ρshs/c)/ρw

= (1− ρi/ρw)hi/c− (ρs/ρw)hs/c (8)

fr = fi− 0.22hs/c25

= (1− ρi/ρw)hi/c− (0.22+ ρs/ρw)hs/c (9)

fl = fi +hs/c

= (1− ρi/ρw)hi/c+(1− ρs/ρw)hs/c. (10)

The term−0.22hs/c in Equation (9) adds to the simulated fi the correction for the signal propagation through snow
:::::::
different

::::::::::
propagation

:::::
speed

::
of

:::
the

:::::
radar

:::::
signal

::
in

:::::
snow

::::::::
compared

::
to

:::
air, which is contained in fr :::::::

affecting
:::
fr ::::::::::::::::::::

(Hendricks et al., 2016).30
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::::
This

:
is
::::

the
:::::
reason

::::
why

:::
fr::

is
::::::
located

::::::
below

::
fi::

in
:
Figure 11.

:
We note that, in these three observation operators, fi, fr, and fl

have the same sensitivity to hi, but sensitivities to hs and c differ. The sea ice component of the MPIOM uses constant densities

of snow, sea ice, and water. As simulated freeboard is relatively sensitive to densities of snow and sea ice, we have, however,

included these quantities as parameters of the observation operator in the control vector (see Section 2.4). For ρI=910.0 kg/m3,

ρS=330.0 kg/m3, ρw=1025.0 kg/m3, the sensitivity of fi, fr, and fl to a change in hi/c is a= 0.112, and the respective5

sensitivities to a change in hs/c are b=−0.322, b=−0.542, and b= 0.678.

Figure 13. Uncertainty ranges of CryoSat-2 products: SIT (left), SIFB (right), total uncertainty (top), random component (bottom) .
:::
for

::::
April

::::
2015.

:

The CryoSat-2 product files provided by AWI
::::
used

::
in

::::
this

:::::
study directly contain monthly SIT and SIFB on the EASE

:::::::::
Equal-Area

::::::::
Scalable

:::::
Earth

::::
Grid

:::::::
(EASE) 2.0 grid, respectively with random

:::::
(based

::
on

::::::::
standard

:::::::::
uncertainty

:::::::::::
propagation)

:
and

total (random plus systematic) per-pixel uncertainty ranges
:::::::::::::::::::::::::::::::::::::::::::::::::
(for details see Hendricks et al., 2016, and references therein). Fig-

ure 13 shows product uncertainties for April 2015. In our assessments we use the total uncertainties for the SIT and SIFB10
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products, and for the RFB product the random uncertainty component of the SIFB product. We assume uncertainties are

::::::
Recall,

:::
that

:::
we

::::::
assume

:::::::::::
uncertainties

::
to

::
be

:
uncorrelated in space.

For our hypothetical monthly LFB products, we assume a coverage of the northern hemisphere with a retrieved value over

each cell of the EASE 2.0 grid with SIC above 0.7
:
,
::
in

::::::
analogy

::
to

:::
the

::::::::
threshold

::::
used

::
in

:::
the

::::::::
CryoSat-2

:::::::
retrieval

:::::::::::::::::::
(Hendricks et al., 2016).

We explore two assumptions on
:::
with

::::::
respect

::
to
:
the uncertainty of the products, a mission with a high accuracy (uniform uncer-5

tainty of 0.02 m) and a mission with low accuracy (uniform uncertainty of 0.20 m). In both cases uncertainties are uncorrelated

in space.

For our hypothetical monthly mean snow depth (SND )
::::
SND products, we also assume a coverage of the northern hemisphere

with a retrieved value over each cell of the EASE 2.0 grid with SIC above 0.7. As for LFB we explore two assumptions on the

uncertainty of the products, a mission with a high accuracy (uniform uncertainty of 0.02 m) and a mission with low accuracy10

(uniform uncertainty of 0.15 m). In both cases uncertainties are uncorrelated in space.

Table 2 provides an overview on the products we assess. For later useis also lists ,
:
,
::
it

::::
also

::::
lists for each product and

three selected
::
the

:::::
three control regions the number of sampled EASE 2.0 grid cells and the corresponding regional average

uncertainties. Finally,
:
it also shows the uncertainties on the spatial average of the sampled variable over all sampled EASE 2.0

grid cells based on the assumption of uncorrelated observational uncertainty.15

Table 2. Overview on data sets, the # of sampled EASE 2.0 grids in control regions 5-7 (columns 2-4), the respective average uncertainties

(columns 5-7), the uncertainty of the product aggregated over all sampled EASE 2.0 grid cells.

n average uncertainty aggregated uncertainty

Product 5 6 7 5 6 7 [m]

SIT 937 1425 1377 1.86 1.95 1.94 0.0181

SIFB 937 1425 1377 0.21 0.20 0.21 0.00188

RFB 937 1425 1377 0.029 0.024 0.027 0.000364

LFB low accuracy 1104 1500 1429 0.20 0.20 0.20 0.00145

LFB high accuracy 1104 1500 1429 0.02 0.02 0.02 0.000145

SND low accuracy 1104 1500 1429 0.15 0.15 0.15 0.00108

SND high accuracy 1104 1500 1429 0.02 0.02 0.02 0.000145

3 Target and Observation
:::::::::::
observational

:
Jacobians

We compute an observational Jacobian M′ for each of the observational products we assess. For a given product, the obser-

vational Jacobian is computed in two steps. The first step performs the following actions: a reference run is performed using

the prior control vector x, the input variables to the observation operator are stored over the observational period, aggregated

to the model grid and the observation operator is applied to derive the observation equivalent M(x) on the space-time grid of20

the observational product. In the second step, for each component of the control vector the following procedure is applied: A
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sensitivity run is performed with a control vector x+ pi that is identical to the prior control vector but with the i component

changed by a perturbation ε
::
εi, and an observation equivalent M(x+ pi) is computed in the same way as for the reference run.

The Jacobian column is then computed as σi(M(x+ pi)−M(x))/ε
::::::::::::::::::::::
σi(M(x+ pi)−M(x))/εi where σi is the prior uncer-

tainty of xi. As a consequence of the normalisation by the prior uncertainty, each row in the Jacobian has the same unit as the

respective observation. For a given product, column i of the corresponding observational Jacobian quantifies the sensitivity of5

the model-simulated equivalent to that product with respect to a 1-sigma change of the i component of the control vector xi ::
by

:::
one

:::::::
standard

::::::::
deviation

::::
(see Table 1

::
for

:::
the

:::::
value).

For any given product the dimension of the observational Jacobian is the product of the dimension of the control space and

the grid size of the observational product. As
::
an

:
example, Figure 14 displays the row of the Jacobians for a April means of

SIT, SIFB, RFB, LFB, and snow depth (SND )
::::
SND over a single point

:
in

:::::
space

:
indicated by the black dot (and by the yellow10

::::
black

:
cross on Figure 3)).

:::
The

:
SIT sensitivity is dominated by the model’s initial SIT in control region 6

:::::
(black

:::::
bars

::
in Figure 14

:::
and

:::::::
enlarged

:::
in

Figure 15)
:
but shows also considerable sensitivities to the initial SIC, the initial SND, the initial ocean temperature (TEMP) and

the zonal wind stress (WIX). The negative sensitivity to SIC
:
in

::::
that

:::::
region

:
is caused by two mechanisms. The first mechanism

is expressed by Equation (6): The observation hi,eff is the effective SIT (thickness averaged over the ice-covered grid cell)15

and is reduced if the initial SIC is increased (and vice versa) because the model conserves the total sea ice volume. The second

mechanism is related to the formulation of sea ice growth in the model, which can grow
:::::
which

:::::::
depends

:::
on

:::
the

:::::
open

:::::
water

:::::::
fraction,

:::
i.e. more (less) sea ice

:::
can

:::::
grow if the SIC is reduced (increased). The small negative sensitivity of SIT to SND is

caused by the strong insolation
::::::::
insulation

:
effect of snow, which hampers the growth of sea ice (or fosters the growth if SND is

reduced).20

The physical process behind the small negative sensitivities on the initial ocean temperature needs no further explanation;

we recall, however, that, in the presence of sea ice, the control variable relates to a temperature change below the second model

layer (in
::
at 17m depth). The negative sensitivity on

::::
with

::::::
respect

::
to the zonal wind stress (WIX) mirrors less advection of thick

sea ice stemming
:::::::::
originating from the Beaufort Gyre.

::::
WIX

::
is

:::::::
positive

:::
for

:::::::
eastward

:::::
wind

::::::
stress.

::
A

:::::::
positive

::::::::::
perturbation

:::
on

::::
WIX

::
is

::::
most

:::::::
distinct

::
in

::::::
region

:
6
::::
(but

::::
also

::::::
evident

::
in
:::::::

regions
::
7

:::
and

::
8)

::::
and

:::::
slows

:::::
down

:::
the

:::::::
Beaufort

:::::
Gyre

::::::
which

::::::
advects

::::
less25

:::
sea

::
ice

::::
into

:::
the

:::::
target

::::::
region

::::
(sea

:::
ice

:::::::
behaves,

::
at

::::
least

:::
in

::::
April

::::
and

:::::
May,

::
to

:
a
:::::
large

:::::
extent

::::
like

:
a
:::::
rigid

::::
body,

::::
i.e.

:::
the

::::::
impact

::
in

::::::
regions

:
7
::::

and
::
8

:::
acts

::::::
almost

:::::::::::::
instantaneously

:::
on

:::
the

:::::
target

:::::::
regions)

::::::::
resulting

::
in

:
a
::::::::

negative
:::::::::
sensitivity.

::::
The SIT sensitivities on

model parameters
:
(Figure 14

:::
and

:::::::
enlarged

::
in

:
Figure 15)

:
are very small compared to the sensitivities on the initial state or the

atmospheric boundary conditions, as the short integration time (we sample the April mean of a model simulation starting on

April 1) restricts the impact of the parameters.30

The various freeboard products exhibit high sensitivity to initial SIT and SND
:::::::
(orange,

::::
red,

:::
and

:::::
green

::::
bars

::
in Figure 14

:
). As

SIT enters all freeboard observation operators in the same way (Section 2.5), the freeboard sensitivity on
::
to April mean SIT is

equal for all products, which also renders their sensitivity to initial SIT almost equal. The LFB sensitivity on the initial SND

is positive (LFB is the freeboard at the top of the snow layer) while the sensitivity of the RFB and SIFB is negative because

an increased SND will reduce the radar
::::
RFB

:
and SIFB through the increased weight on the ice floe . (see Figure 11). Due to35
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the definition of the observation operator for RFB (Equation (9)) its sensitivity to initial SND is larger than that of the SIFB

(Section 2.5). The sensitivity of the freeboard products with respect to the parameters of the sea ice and ocean model is low.

The impact of the sea ice density on the respective observation operators (Equation (8) to Equation (10)) is high, though, while

the sensitivity on
::::::::
sensitivity

::::
with

:::::::
respect

::
to the snow density is much lower (because the sea ice thickness is much larger than

the SND at the observational point). The SND shows only considerable sensitivity to the initial SND in control region 6 and5

some minor positive sensitivity on
:::
with

:::::::
respect

::
to the precipitation in the same region.

Likewise we computed target Jacobians N′ for each of the six target quantities (SIV and SNV each over 3 regions) described

in Section 2.2. Each target quantity is a scalar and thus the Jacobian has one entry for each component of the control vector.

As an example Figure 16 displays the Jacobians for SIV and SNV over the Outer New Siberian Islands (ONSI) region. The

first point to note is that sensitivities of regional SIV and SNV to the control vector differ, so an observation must constrain10

different components of the control vector to perform well for one or the other.

SIV over the ONSI region is highly sensitive to initial SIT over control regions 5 and 6
:
(Figure 17)

:
which at least partly

overlap with the target area. As the SIT observation and due to the same mechanisms discussed above, the SIV target quantity

also exhibits a negative sensitivity to the initial SIC, SND, and zonal wind stress. It is interesting to note that SIV is also

sensitive to initial and boundary conditions over more remote control regions. For example, it exhibits a positive sensitivity15

to the initial SIT in the control regions 1 and 7 from which thick sea ice is advected into the target region during the period

from April 1 to May 28. This also explains the negative sensitivity to the zonal wind stress in region 7 and the meridional wind

stress in region 1: For high enough concentration the sea ice almost behaves as an incompressible fluid allowing even for a

sensitivity to wind stress changes in very remote control regions, e.g. the negative sensitivity to the zonal wind stress in region

8. The positive sensitivity to the zonal wind stress in region 1 (with thick ice) may be less obvious, as it follows the deflection20

of ice drift by about 20◦ to the right. The largest SIV sensitivity to model parameters
:
(Figure 17)

:
is found for the snow albedo

of freezing conditions (albsn), but still that sensitivity is low compared compared to the sensitivity with respect to the initial

state and atmospheric boundary conditions.

SNV shows particularly high sensitivity to the initial SND but also considerable sensitivity with respect to the precipitation

and air temperature (region 6).
::
in

::::::
region

::
6. The largest model parameter sensitivity is found for the snow albedo for melting25

conditions: Increasing the snow albedo will reduce the melting.

4 Sea ice and snow volume uncertainty
::::::::::::
Experimental

:::::
setup

Based on the products shown in Table 2, we conducted assessments for the 15 cases listed in rows 4-18 of Table 3. Row three

(“prior”) shows a reference case without observations, i.e. it shows the uncertainty in the target quantities that result from the

prior uncertainty in the control vector. Then for each of the
:::::
These

::
15

:::::
cases

:::::
cover

:::
all

:::::::::::
combinations

::
of

:::
the

::::
five

:
SIT/freeboard30

products described in Section 2.5:

1. SIT
:
,
:

2. SIFB
:
,
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3. RFB,
:

4. hypothetical low accuracy LFB
:
,
:::
and

5. hypothetical high accuracy LFB there are three assessments, which cover the following cases:

:::
and

:::
the

::::::::
following

:::::
three

::::::::::
assessments

:::::::
variants:

:

1. product evaluated individually
:
,5

2. product evaluated together with a hypothetical low accuracy SND product
:
,
:::
and

:

3. product evaluated together with a hypothetical high accuracy SND product.
:

:::
The

::::::::
reference

:::
for

::::
these

:::::::::::
assessments

:
is
::
a
::::
case

::::::
without

:::::::::::
observations.

:::::
Row

::::
three

::::::::
(“prior”)

:::::
shows

:::
the

:::::::::::
uncertainties

::
in

:::
the

:::::
target

::::::::
quantities

:::
that

:::::
result

:::::
from

:::
the

::::
prior

:::::::::
uncertainty

::
in
:::
the

:::::::
control

:::::
vector.

:

5
:::
Sea

:::
ice

::::
and

::::
snow

:::::::
volume

::::::::::
uncertainty10

As explained in Section 2.1 the uncertainty component from the model error σ(ymod) in Equation (3) covers the residual

uncertainty that remains with an optimal control vector, i.e. it reflects uncertainty from uncertain aspects not included in the

model error and structural uncertainty reflecting wrong or missing process formulations. σ(ymod) is model-dependent and is

probably the most subjective component in the prior and posterior uncertainties. σ(ymod) acts as an offset (for the respective

variance) for all cases, and reduces the contrast between the cases. As the focus in our assessments lies
:::
our

::::::::::
assessments

:::::
focus15

on the differences between the cases, we exclude it from the target uncertainties in rows 3-18
:
of

:
Table 3 and provide estimates

in separate rows. To illustrate the subjective nature of this estimate and possible ranges, we derive two crude estimates (last

two rows). The first estimate (denoted by σmod, absolute and listed in the last but one row) assumes a model that perfectly

simulates the same ice-covered area of all three regions as our model and that, over this area, achieves an uncertainty of 0.2

m for SIT and of 0.1 m for SND. The second estimate (denoted by σmod, relativeand listed in the last row) assumes a model20

that simulates the same SIV and SNV as our model with an uncertainty of 10% for SIV and 30% for SNV. We use a higher

uncertainty for SNV because it has a stronger dependence on the surface forcing (mainly precipitation), for which the temporal

and small-scale spatial structures are not resolved in the control vector.

Figure 18 shows the uncertainty reduction with respect to the prior case as defined in Equation (5) for both SIV and SNV

and all three target regions. A value of 100% means that the product has resolved all uncertainty in the respective target25

quantity, while a value of 0% means that the product was not useful to improve the forecast of the target quantity. We first

discuss the single product assessments, i.e. without additional use of a hypothetical snow product. For all three regions, the SIT

has considerably better performance for SIV than for SNV. Between SIV and SNV the only difference consists in the target

Jacobians, N′. For example for target region ONSI, Figure 16 shows particularly high sensitivity of SIV to initial SIT and of

SNV to initial SND in control regions 6 and 5.
:
5
::::

and
::
6.

:
Hence, to constrain SIV (SNV) over that target region a product has30
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Table 3. Prior and posterior uncertainties of sea ice volume (SIV, columns 4-6) and snow volume (SNV, columns 7-9) respectively for three

regions in km3. Column 1 indicates observation, column 2 indicates uncertainty range (“product” refers to uncertainty specification provided

with product), column 3 indicates uncertainty range of additional hypothetical snow product (“–” means no snow product is used). In each

of columns 4-9 the lowest uncertainty range is highlighted in bold face font. The two bottom rows give estimates for the uncertainty due to

model error, i.e. the residual uncertainty with optimal control vector.

SIV SNV

Observation σ[m] σ(hs)[m] WLS ONSI ESS WLS ONSI ESS

Prior - - 136.5 131.6 289.6 62.3 63.3 110.1

SIT product - 28.7 34.3 94.4 59.5 61.3 107.9

SIT product 0.15 19.8 22.4 62.6 11.0 11.8 21.4

SIT product 0.02 12.4 10.4 24.1 2.4 2.5 4.5

Sea Ice Freeboard product - 86.4 84.1 203.4 40.4 39.8 75.2

Sea Ice Freeboard product 0.15 21.5 25.0 67.7 11.0 11.8 21.4

Sea Ice Freeboard product 0.02 12.6 11.0 25.3 2.4 2.5 4.5

Radar Freeboard product - 51.3 39.2 93.8 16.4 14.2 26.0

Radar Freeboard product 0.15 8.8 10.9 34.7 8.0 8.3 16.6

Radar Freeboard product 0.02 3.0 3.8 12.4 2.2 2.3 4.4

Laser Freeboard 0.20 - 81.0 67.0 143.9 17.7 17.1 30.8

Laser Freeboard 0.20 0.15 20.4 22.1 57.8 9.0 9.6 17.7

Laser Freeboard 0.20 0.02 12.2 10.7 24.8 2.3 2.4 4.5

Laser Freeboard 0.02 - 11.5 9.0 20.0 2.5 2.3 4.2

Laser Freeboard 0.02 0.15 6.6 6.0 14.6 1.9 2.0 3.7

Laser Freeboard 0.02 0.02 2.4 2.7 8.3 1.3 1.4 2.6

σmod, absolute - - 30.3 36.2 73.5 15.1 18.1 36.8

σmod, relative - - 48.7 70.8 165.9 10.2 11.4 5.3

to constrain primarily initial SIT (SND) over these two control regions. Figure 14 shows that, indeed, SIT provides a much

stronger constraint on initial SIT than on initial SND. By
:
In

:
contrast to SIT, SIFB has similar performance for SIV and SNV,

over all target regions (Figure 18). Compared to SIT, SIFB shows a much lower sensitivity to initial SIT but a higher sensitivity

to initial SND (Figure 14 - the sign of the sensitivity is irrelevant in this consideration), and thus a more balanced performance

for SIV and SNV than the SIT product. RFB and the two hypothetical LFB products achieve a better performance for SNV5

than for SIV. The only difference between the RFB and SIFB Jacobians is the larger impact of hs/c for RFB, as a consequence

of the correction for the signal propagation through snow (see Section 2.5). This is the reason
:::::
Hence, why RFB shows a better

performance for SNV than for SIV, while SIFB had about equal performance for SIV and SNV. LFB has the same sensitivity to

initial SIT as RFB but an even larger sensitivity to initial SND. Consequently, for the low accuracy LFB product, the imbalance
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between the performance for SIV and SNV is even higher than for the RFB product. The
:::
This

:::::::::
imbalance

::
is

:::::
lower

:::
for

:::
the high

accuracy LFB producthas so good performance on SIV already, ,
:::::::
because

::::
this

::::::
product

:::::::
already

::::::::
performs

:::::::::
excellently

:::
on

::::
SIV

::::
such that there is not much scope for yet better

:::::
further

::::::::
increases

::
in

:
performance on SNV.

So far we have discussed for a given product the differences in performance for SIV and SNV
::
for

::
a

::::
given

:::::::
product. Next we

address performance differences between products. The first thing to note is that the step
:::::
First,

::
we

::::
note

::::
that

::::::::
switching from SIT5

to SIFB drastically reduces the performance for SIV. As explained in Section 2.5, on the retrieval
:::::::
left-hand

:
side of Figure 12

the step
:::::::
(retrieval

:::::::
branch)

::::::::
switching

:
from SIFB to SIT applies Archimedes’ principle, with uncertain assumptions primarily

on the input variables snow and ice density and snow depth, which yield an increase in product uncertainty by about an order

of magnitude (Figure 13 and Table 2). On the modelling
::::::::
right-hand side of Figure 12 the step

:::::::::
(modelling

::::::
branch)

:::::::::
switching

from SIT to SIFB is dealing with uncertainty on the same input variables (snow and ice densities and snow depth), which10

renders the simulation of SIFB more uncertain than that of SIT. In the model, the uncertainty in these variables is determined

by the prior uncertainty of the control vector, either directly (snow and ice densities) or indirectly (snow depth) through their

model-simulated dependency on the control vector. It appears that the increase in uncertainty, when going from SIT to SIFB

on the modelling side
:::::
branch, overcompensates for the reduction in uncertainty on the retrieval side, when going back from

SIT to SIFB. In other words, on the modelling side
::::::
branch, the assumptions on uncertain input appear more conservative than15

those on the retrieval side
::::::
branch. On the retrieval side

::::::
branch going (backwards) from SIFB to RFB consists in a reduction of

product uncertainty by about another order of magnitude, as the retrieval of RFB does not require information on snow depth.

Even with this further reduction of product uncertainty, the performance of RFB is inferior to that of SIT for SIV over WLS

and ONSI, and only just superior for SIV over ESS.

Differences between target regions in the performance of the same product are the result of a complex interplay of the20

Jacobians N′ for the target regions and
:::
the product’s constraint on the control vector quantified by C(x) (see Equation (3)).

For each of the target regions a different (combination) of control regions is most relevant: For WLS this is control region 5

(not shown), for ONSI control region
::::::
regions

:
5 and 6 (Figure 16

:::
and

:::::::
enlarged

::
in

:
Figure 17) and for ESS on control region

::::::
regions 6 and 7 (not shown). The ability of a product to constrain a particular control region is determined by the combination

of the observational Jacobian of the product and the product uncertainty (see Equation (1)).25

One is always tempted
::
It

:
is
::::::::
tempting to explain regional performance differences in a simple way, just from

:::::::::::
simplistically

:::
by

::::::
linking

::::
them

::
to

:
differences in observational coverage and uncertainty. Technicallythis means to replace ,

::::
such

:::
an

::::::::::
explanation

::::::::::
corresponds

::
to

::::::::
replacing

:
our observational Jacobian M′ that is based on model dynamics by

:::
with

:
a drastically simplified

representationbased on the assumptions
:
.
::::
Such

::
a
::::::::
simplistic

::::::::
approach

::::::
would

:::::
imply that only observations over a given control

region do constrain that
:::::::
constrain

::::
that

:::::
same

:
region (and no otherregion

::::
none

:::::
other), and that the observational Jacobian for30

each product and control variable is spatially uniform. The constraint
:::::::::
constraints

:
of a product on a control region would then

be proportional to the square root of the number of samples n of that region and to the reciprocal of the average observational

uncertainty σ over the region. Table 2 shows both impact factors for the most relevant control regions, i.e. 5-7. For RFB and

compared to region 6, the relevant quantity
√
n/σ is about 41% lower in region 5 and 12% lower in region 7. This is at least

quantitatively in line with the performance decrease for RFB and SIV from ONSI (most relevant regions:
::
in

:::::
region

:
6 and35
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to smaller extent
::
in 5) to ESS (most relevant regions:

::
in

:::::
region

:
6 and to smaller extent

::
in

:
7) to WLS (most relevant region:

::
in

:::::
region

:
5). But the performance ranking for RFB and SNV is different, i.e. the simple explanation already fails

::::::::
simplistic

:::::::
approach

::::
does

:::
not

:::::
hold. Also for SIT, the differences in

√
n/σ between the three control regions are smaller and fail to explain

the performance decrease from WLS to ONSI to ESS. Such calculations demonstrate the limits of a performance assessment

that is only based on observational coverage and uncertainty, while neglecting the model dynamics.5

The two hypothetical LFB products have a slightly better spatial coverage of the most relevant control regions than the

products derived from CryoSat-2 and use uniform data uncertainties that span the range from 2 cm (high accuracy LFB) to

20 cm (low accuracy LFB). We need to recall here
:::::
Recall that the specified data uncertainty combines () the observational

uncertainty (i.e. product uncertainty) with the residual model uncertainty due to structural errors and uncertain contributions

not accounted for in the control vector
:
(Equation (2)

:
). Only the high accuracy LFB can clearly outperform all CryoSat-210

products for both SIV and SNV and over all three regions, while the low accuracy LFB is between that of SIFB and RFB.

Next we discuss the effect of combining either of these five products with the two hypothetical SND products. The difference

in the (sample row of the) respective product Jacobians shown in Figure 14 suggests complementarity of SND to the SIT and FB

::::::::
freeboard products. Indeed, the combination with SND considerably increases the performance of all SIT/freeboard products

for SIV and SNV and over all regions. Most striking is the lift of the
:::::::
improved

:
SIT performance for SNV. The combination15

with SND results in similar performance for SIT and SIFB, slightly better performance of low accuracy LFB, yet slightly

better performance for RFB and the best performance for the high accuracy LFB. The assessment for SIV and in combination

with low accuracy SND yields the same performance ranking of products, with slightly larger differences between products.

Combining with the high accuracy SND product instead of the low accuracy SND product yields a performance gain for all

products and for SIV and SNV over all regions.20

Between the two LFB products, the increase in accuracy yields a considerable performance gain for SIV and SND over all

regions, when assessed individually and in combination with SND. The
::::
Over

::
all

:::::::
regions

::
the

:
combination of the high accuracy

LFB with the low accuracy SND performs better for SIV and SNV over all regions
::::
than

:::
the

::::::::::
combination

:::
of

:::
the

:::
low

::::::::
accuracy

::::
LFB

::::
with

:::
the

::::
high

:::::::
accuracy

:::::
SND.

::::
For

::::
SNV

:::
the

:::
two

::::::::::::
combinations

:::
are

::::::
similar

::
in

::::::::::
performance.
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Jacobian rows

Figure 14.
::

The
:::::::::

sensitivities
::

of
:::

the
::::::::
respective

:::
EO

::::::
product

::
to

:::
the

::::::
control

:::::
vector

:::::::::::
(“observational

:::::::::
Jacobians”)

:
for a April means of SIT

::::
LFB

:::::
(orange

:::::
bars), SIFB, RFB

:::
(red

::::
bars),

:::
SIFB

:::::
(green

:::::
bars),

:::
SIT

:::::
(black

::::
bars) and LFB

::::
SND

::::
(cyan

::::
bars) over a single point indicated by the black

dot (and by yellow
::::
black cross on Figure 3).

:::
The

::::::::::
observational

:::::::
Jacobians

::::
with

::::::
respect

:
to
:::
the

::::::
process

::::::::
parameters

:::
are

:::::
shown

::
in

::
the

:::
left

::::::
middle

::::
panel.

::::
The

::::
other

:::::
panels

::::
show

:::
the

::::::::::
observational

:::::::
Jacobians

::::
with

::::::
respect

::
to

::
the

:::::
initial

:::
and

::::::
forcing

::::
fields

::::
(see Table 1

::
for

::
an

:::::::::
explanation

::
of

:::
the

:::::::::::
abbreviations).
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Figure 15.
:::
An

:::::
excerpt

::
of
:
Figure 14

::
of

:::
the

::::::::::
observational

:::::::
Jacobian

::::
(top)

:
in
:::::

target
:::::
region

:
6
:::::

(“East
:::::::

Siberian
::::
Sea”)

::::
and

::::::
(bottom)

:::
for

:::
the

:::::
model

::::::::
parameters.

:
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Figure 16. Jacobians
::
As Figure 14

::
but

:
for

:::
the

:::::::::
sensitivities

::
of

::
the

:
sea ice (SIV) and snow (SNV) volume over

:::
the target region Outer New

Siberian Islands (ONSI)
::
on

::
the

::::::
control

:::::
vector

::::::
(“target

:::::::::
Jacobians”).
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Figure 17.
:::
An

:::::
excerpt

::
of

:
Figure 16

::
for

:::
the

:::::
target

::::::
Jacobian

::::
(top)

::
in
:::::
target

:::::
region

:
6
:::::
(“East

:::::::
Siberian

::::
Sea”

:
-
:::
left)

:::
and

:::::
region

::
5
:::::::
(“Laptev

::::
Sea”

:
-

::::
right)

:::
and

:::::::
(bottom)

::
for

:::
the

:::::
model

:::::::::
parameters.
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Figure 18. Uncertainty reduction for sea ice (SIV) and snow (SNV) volume over target regions
::::
when

::::
using

:::::::::::
observational

::::::::
constraints.

:::
The

:::::
colour

::
of

::
the

::::
bars

::::::::
represents

::
the

:::::::
different

::::::::::
observational

:::::::::
constraints.

::::::::
Yellowish:

:::
SIT

:::
and

:::
SIT

::
in

::::::::::
combination

:::
with

::
a
:::::::::
hypothetical

::::
snow

:::::
depth

:::::
product

::::
with

:::
two

:::::::
different

::::::::::
uncertainties

:::::
(15cm

:::
and

:::::
2cm),

::::::
reddish:

::
as

:::
SIT

:::
but

::
for

:::::
SIFB,

:::::::
greenish:

::
as

:::
SIT

:::
but

:::
for

::::
RFB,

:::::
bluish:

::
as

:::
SIT

:::
but

:::
for

:::::::::
hypothetical

::::
LFB

:::
with

:::::
20cm

:::::::::
uncertainty,

::::::
grayish:

::
as

:::
SIT

:::
but

:::
for

:::::::::
hypothetical

::::
LFB

:::
with

::::
2cm

:::::::::
uncertainty.
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6 Discussion

There are a number of factors in the setup of our ArcMBA system that impact our assessments. One of them is the model that

is required to realistically compute the sensitivities (Jacobians) of the target quantities and of the observation equivalents to

changes in the control vector. As detailed in Section 2.3, the MPIOM has a state of the art representation of processes, compares

reasonably well with a range of observations
:::::::::::::::::::::::::::::::::
(Notz et al., 2013; Kaminski et al., 2017), and the setup

::
of

:::::::
MPIOM

:
we are using5

has a spatial resolution below the grid size of the observations and well below the size of the target regions. The model thus

appears appropriate for our study and the ArcMBA system in general. Nevertheless, through the Jacobians the results depend

on the model, and it would be useful to confirm the robustness of the assessments through the use of a second model,
::
or
:::::

even

::
an

::::::::
ensemble

::
of

::::::
models.

The study has investigated the performance of four-week forecasts in May 2015. It would be interesting to analyse if the10

relative performance of the products varies from year to year and with the length of the forecasting period, and how the

products perform for different
::::
The

:::::
impact

:::
of

::
an

::::::::::
observation

::
is

:::::
likely

::
to

::::::
depend

::
on

:::
the

::::
state

:::
of

:::
the

:::::
Arctic

::::::
sea-ice

:::::
ocean

:::::::
system.

:::
The

:::::::::
robustness

::
of

:::
the

::::::::
ArcMBA

::::::::::
assessments

::::
can

:::
thus

:::
be

::::::::
increased

:::::::
through

::::::::
extension

::
of

:::
the

::::::
system

:::
for

::
an

::::::::
ensemble

::
of
:::
ice

::::
and

:::::
ocean

:::::::::
conditions

::::::::::
representing

:::::::
different

::::::::::
forecasting

:::::
times

:::
(for

::::::::
example

::
2,

::::
7-10,

::::
and

::
90

:::::
days

:::
and

::::
also

:
0
:::::
days,

:::
i.e.

:::
an

::::::::
analysis),

:::::::
different

:::::::
seasons,

::::::::
different

::::::
typical

:::::
years

::::::::::
(potentially

::::
also

::::::::
including

:::::::::
conditions

:::
of

::::
very

::::
low

:::
ice

::::::
cover),

::::
and

:::::::
different

:
target15

regions and variables, e.g. SIC.

In our setup, the control vector has 157 components. In particular within any of our 9 control regions we do not resolve

changes in the spatial patterns of the initial conditions nor in the spatio-temporal patterns of the forcing data. This means

that we are ignoring uncertain aspects in the inputs that determine our simulation, which results in so-called aggregation

errors (Trampert and Snieder, 1996; Kaminski et al., 2001) and renders the ArcMBA assessments of the product impacts too20

optimistic. As the target quantities are integrals over large regions, we expect, however, that our control regions can capture

most of the uncertainty. Also the set of reasonable surface forcings is in practise limited by physical relations between variables,

in space , and in time. Similar restrictions apply to the initial state. Further, we use the same control vector for all cases, so that

the relative performance with respect to the prior (uncertainty reduction) and among products is more reliable. Nevertheless

it appears useful to explore extended control vectors, for example with decreased sizes of the control regions, in particular in25

areas with high impact on observations or target quantities.

Another factor that impacts our assessments are correlations in the data uncertainty. These uncertainty correlations are

difficult to estimate. We used zero correlation for each of the products, which is certainly the most optimistic assumption

and yields the best performance. As we made this assumption consistently for all products, the relative performance between

the products is less affected. To illustrate the implications of uncorrelated uncertainty in the products, we have computed the30

resulting uncertainty in the respective average of each observable over all sampled grid cells (last column of Table 2). This

yields for the April 2015 mean of SIT about 2cm
:
2
:::
cm, of SIFB about 2mm

:
2

:::
mm, of RFB about 0.4mm

::
0.4

::::
mm and (using

the respective high-accuracy versions) of LFB and SND about 0.1mm
:::
0.1

:::
mm.
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The effect of uncertainty correlation on the assessments can be demonstrated also by the following simplified calculation: If

we partition our product grid into groups of n by n pixels, and assume perfect uncertainty correlation and the same Jacobian

for each observation within a given group, then we decrease the first term in Equation (1) by a factor of n2. This case then

yields the same results as a case with an uncertainty that is uncorrelated and increased by a factor of n. This means we can

interpret the impact of the low resolution LFB product (uncorrelated uncertainty of 20 cm) as the impact of a high resolution5

LFB product (with 10 times lower uncertainty, i.e. 2 cm) in which the uncertainty within each 10 by 10 group of pixels is

completely correlated. Likewise for the SND product and (roughly) 6 by 9 groups of pixels, because (15 cm/2 cm)2 is about

6× 9. One reason for spatial uncertainty correlation would be a sensor footprint that exceeds the size of a 25km EASE grid

cell. Likewise, for sensors with footprints considerably smaller than a 25km EASE grid cell, the procedure for upscaling from

the sampled fraction of a grid cell to a grid-cell average could suffer from systematic errors that affect large scales in the same10

way, which would result in large-scale uncertainty correlations.

Our hypothetical products (LFB and SND) observe every pixel with SIC above 0.7. This is optimistic but, at least for snow,

not totally unrealistic, depending on the mission concept. Recalling that the data uncertainty has to include also an uncertainty

from model error, the value of 0.02 m for the high accuracy products (without spatial correlation) is extreme and unrealistic (as

it is already
:
a challenging requirement on the observational uncertainty) but still useful as a sanity check .

::
for

:::
the

::::::::::::
methodology.15

:::
We

::::
note

::::
that,

::::
even

:::
for

::
the

::::::::::
assessment

::
of

::
an

:::::::::
individual

:::::::
product,

:::
the

::::::::
posterior

:::::::::
uncertainty

::
on

:::
the

:::::
target

:::::::::
quantities

:
is
::::
not

:
a
::::::
simple

:::::
linear

:::::::
function

::
of

:::
the

:::::::
product

::::::::::
uncertainty,

:::::::
because

::
of
::::

the
::::::::::
contribution

:::::
from

:::
the

::::
prior

:::::
term

::
in Equation (1).

::::
This

:::::::
means,

:::
for

:::::::
example,

:::
the

::::::::
posterior

:::::::::::
uncertainties

:::::::
achieved

:::
by

:
a
:::::::::::
hypothetical

::::
LFB

::::::
product

::::
with

::::
0.11

:::
cm

::::::::::
uncertainty

::::
will

:::
not

::
be

:::
the

:::::::
average

::
of

:::
the

:::::::
posterior

:::::::::::
uncertainties

:::::::
achieved

:::
by

:::
our

::::
two

::::::::::
hypothetical

::::
SND

::::::::
products

::::
with

::::::::
respective

:::::::::::
uncertainties

::
of

::::
0.02

::
m

::::
and

::::
0.20

::
m.

:::
For

:::::::::
combined

:::::::::
assessment

:::
of

:::::::
multiple

::::::::
products

:::
the

::::::
relation

::::::::
between

:::
the

:::::::::
uncertainty

:::
of

:
a
::::::
single

::::::
product

::::
and

:::
the

::::::::
posterior20

:::::
target

:::::::::
uncertainty

::
is

:::
yet

::::
more

::::::::
complex.

:

The uncertainty specified with the SIT product is higher than the uncertainty specified with the SIFB products derived from

CryoSat-2. This increase reflects the inclusion of uncertainty input quantities for the application of Archimedes’ principle,

in particular of climatological snow depth. In the assessment of SIFBArchimides
:
,
::::::::::
Archimedes’ principle is applied in the

observation operator, where the input quantities including snow depth are taken from the model. The fact that the impact25

of SIFB on SIV is lower than than that of SIT indicates that the assumptions on the uncertainty of input quantities for the

application of Archimedes’ principle is more conservative on the modelling side
:::::
branch

:
than those that were made on the

retrieval side
:::::
branch

:
(yielding the respective product uncertainties). More conservative assumptions on the retrieval side

::::::
branch

would yield higher uncertainty in the SIT product. We also note that the use of the RFB product that
:::::
biases

::::
may

:::
be

:::::::
reduced

::::
when

:::::
using

:::
the

::::
RFB

:::::::
product

::::::
instead,

::
as

::
it does not rely on an external snow depth climatology but uses a consistently simulated30

snow depthmay reduce biases.
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7 Summary and conclusions

The ArcMBA tool was used to assess the impact of a series of EO products on the quality of four-week forecasts of SIV and

SNV over three regions along the Northern Sea Route
::::
NSR

:
in May 2015. The tool is built around the MPIOM, a coupled

model of the sea ice-ocean system extended by observation operators that link the simulated variables to equivalents of SIT,

SIFB, RFB, LFB, and SND products.5

On the basis of the per-pixel uncertainty ranges that are provided with the CryoSat-2 SIT, SIFB, and RFB products, the SIT

achieves a much better performance for SIV than the SIFB product, while the performance of RFB is more similar to that of

SIT. For SNV
:::
and

::::
RFB

::::::::
products

::::::
achieve

:::
the

::::
best

:::::::::::
performance

:::
for

:::
the

:::::
target

::::
SIV.

:::
For

:::
the

:::::
SNV

:::::
target, the performance of SIT

is only low, the performance of SIFB higher and the performance of RFB yet higher. A hypothetical LFB product with low

accuracy (20 cm uncertainty) lies in performance between SIFB and RFB for both SIV and SNV. A reduction in the uncertainty10

of the LFB product to 2 cm yields a significant increase in performance.

Combining either of the SIT/freeboard products with a hypothetical SND product achieves a significant performance in-

crease. The uncertainty in the SND product matters: A higher accuracy product achieves an extra performance gain.

The provision of spatial and temporal uncertainty correlations with the EO products would be beneficial not only for assess-

ments within systems like the ArcMBA, but also for assimilation of the products. For example, complete uncertainty correlation15

within each group of 10 by 10 pixels (with uniform Jacobians within each group) is equivalent to an uncertainty increase by a

factor of 10.

The ArcMBA can be extended to cover further EO products and further target variables. In the setup used here the model

can simulate a range of sea ice-ocean variables in addition to those considered in the present study (e.g. ice drift, mixed

layer depth, freshwater,
:::
sea

::::::
surface

:::::::
salinity,

::::
sea

::::::
surface

:::::::::::
temperature,

:::
or circulation). Switching to a more comprehensive20

model configuration would enable the investigation of yet further variables. For example the model can be operated with its

biogeochemistry module HAMOCC (Ilyina et al., 2013) or in a mode coupled to an atmospheric general circulation model.

The study has investigated the performance of four-week forecasts in May 2015. It would be interesting to analyse how the

relative performance of the products varies from year to year, with the length of the forecasting period, for other target regions,

and with a different sea ice-ocean model.25

::
As

:::
the

:::::
QND

::::::::
approach

::::
can

:::::::
evaluate

:
a
::::::

(group
:::
of)

:::::::::::
hypothetical

:::::::::
product(s)

:
-
:::::::::::
characterised

:::
by

::::
their

:::::::::
space-time

::::::::
coverage

::::
and

:::::::::
uncertainty

::::::
ranges

:
-
::

it
::
is
:::::::::

generally
:::::
suited

::
to

::::::
assess

:::
the

::::::
benefit

:::
of

:::::
filling

::
a
:::::
given

::::::::::::
observational

::::
gap.

::
It

:::::::
provides

:::::::
answers

:::
to

::::::::::
hypothetical

::::::::
questions

::::
such

:::
as:

:::::::::
“Provided

:::
we

:::::
could

::::::
derive

::
a

::::::
product

:::
of

:
a
:::::

given
::::::::

variable
::::
with

:
a
:::::

given
:::::::::

accuracy,
::
at

::
a

:::::
given

:::::::
sampling

:::::::::
frequency

::::
and

::::::
spatial

::::::::
coverage.

:::::
What

::
is

:::
the

::::::
added

:::::
value

::
of

::::
this

:::::::::
additional

::::::::::
observation

:::
for

:::
the

::::::
quality

::
of

::::
sea

:::
ice

:::::::
forecasts

:::
(as

:::::::::
quantified

::
by

::::::::::
uncertainty

::::::::
reduction

:::
in

:
a
:::
set

::
of
:::::::::

predicted
:::::
target

:::::::::::
quantities)?”

:::::::
ArcMBA

:::::::::::
assessments

::
of

::
a

::
set

:::
of30

::::
such

:::::::
products

:::::
(each

:::::
filling

:::
an

:::::::::::
observational

::::
gap)

:::
can

::::
help

::
to

::::::::
establish

:
a
::::::
priority

::::
list.

The ArcMBA system is an ideal framework to assist the formulation of mission requirements or the development of EO

products. Through
::
In an end-to-end simulation it can translate product specifications in terms of spatio-temporal resolution and

coverage, accuracy, and precision into a range of performance metrics
:
.
:::::::::::
Alternatively,

::
it

:::
can

:::::::
translate

:::::::::::
requirements

:::
on

:::::::
forecast
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::::::::::
performance

::::
into

:::::::::::
requirements

:::
on

:::
the

::::::::
respective

:::::::::::
observables.

:::
As

:::::::::::
demonstrated

:::
in

:::
the

::::::
present

:::::
study,

::::
the

::::
joint

:::::::::
assessment

:::
of

:::::::
products

::::
from

:::::::::::::
(constellations

:::
of)

:::::::
multiple

:::::::
satellites

::
is
::::

one
::
of

:::
the

:::::::::
particular

:::::::
strengths

:::
of

:::
the

::::::::
ArcMBA

::::::::
approach.

::::
This

::::
type

:::
of

:::::::::
assessment

:::
can

::
be

:::::::::
performed

:::
for

::::::::::
higher-level

:::::::
products

::::
(e.g.

:::
SIT

::
or

:::::
SIC)

::
but

::::
also

:::
for

:::::
rawer

:::::::
products

::::
(e.g.

::::::::
freeboard

::
or

:::::::::
brightness

::::::::::
temperature).
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