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 8 
Abstract 9 

Patterns of distinct preferential pathways for fluid flow and solute transport are ubiquitous in 10 

heterogeneous, saturated and partially saturated porous media. Yet, the underlying reasons for 11 

their emergence, and their characterization and quantification, remain enigmatic. Here we 12 

analyze simulations of steady state fluid flow and solute transport in two-dimensional, 13 

heterogeneous saturated porous media with a relatively short correlation length. We 14 

demonstrate that the downstream concentration of solutes in preferential pathways implies a 15 

downstream declining entropy in the transverse distribution of solute transport pathways. This 16 

reflects the associated formation and downstream steepening of a concentration gradient 17 

transversal to the main flow direction. With an increasing variance of the hydraulic conductivity 18 

field, stronger transversal concentration gradients emerge, which is reflected in an even smaller 19 

entropy of the transversal distribution of transport pathways. By defining “self-organization” 20 

through a reduction in entropy (compared to its maximum), our findings suggest that a higher 21 

variance and thus randomness of the hydraulic conductivity coincides with stronger macroscale 22 

self-organization of transport pathways. While this finding appears at first sight striking, it can 23 

be explained by recognizing that emergence of spatial self-organization requires, in light of the 24 

second law of thermodynamics, that work be performed to establish transversal concentration 25 

gradients. The emergence of steeper concentration gradients requires that even more work be 26 

performed, with an even higher energy input into an open system. Consistently, we find that 27 

the energy input necessary to sustain steady-state fluid flow and tracer transport grows with the 28 

variance of the hydraulic conductivity field as well. Solute particles prefer to move through 29 

pathways of very high power, and these pathways pass through bottlenecks of low hydraulic 30 

conductivity. This is because power depends on the squared spatial head gradient, which is in 31 

these simulations largest in regions of low hydraulic conductivity.   32 
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1 Introduction 33 

1.1 Preferential flow phenomena – fast, furious and enigmatic 34 

Distinct patterns of preferential movement of water, dissolved and suspended matter are 35 

ubiquitous in fully-saturated aquifer systems (e.g., LaBolle and Fogg, 2001; Bianchi et al., 36 

2011; Berkowitz et al., 2006), partially saturated soils (e.g., Beven and Germann, 1982) and at 37 

the land surface (e.g., Uhlenbrook, 2006). Preferential flow and solute transport in porous media 38 

commonly leads to fast, localized early arrivals and/or long tailing in temporal breakthrough 39 

curves (e.g., Berkowitz et al., 2006) and pronounced fingerprints in concentration patterns in 40 

soils (Flury et al., 1994).  41 

Preferential flow and transport often occur along connected highly conductive networks. Some 42 

networks are formed by previous physical/chemical work performed by the fluid, as in the cases 43 

of surface rill and river networks (Howard, 1990), subsurface pipe networks (Jackisch et al., 44 

2017), karst conduits (Groves and Howard, 1994), and fractured rock formations (Becker and 45 

Shapiro, 2000; Berkowitz, 2002). Other networks are created by soil fauna and flora as earth 46 

worm burrows (Zehe and Flühler, 2001; van Schaik et al., 2014) and plant roots (Wienhöfer et 47 

al., 2009; Tietjen et al., 2009). Although it might appear unsurprising that flow and transport 48 

through these networks dominates system behavior, effective ways to model flow and transport 49 

in these networks have been debated for more than 30 years (Beven and Germann, 1981; 50 

Šimůnek et al., 2003; Klaus and Zehe, 2011; Wienhöfer and Zehe, 2014; Berkowitz et al., 2006, 51 

Sternagel et al., 2019, 2020). Preferential flow and transport occurs, however, also in porous 52 

media without such “well-defined” networks, e.g., in coarse-grained soils due to fingering and 53 

wetting front instabilities (Blume et al., 2009; Dekker and Ritsema, 2000; Ritsema et al., 1998) 54 

and particularly in stochastically heterogeneous saturated porous media (Bianchi et al., 2011; 55 

Edery et al. 2014). 56 

The emergence of preferential pathways in systems without well-defined networks – and their 57 

characterization – remains even more enigmatic. The numerical study of Edery et al. (2014), 58 

for example, revealed that a higher variance in the hydraulic conductivity (K) field coincided 59 

with a stronger concentration of solutes within a smaller number of preferential flow paths. If 60 

the emergence of preferential flow is indeed manifested self-organization, as argued by 61 

Berkowitz and Zehe (2020), this key finding of Edery et al. (2014) suggests that macroscale 62 

steady states of stronger organization (or higher order) emerge and persist despite a greater 63 
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degree of subscale randomness. The related key questions we address here are (i) how spatial 64 

organization in preferential fluid flow and solute transport can be quantified, and (ii) why a 65 

larger subscale randomness might favor stronger macroscale organization.  66 

1.2 Attempts to characterize and predict preferential transport in groundwater 67 

The emergence of preferential pathways of fluid flow and solute transport in saturated porous 68 

media has been explored in numerous simulation studies in heterogeneous conductivity fields, 69 

to relate the spatial correlation structures of the hydraulic conductivity and velocity fields to 70 

features of anomalous transport behavior (e.g., Cirpka and Kitanidis, 2000; Willmann et al., 71 

2008; Berkowitz and Scher, 2010; de Dreuzy et al., 2012; Morvillo et al., 2021). While velocity 72 

correlation parameters have been successfully related to statistical moments of hydraulic 73 

conductivity, it remains challenging or even impossible to a priori delineate preferential 74 

pathways exclusively based on multivariate and topological characteristics of the hydraulic 75 

conductivity field. Cirpka and Kitanidis (2000) and Willmann et al. (2008) report, for instance, 76 

the emergence of preferential pathways in the distributions of tracer travel velocities and shapes 77 

of solute plumes. These pathways were not apparent, however, from the analysis of the 78 

stationary conductivity fields. Moreover, Edery et al. (2014) demonstrate that critical path 79 

analysis (based on percolation theory), for example, does not determine the actual preferential 80 

pathways in a system; the authors suggest that the operational preferential pathways become 81 

fully apparent only when solving for fluid flow and solute transport through the domain. 82 

Bianchi et al. (2011) explored the link between connectivity and the emergence of preferential 83 

flow paths at the MADE site, using three-dimensional, conditional, geostatistical realizations 84 

of the hydraulic conductivity field. Their simulations of flow and transport under permeameter-85 

like boundary revealed that the first 5% of particles, arriving at the downstream domain outlet, 86 

moved through preferential flow paths carrying 40% of the flow. Fiori and Jankovic (2012) 87 

reported similar findings and stressed the rather small probability that solute particles visit 88 

highly conductive blocks particularly in case of a high variance in K. Bianchi et al. (2011) 89 

highlighted that the fraction of particle paths passing the high-conductivity regions was between 90 

43% and 69%, while the most rapid transport passed through low-conductivity bottle necks. 91 

This is in line with the findings of Edery et al. (2014), who concluded that connectivity of rapid 92 

preferential pathways need not require connected zones of continuously high hydraulic 93 

conductivity. Along a different avenue, Bianchi and Pedretti (2017) characterized spatial 94 
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disorder in two-dimensional conductivity fields by means of the Shannon entropy (Shannon, 

1948) and related this to moments of solute breakthrough curves. Dispersion in travel times and 

the probability of solutes to pass through low conductivity regions were found to increase with 

lower order expressed by a higher geological entropy.   

1.3 Preferential flow, self-organization, entropy, work – where is the connection? 

The results of the studies mentioned above all underpin that (a) preferential flow and transport 

in heterogeneous, saturated porous media remains a largely enigmatic and emergent 

phenomenon, and (b) efforts to represent this behavior by means of effective transfer functions, 

inferred from volume-averaging based scaling of the hydraulic conductivity field, appear 

virtually impossible. This is why, we propose to shift the attention from the question of “where” 

preferential pathways emerge, to questions regarding their “macroscale organization and 

strength”, and “the necessary physical work” to establish their self-organized emergence.  

Haken (1983) defined self-organization as the emergence of ordered macroscale states, or the 

dynamic behavior of an open system far from thermodynamic equilibrium (TE), that arises from 

a synergetic interplay of microscale, irreversible processes. An ordered state is characterized 

by the deviation of its entropy from the entropy maximum at TE (Kondepudi and Prigogine, 

1998, see section 3). This reduction in entropy, and any additional entropy produced by the 

internal irreversible processes, must be exported from the open system to establish order. This 

in turn requires physical work, and thus an input of free energy into the system, that is large 

enough to create and maintain the self-organized state. A classical example to illustrate that 

self-organization in open systems requires free energy and work, which inspired also Haken’s 

theory of “synergetics”, is a gas laser. Laser light results from coherent stimulated light 

emissions from all molecules in the system. Stimulated emission emerges when the energy 

input to the gas laser becomes sufficiently large that the number of stimulated molecules 

exceeds the number of molecules in the basic state. This “energetic pumping” establishes a 

state very far from thermodynamic equilibrium, corresponding to an even apparently negative 

absolute temperature in Boltzmann statistics, at which coherent emission from all individual 

emissions emerges. Haken (1983) postulated that a higher-order, non-local “enslavement 

principle” forces the individual molecules into a coherent and thus ordered behavior. This 

example of a critical pumping rate to establish organization of laser light will be shown below 

(section 4) to be analogous to fluid flow through porous media. 

125 
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Several researchers have suggested that self-organization and the formation of complex 
organisms and patterns in biological and environmental systems are governed by non-
local/global energetic extremal principles, in analogy to the Haken (1983) enslavement 
principle. Pioneering studies in this context proposed that species maximize their energy 
throughput (i.e., power) during evolution (Lotka, 1922 a &b) or showed that steady-state 
planetary heat transport may be modeled successfully with a very simple two-box model, when 
assuming that this state maximizes entropy production (Paltridge, 1979). This work motivated 
several studies that explored the possibility that energetically optimized model setups allow 
hydrological prediction of the land surface energy balance and evaporation (Kleidon et al., 
2014; Zehe et al., 2013), rainfall runoff behavior (Zehe et al., 2013) and groundwater flow and 
spring discharge (Hergarten et al., 2014). These and other studies generally showed that 
preferential flow in connected networks allows for a more energy efficient throughput of water 
and matter through the system. This is because they reduce flow-weighted dissipative losses 
due to an increased hydraulic radius in the rill or river network compared to sheet overland flow 
(Howard, 1990; Kleidon et al., 2013) or in subsurface connected preferential pathways 
compared to matrix flow (Hergarten et al., 2014; Zehe et al., 2010).  

While the second law of thermodynamic refers to physical entropy (introduced by Clausius 
(1857), section 3.1), information entropy (introduced by Shannon (1948)) is closely related and 
well suited for diagnosing spatial organization (section 3.3). The concepts of information and 
Shannon entropy having been used widely to characterize irreversible mixing and reaction 
processes and their predictability (Chiogna and Rolle, 2017), the emergence of order in 
distributed time series (Malicke et al., 2020), information in multiscale permeability data 
(Dell`Oca et al., 2020) and the role of spatial variability of rainfall and topography in distributed 
hydrological modelling (Loritz et al., 2018, 2021). Woodbury and Ulrych (1993) and 
Kitanidis (1994) used the Shannon entropy to describe the spatial-time development and 
dilution of tracer plumes in groundwater systems. Chiogna and Rolle (2017) expanded the 
dilution index for the case of reactive solute mixing in groundwater and found a critical value 
that indicated the complete consumption of a reactant, which was independent of advection and 
dispersion. Bianchi and Pedretti (2017) used the Shannon entropy to quantify spatial 
disorder in stochastically generated alluvial aquifers and explored its relation to the first three 
moments of simulated tracer break through curves. They found the average breakthrough time 
and its 

156 
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variance to increase with increasing geological entropy, while the skewness in travel times 157 

declined with increasing geological entropy increasing disorder.  158 

1.4 Objectives 159 

We thus suggest that the concepts of entropy, free energy and work hold the key to better 160 

understand why preferential flow and transport in unstructured heterogeneous, saturated porous 161 

media actually emerge. To this end, we analyze simulations of fluid flow and solute transport 162 

through stochastically heterogeneous aquifers with different degrees of randomness (variance 163 

in hydraulic conductivity), based on the results and insights of Edery et al. (2014). Specifically, 164 

we show that macroscale self-organization due to the emergence of preferential solute transport 165 

can be quantified based on the downstream decline of the Shannon entropy of the transversal 166 

concentration pattern. We also find that preferential patterns of higher order, expressed through 167 

lower entropies, emerge in case of larger variances of hydraulic conductivity. What appears 168 

almost as a paradox at first sight – in the sense that a higher subscale randomness of the medium 169 

causes a stronger spatial organization – can be explained by the fact that the power required to 170 

maintain the driving head difference in steady state increases with increasing variance of the 171 

hydraulic conductivity field. Due to this higher energy input, the fluid and solutes may perform 172 

the necessary work to form preferential transport pathways that pass rapidly through low 173 

conductivity bottlenecks and form preferential flow paths by steepening transversal 174 

concentration gradients. We show, finally, that the entropy in the corresponding breakthrough 175 

curve (BTC) increases with the variance of the hydraulic conductivity. This can be explained 176 

by recognizing that entropy cannot be consumed, due to the second law of thermodynamics. 177 

Hence, the downstream declining entropy in the transversal distribution of solute needs to be 178 

exported from the system, and this export is reflected in the higher entropy of the corresponding 179 

BTC.  180 

2 Underlying simulations of fluid flow and transport  181 

2.1 Media generation and numerical simulations of fluid flow  182 

Here, we partially revisit and expand upon the numerical simulations of Edery et al. (2014), 183 

which were employed to provide insight on fluid flow and anomalous solute transport behavior. 184 

Edery et al. (2014) considered steady-state fluid flow within a two-dimensional, stochastic 185 

heterogeneous system. The flow domain measured 300 by 120 space units as discretized into 186 
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grid cells of uniform size Δx = 0.2, Δy = 0.2, while all quantities are expressed using the same 187 

space-time units. We consider a deterministic head difference of 100, from the left (vertical) 188 

upstream boundary to the right downstream boundary; no-flow conditions are assigned to the 189 

two horizontal domain boundaries. 190 

We generated random realizations of statistically homogeneous, isotropic Gaussian fields for 191 

the natural logarithm of the hydraulic conductivity ln(K), with exponential covariance and mean 192 

ln(K) = 0, using the sequential Gaussian simulator GCOSIM3D (Gómez-Hernánez et al,. 1997). 193 

Edery et al. (2014) considered fields associated with a unit correlation length, l = 1, exploring 194 

the impact of different values of the variance of ln(K), i.e., 1 < σ2 < 5, on the emergence of 195 

preferential solute transport. 196 

Figure 1a shows a realization for σ2 = 3, corresponding to mild and strong randomness for 197 

distances larger than 3l. The deterministic flow problem for each realization was solved using 198 

a code that is based on finite elements with Galerkin weighting functions (Guadagnini and 199 

Neuman, 1999). The corresponding hydraulic head values throughout the domain were 200 

converted to local velocities, and thus streamlines (Fig. 1b), which were in turn used for 201 

transport simulations using particle tracking. For the system considered here, we used a porosity 202 

of 0.3 (e.g., Levy and Berkowitz, 2003).  203 

2.2 Simulated solute transport with particle tracking 204 

Solute movement in each domain realization was simulated using the calculated streamlines, 205 

with a standard Lagrangian particle tracking method. For all domains, values of Δ and l were 206 

chosen such that l/Δ = 5, to enable capture of small-scale fluctuations and advective transport 207 

features (Ababou et al., 1989; Riva et al., 2009). Along the left upstream boundary, particles 208 

are injected, by flux-weighting, and advance by advection and diffusion. The Langevin equation 209 

defines the particle displacement vector r, starting from given particle locations at time tk: 210 

 211 

𝐫 = 𝒗[𝐱(𝑡𝑘)]𝛿𝑡 +  𝒅𝑜  (Eq. 1) 212 

 213 

where v is the fluid velocity vector, 𝛿𝑡 is the time step magnitude, and 𝒅𝑜 denotes the diffusive 214 

displacement, with a modulus of 𝒅𝑜 given by ξ√2𝐷molδt; ξ is a random number drawn the from 215 
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standard normal distribution N[0, 1].  A representative molecular diffusion coefficient of 216 

Dmol = 10-9 m2  s-1 was prescribed (Domenico and Schwartz, 1990). The advective 217 

displacements in Equation 1 are computed using the local velocities at x with a fixed, uniform 218 

spatial step δs. In Equation 1, the time step δt is given by δt = δs/v, where v is the modulus of 219 

v. Reflection conditions are prescribed along the two horizontal no-flow boundaries to avoid 220 

particle leakage. As in Edery et al. (2014), we used 105 particles, with δs = ∆/10.  221 

 222 

Figure 1: Examples of (a) ln(K), (b) ln(v), and (c) the cumulative number of particles that visited 223 

a grid cell in the simulation domain, normalized with the total number of particles N, on a 224 

logarithmic scale. The variance of ln(K) is σ2 = 3. 225 

3 Free energy, entropy and work 226 

3.1 Thermodynamics in a nutshell: the first and the second law 227 

We start very generally with the first law of thermodynamics, which relates the variation in 228 

internal energy U (J = kg m2 s-2) of a system to a variation of work Efree (J) and a variation of 229 

heat Qh (J), while overall energy is conserved: 230 

𝛿𝑈 = 𝛿𝐸𝑓𝑟𝑒𝑒 + 𝛿𝑄ℎ (𝐸𝑞. 2) 231 

 232 

https://doi.org/10.5194/hess-2021-254
Preprint. Discussion started: 21 May 2021
c© Author(s) 2021. CC BY 4.0 License.



9 

 

Note that the capacity of a system to perform work is equivalent to “free energy”, while a 233 

variation in heat is equal to the product of a variation of physical entropy S (J K-1) and the 234 

absolute temperature T (K): 𝛿𝑄ℎ = 𝑇 𝛿𝑆 as introduced by Clausius (1857). The second law of 235 

thermodynamics states that entropy is produced during irreversible processes, while it cannot 236 

be consumed. The second law implies that isolated systems, which neither exchange mass, nor 237 

energy, nor entropy with their environment, reach a dead state of maximum entropy called 238 

thermodynamic equilibrium in which all gradients have been depleted. Kleidon (2016) 239 

distinguishes three types of physical entropy: thermal entropy produced by friction and 240 

depletion of temperature gradients, molar entropy produced by mixing and depletion of 241 

chemical potential/concentration gradients, and radiation entropy produced by radiative cooling 242 

and depletion of radiation temperature differences.  243 

From Eq. 2 and the second law, we can conclude that free energy is not a conserved property, 244 

as it corresponds to the variation in internal energy minus the variation in heat, during which 245 

entropy is produced. Free energy dissipation and entropy production are thus inseparable, and 246 

maximization of the entropy of an isolated system occurs due to conservation of energy at the 247 

expense of minimizing its free energy. An open system may nevertheless persist in steady states 248 

of lower entropy, if it is exposed to a sufficient influx of free energy to sustain the necessary 249 

physical work that needs to be performed to act against the natural depletion of the internal 250 

gradients, or even to steepen them and further reduce the entropy (as discussed for the gas laser). 251 

Order in an open system thus manifests through persistent gradients and an entropy lower than 252 

the maximum. Steps to higher order and lower entropies imply a steepening of internal 253 

gradients. This is exactly what occurs when preferential transport of solutes emerges in our 254 

transport simulations: solute particles tend to concentrate in localized pathways, thereby 255 

forming a transversal concentration gradient (according to the domain geometry shown in Fig. 256 

1). The Shannon entropy (Shannon, 1948) is ideally suited to quantify the related entropy 257 

reduction, as detailed in section 3.3. 258 

3.2 The free energy balance of saturated porous media 259 

To determine the work that is performed by the fluid when flowing through heterogeneous 260 

media, we derive the free energy balance of the fluid by relating changes in hydraulic head and 261 

fluid flux to their energetic counterparts. The local formulation of the free energy balance of a 262 

groundwater system, seen as an open thermodynamic system, is determined by the 263 
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difference/divergence of the free energy fluxes JE
free (J s-1 m-2) per unit area and the amount of 264 

dissipated energy per volume D (J s-1 m-3):  265 

𝑑𝑒𝑓𝑟𝑒𝑒

𝑑𝑡
= −∇ ∙ 𝑱𝑓𝑟𝑒𝑒

𝐸 − 𝐷 (Eq. 3) 266 

where efree (J s-1 m-3) is the volumetric free energy density. Advective fluxes of relevant free 267 

energy forms are generally determined by multiplying the Darcy flux with the corresponding 268 

form of energy per unit volume. Here we account for advection of mechanical energy JE
H 269 

(named power hereafter), gravitational potential energy JE
pot, and kinetic energy of the flowing 270 

fluid JE
kin. As energy is additive, the term JE

free corresponds hence to the sum of the following 271 

free energy fluxes:  272 

𝑱𝐻
𝐸 = 𝒒𝜌𝑔𝐻                273 

𝑱𝑝𝑜𝑡
𝐸 = 𝒒𝜌𝑔𝑧 (𝐸𝑞. 4) 274 

𝑱𝑘𝑖𝑛
𝐸 = 𝒒

1

2
𝜌𝑣2           275 

where  (kg m-3) is the density of water, g (m s-2) the gravitational acceleration, q (m s-1) the 276 

Darcy flux, v (m s-1) the absolute value of the fluid velocity, H (m) the pressure head, and z (m) 277 

the geodetic elevation. Note that while kinetic energy is proportional to v2, the kinetic energy 278 

flux corresponds to the product of the volumetric water flux q and its kinetic energy density 279 

½ v2. Thus, kinetic energy is in fact proportional to v3 and is usually very small. By inserting 280 

Eq. 4 into Eq. 3, we obtain:  281 

𝑑𝑒𝑓𝑟𝑒𝑒

𝑑𝑡
= −𝜌𝑔∇[𝒒(𝐻 + 𝑧)] −

1

2
𝜌∇[𝒒𝑣2] − 𝐷 (𝐸𝑞. 5)   282 

The left hand side of Eq. 5 corresponds to the change in Gibbs free energy of a fluid volume 283 

under isothermal conditions (Bolt and Frissel, 1960). This change in free energy storage on the 284 

left hand side can be decomposed into the sum of three terms as well (Zehe et al., 2019): (i) the 285 

change in storage of gravitational potential energy reflecting soil water storage changes in 286 

partially saturated soils or density changes in groundwater; (ii) the change in storage of 287 

mechanical energy reflecting changes in pressure head in groundwater or changing matric 288 

potentials in partially saturated soils; and (iii) the change in kinetic energy stored in the system, 289 

due to acceleration of the fluid. The latter is usually very small and can be neglected. 290 
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In the case of steady-state groundwater flow, the variables H, z, and v are constant in time, so 291 

that the change in free energy storage at the left hand side of Eq. 5 is zero. As we assume z to 292 

be constant along the system and neglect density changes of the fluid, the divergence in the flux 293 

of gravitational potential energy at the right hand side is zero, as well. The system under 294 

investigation hence receives solely steady-state inflow of high mechanical energy, 295 

corresponding to the upstream inflow of water at a high pressure head, and it exports water at 296 

a much lower mechanical energy at the lower downstream pressure head. The corresponding 297 

energy difference is partly dissipated and partly converted into kinetic energy of flowing fluid 298 

and dissolved solute masses. The latter is, however, usually neglected, as dissolved solute mass 299 

is much smaller. As steady-state fluid flow further implies that the divergence of q is zero as 300 

well, the free energy (Eq. 4) becomes hence: 301 

𝜌𝑔𝒒 ⋅ ∇𝐻 = −𝜌𝑣𝒒 ⋅ ∇𝑣 − 𝐷 (𝐸𝑞. 6).   302 

The left hand side is the available power per unit volume P (J s-1 m-3) in the groundwater flux, 303 

which is partly converted into a spatial change in kinetic energy of the fluid and partly 304 

dissipated. In contrast to overland flow systems (Loritz et al., 2019; Schroers et al., 2021), the 305 

change in kinetic energy can be neglected for groundwater as it is proportional to the cube of 306 

the fluid velocity (as noted before Eq. 5). In fact, the use of Darcy’s law implies that kinetic 307 

energy can be neglected.   308 

The total available power P in the groundwater flux during steady-state flow is hence nearly 309 

completely dissipated:  310 

𝑃 = 𝜌𝑔𝒒 ⋅ ∇𝐻 = −𝐷 (𝐸𝑞. 7). 311 

By inserting Darcy’s law into Eq. 7 and recalling that we focus on a two-dimensional domain, 312 

we obtain an equation that relates power and dissipation to the squared head gradient (in sense 313 

of a scalar product):  314 

𝑃 = − 𝜌𝑔𝐾 [
∂H

∂x

∂H

∂x
+

∂H

∂y

∂H

∂y
] = −𝐷 (𝐸𝑞. 8). 315 

The physical mechanism that causes dissipation relates to the shear and frictional losses the 316 

fluid experiences when passing through the porous medium. As hydraulic conductivity relates 317 

to the ratio of intrinsic permeability k (m2) and viscosity of the fluid  (N sm-1), the inverse of 318 
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K is a measure of the flow resistance and related dissipative losses. One would thus expect that 319 

the dissipative losses grow with fluid viscosity (declining K, increasing resistance) and 320 

declining permeability (declining k). To better underpin this, we simplify Eq. 8 for steady-state 321 

flow through an heterogeneous, one-dimensional system, which means that 
∂H

∂y
=0: 322 

𝑃 = 𝜌𝑔(𝐾(𝑥)d𝑥𝐻)d𝑥𝐻 = 𝐷(𝑥) (𝐸𝑞. 9). 323 

where d𝑥 denotes the gradient with respect to x. Steady-state flow in one dimension implies a 324 

constant flux q in the x direction, which means that the total spatial variation of dq is zero. As 325 

K is spatially variable, this implies that local spatial variations of conductivity denoted by 326 

d(K(x)) must be compensated by opposite spatial variations of the pressure head gradient, 327 

𝑑(d𝑥𝐻):  328 

𝑑𝑞 = 0 → 329 

𝑑(−𝐾(𝑥)d𝑥𝐻) = 0 → 330 

− 𝑑(𝐾(𝑥)) d𝑥𝐻 = 𝐾(𝑥) 𝑑(d𝑥𝐻)  𝐸𝑞. (10) 331 

As a consequence, power P is not constant (Eq. 7) but instead grows with the magnitude of 332 

local spatial variations of the head gradient 𝑑(∇𝑥𝐻): 333 

𝑑𝑃 = 𝜌𝑔𝑞 𝑑(d𝑥𝐻) (𝐸𝑞. 11 ). 334 

Due to Eq. 10 (constant Darcy flux), we can express the spatial variation in the head gradient 335 

𝑑(d𝑥𝐻) in Eq. 11 as follows:  336 

−d𝑥𝐻 𝑑(ln(𝐾(𝑥)) = 𝑑(d𝑥𝐻)              (𝐸𝑞. 12). 337 

Combining Eq. 12 with Eq. 11, together with the definition of power in Eq.  9, yields: 338 

𝑑𝑃 = −𝑃(𝑥) 𝑑(ln(𝐾(𝑥)) → 𝑑(ln (𝑃(𝑥)) = −𝑑(ln(𝐾(𝑥)) (𝐸𝑞. 13 ). 339 

As a consequence, we expect an anti-proportionality between ln(P(x)) and ln(K(x)) for the one-340 

dimensional case. In conclusion, we propose that the necessary power to push the fluid through 341 

an heterogeneous medium grows also in the two-dimensional case with the variance of the ln(K) 342 

field. Local areas of high power coincide with large positive deviations from the overall average 343 

head gradient, and these in turn peak across regions of low conductivity. This makes sense, as 344 
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dissipation peaks in those areas as flow resistance reach a maximum and the required work to 345 

push fluid through these bottlenecks grows as well. This potentially explains the finding of 346 

Edery et al. (2014) that the preferential flow paths also pass through areas of low conductivity. 347 

We discuss this idea further in section 5. 348 

3.3 Characterizing emergent spatial organization in solute transport using information 349 

entropy  350 

We now address the connection between physical entropy and information entropy, and explain 351 

how we use the latter to quantify ordered states due to the emergence of preferential flow paths 352 

and the associated formation of a concentration gradient transversal to the main flow direction. 353 

The Shannon entropy SH (bit) is defined as the expected value of information (Shannon, 1948). 354 

Here we defined SH using the discrete probability distribution to find particles at a distinct 355 

transversal position y at a given x coordinate, as detailed below.  356 

The field of information theory, originally developed within the context of communication 357 

engineering, deals with the quantification of information with respect to a concept called 358 

“surprise” of an event (Applebaum, 1996). For a discrete random variable 𝑌 that can take on 359 

several values yi with associated prior probabilities p(yi) the surprise or information content of 360 

receiving/observing a specific value Y = yi is defined as: 361 

 𝐼 =  − log𝑏( 𝑝(y)) (Eq. 14) 362 

where 𝐼 is the information content, 𝑏 is the base of the logarithm and 𝑝(𝑦𝑖) the prior probability 363 

that 𝑌 can be observed in the state 𝑦. Due to the use of the logarithm in Eq. 14, information is 364 

an additive quantity, similar to physical entropy, energy, and mass. The expected information 365 

content associated with the probability distribution of the random variable 𝑌 is the Shannon 366 

entropy SH: 367 

𝑆𝐻(𝑌) = − ∑  𝑝(𝑦𝑖) 𝑙𝑜𝑔2  𝑝(𝑦𝑖) (Eq. 15) 

 

𝑦 ∈ 𝑌

 368 

The definition of the Shannon entropy is equivalent to Gibb’s definition of physical entropy in 369 

statistical mechanics (Ben-Naim, 2008). The latter is obtained when using the natural logarithm 370 

in Eq. 15 and by multiplying the sum with the Boltzmann constant (kB=1.30640  10-23 J K-1). 371 

Physical entropy describes, in terms of statistical mechanics, the number of microstates that 372 
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correspond to the same macro-state at a given internal energy. In the state of maximum entropy 373 

where all gradients are depleted, each microstate is equally likely (Kondepudi and Prigogine, 374 

1998). The probability p of a single state is in this case, hence, simply the inverse of the number 375 

of microstates. This implies a maximum uncertainty about the microstates and corresponds to 376 

a minimum order in the system. Jaynes (1957) transferred this fundamental insight into a 377 

method of statistical inference, stating “when making inferences based on incomplete 378 

information, the best estimate for the probabilities is the distribution that is consistent with all 379 

information, but maximizes uncertainty”. We emphasize that a maximum in information 380 

entropy and physical entropy commonly implies a zero gradient either in probability (from the 381 

information perspective) or in an intensive state variable such temperature, concentration or 382 

pressure (from the thermodynamic perspective).  383 

Its straightforward implementation makes Shannon entropy a flexible means (i) for the 384 

optimization of observation networks (Fahle et al., 2015; Nowak et al., 2012), (ii) for the 385 

characterization of mixing and dilution of solute plumes (e.g., Woodbury and Ulrych, 1993; 386 

Kitanidis, 1994), or (iii) to illuminate how spatial disorder in hydraulic conductivity relates to 387 

statistical moments of solute breakthrough curves (Bianchi and Pedretti, 2017). Here we adopt 388 

a straightforward use of the Shannon entropy to characterize simulated solute transport, as 389 

introduced by Loritz et al. (2018) to characterize redundancy in a distributed hydrological 390 

model ensemble. We suggest that the maximum uncertainty corresponds to the case where each 391 

flow path through the domain is equally likely, and the probability distribution to find particles 392 

in a position in the y-direction is, hence, uniform. Deviations from this entropy maximum reflect 393 

spatial order due to the concentration of particles in preferred flow paths and the associated 394 

persistence of a transversal concentration gradient. This can be analyzed by computing the 395 

Shannon entropy of the particle density distributions along y, SH(x), at a fixed position x along 396 

the main flow direction, using the particle density matrix. A state of maximum entropy implies 397 

that the same number of particles has visited each of the 120 grid cells at a given x coordinate 398 

i.e. 𝑆𝐻
𝑚𝑎𝑥 = 𝑙𝑜𝑔2 (120) = 6.9  bits. A state of perfect spatial organization and zero entropy 399 

arises, on the other hand, when all particles move through a single grid cell at a distinct 400 

coordinate x.  401 
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4 Results 402 

In the following, we demonstrate that preferential transport is indeed manifested self-403 

organization and showcase that a stronger self-organization requires indeed more physical 404 

work. To this end, we calculated the Shannon entropy of transversal flow paths distribution and 405 

relate this to power in fluid flow across the range of the variances in ln(K) as detailed below. 406 

For this purpose, we set the dimensionless length and time units to meters and seconds, 407 

respectively.  408 

4.1 Preferential flow paths and flow path entropy as function of the variance in ln(K)  409 

Figures 2a-c compare the accumulated particle densities that passed through grid cells in the 410 

domain as a function of the variance, 2, for a randomly selected realization. The solute 411 

transport pathways extend in a largely parallel form and share rather similar particle densities 412 

for 2=1. However, the number of pathways clearly declines with increasing variance, and they 413 

exhibit a stronger meandering and a larger visitation of particles in a smaller transversal number 414 

of grids on their downstream course. The Shannon entropy SH of the flow paths (flow path 415 

entropy hereafter) exhibits, in general, and for all three variance cases, a clear decline with 416 

increasing downstream transport distance (Figs. 2d-f). This reflects the increasing order in the 417 

flow path distribution, corresponding to the emerging and increasing transversal concentration 418 

gradients. A comparison of SH among the variance cases clearly corroborates the visual 419 

impression that the number preferential flow paths declines with increasing subscale 420 

randomness, while the concentration of solutes therein increases. The analysis of flow path 421 

entropy within the entire set of 100 realizations revealed that this behavior is not an artefact of 422 

single realization. The flow path entropy average across all realization of a variance case 423 

exhibits a steady downstream decline (Fig. 3 a), and the curves are clearly shifted to lower 424 

values with increasing variance of ln(K). The boxplots in Fig. 3b characterize the distribution 425 

of SH(x) at the downstream outlet among the realizations. While the spreading and the skewness 426 

of the distribution clearly increases with increasing variance in ln(K), we also observe that flow 427 

path entropy at the outlet declines clearly and statistically significantly with increasing variance. 428 
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429 
Figure 2: Accumulated, normalized number of particles that passed a distinct point in the 430 

domain as function of the variance in ln(K), 2, ((a), (b), (c)) and the corresponding Shannon 431 

entropy of the transversal concentration, SH,  as a function of the main flow direction ((d), (e), 432 

(f)).  433 

 434 

Figure 3: Flow path entropy averaged across all 100 ensemble realizations <SH> as function of 435 

downstream transport distance (a). Boxplot of flow path flow path entropy at the domain outlet 436 

for all realizations of the three variance cases (b); note this corresponds to the asymptotic values 437 

in (a) at x(-) = 60.  438 

(c) 2=5 (a) 2=1 (b) 2=3 

(d) 2=1 (e) 2=3 (f) 2=5 
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We thus state that a higher variance – and thus randomness – in hydraulic conductivity 439 

coincides, for all realizations, with stronger a downstream reduction of the flow path entropy. 440 

This corresponds to a macrostate of higher order due to a more efficient self-organization into 441 

a state of stronger preferential transport. 442 

4.2 Power in fluid flow as function of the variance in ln(K)  443 

Figures 4a-c compare the distribution of power in the fluid flow calculated according to Eq. 7, 444 

as a function of the variance of ln(K) in the different domains, using a logarithmic scale. For 445 

consistency, we used the same ensemble as for Fig. 2. The distributions of power in the fluid 446 

generally spread across a wide range of magnitudes and are skewed to the left. However, the 447 

distributions clearly shift to larger values and their spread becomes wider when moving to larger 448 

variances.  449 

450 

 451 
Figure 4: Histogram of ln(P) as function of the variance 2 ((a), (b) (c)), integral power Px

int in 452 

the total downstream water flux, plotted against the laterally averaged head gradient ((d), (e), 453 

(f)), and ln(Px
int) as function of the ln of transversally averaged ln(Keff) ((g),(j), (h)). 454 

(c) 2=5 

(g) 2=1 (h) 2=3 (i) 2=5 

(a) 2=1 (b) 2=3 

(d) 2=1 (e) 2=3 (f) 2=5 

https://doi.org/10.5194/hess-2021-254
Preprint. Discussion started: 21 May 2021
c© Author(s) 2021. CC BY 4.0 License.



18 

 

This is underpinned when comparing the integrated power in fluid flow across the entire two-455 

dimensional domain. An increase in variance by two orders of magnitude in the log-normal 456 

scale corresponds to an increase in power of 2 W per unit width of the domain. To further 457 

illuminate whether the above postulate of a strong linear relation between power and variation 458 

in the head gradient exists, we integrated power in fluid flow across the transversal extent of 459 

the domain (Px
int hereafter) and plotted it against the laterally averaged head gradient (Fig. 3d-460 

f). In the case of unit variance, this indeed yields a strongly linear relation, with an almost 461 

perfectly linear growth of Px
int with the head gradient, as indicated by the correlation coefficient 462 

of 0.96. While this the correlation becomes weaker with increasing variance, it remains 463 

significant with a correlation coefficient of 0.84 even for the case of 2 = 5. The decline in 464 

correlation is plausible as a higher variability in K, in two-dimensional domains, causes stronger 465 

transversal flow components and thus a larger deviation from the one-dimensional 466 

heterogeneous case for which Eqs. 9 -12 are valid. As expected, the head gradients show also a 467 

wider spread with increasing variance (Figs. 3d-f); the same holds true for power in the total 468 

downstream fluid flow.  469 

To check the inverse-linear relationship between ln(P) and ln(K), which was derived for the 470 

one-dimensional approximation as well (recall Eqs. 11 - 13), we related ln(Px
int) to the logarithm 471 

of laterally averaged conductivity ln(Keff ) (Figs. 3g-i). For the unit variance case, we observe 472 

an almost perfect linear increase of ln(Px
int) with a decline in ln(Keff), as underpinned by the 473 

correlation coefficient of -0.92. This negative correlation declined with increasing variance to 474 

a value of -0.81 and -0.72 for 2 = 3 and 2 = 5, respectively. Yet it is still significant, hence the 475 

system behaves also in case of the highest variance largely similar to a heterogeneous one-476 

dimensional system. This is because of the confining upper and lower no-flow boundary 477 

condition.   478 

We thus argue that the power required to maintain the driving head difference and fluid flow in 479 

steady state increases with increasing variance of the hydraulic conductivity field. Regions of 480 

high power coincide with large positive deviations of the hydraulic head from its mean, and 481 

also with “bottlenecks” of low hydraulic conductivity along the preferential pathways. 482 
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4.3 Entropy as a function of power and power along solute transport trajectories 483 

Figure 5a shows the Shannon entropy at the downstream outlet SH(xmax) as a function of the 484 

power in fluid flow integrated over the entire domain Pint for all variance cases. The almost 485 

perfect linear decline of SH(xmax) with Pint reveals, in line with the gas laser example given in 486 

the introduction, that a larger power input due to a higher pumping rate leads to an higher order 487 

in the macroscale preferential transport pattern. We return to this point in section 5.3.  488 

 489 
Figure 5: (a) Shannon entropy at the downstream outlet SH(xmax) as function of the power in 490 

fluid flow integrated over the entire domain Pint (a), cumulative distributions of ln(P) in the flow 491 

domain (blue) and of ln(P) averaged along the particle trajectories (brown) for the variance 492 

cases (b) 2 = 1, (c) 2 = 3, and (d) 2 = 5. 493 

Figures 5b, c, d compare the probability density distributions (pdfs) of ln(P) within the entire 494 

flow domain (blue), against the power averaged along the actual particle trajectories (in brown, 495 

again on a log scale). While in the case of perfectly mixed flow and transport, both pdfs should 496 

be rather similar, they actually are remarkably different. The particles clearly prefer pathways 497 

of high power, as the pdfs are clearly shifted towards higher power (Fig. 5 d). 498 

4.4 Space-time asymmetry and entropy export into the breakthough  499 

To switch the observing perspective, we determined the particle breakthrough curves (BTC) for 500 

the different variances cases (Fig. 6a) and calculated their Shannon entropy as means of 501 

uncertainty and order in the arrival times, using the time step width of 0.1 dimensionless time 502 

units as bin width. The width of the breakthrough curves clearly increases with increasing 503 
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variance, indicating an earlier breakthrough, a longer tailing and a more even distribution of 504 

normalized concentrations in time (Fig. 6 a). This implies that the Shannon entropy in arrival 505 

times grows with increasing variance of ln(K) reflecting a larger uncertainty and a declining 506 

order in the temporal distribution of travel times. In this context, it is important to recall that 507 

entropy cannot be consumed, due to the second law. This that means that the declining flow 508 

path entropy needs to be exported from the system.  509 

 510 

Figure 6: Breakthrough curves and their Shannon entropies SBTC (a); SBTC plotted against the 511 

flow path entropy of the downstream outlet SH(xmax), before particles leave the domain, for all 512 

variance cases (b). 513 

Figure 6b) visualizes this space-time asymmetry in entropies, the growing spatial organization 514 

with increasing variance of ln(K) translates due to the associated entropy export into a declining 515 

organization in arrival times. Please note that due to the different binning in space and time, 516 

changes in SBTC and SH with changing variance cannot be exactly the same. In fact, also the 517 

entropy, which is produced due to energy dissipation, must be exported, but this is much more 518 

difficult to quantify. The opposite of the Shannon entropy monotonies corroborate nevertheless 519 

that reduced flow path entropy is indeed exported into the BTC. One might hence wonder 520 

whether a perfect spatial organization due to preferential transport of the entire solute particles 521 

through a single preferential flow path would, in the case of a step input, translate into a BTC 522 
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of maximum entropy/disorder, i.e. rectangular BTC (and vice versa). We return to this issue in 523 

sections 5.1 and 6. 524 

5 Discussion  525 

5.1 An energy and entropy centered framework to characterize and explain preferential 526 

flow 527 

This study proposes an alternative framework to quantify and explain the enigmatic emergence 528 

of preferential flow and transport in heterogeneous saturated porous media, using concepts from 529 

thermodynamics and information theory. We examined simulations of two-dimensional fluid 530 

flow and solute transport based on the methods of Edery et al. (2014), and characterized the 531 

discrete probability distribution associated with finding solute particles crossing a distinct 532 

transversal position in a plane normal to the direction of the mean flow by means of the Shannon 533 

entropy. In general, we found a declining entropy with increasing downstream transport 534 

distance, reflecting a growing downstream self-organization due to the increasing concentration 535 

of particles in preferential flow paths. Strikingly, preferential flow patterns with lower entropies 536 

emerged when analyzing simulations in media with larger variances in hydraulic conductivity. 537 

This implies that macro-states of higher order established, despite the higher subscale 538 

randomness of ln (K). The key to explain this almost paradoxical behavior is the finding that 539 

the required power to maintain the driving head difference, in steady-state flow, grows with the 540 

variance of the hydraulic conductivity field. Due to this larger energy input, the fluid and solutes 541 

may perform more work to increase the order in the flow path distribution, through steepening 542 

transversal concentration gradients as reflected in lower entropies.  543 

Notwithstanding these findings, we of course recognize that the concepts of entropy, free 544 

energy and work are, per se, not new in hydrology. We thus place our findings in context 545 

relative to related studies, in the sections below. 546 

5.2 Measuring irreversibility and macroscale organization using the Shannon entropy 547 

Here we show that the Shannon entropy of the transversal distribution of solutes is suited to 548 

quantify the downstream emergence of preferential solute movement, as reflected in a declining 549 

“flow path entropy”. Lower flow path entropies and thus a stronger spatial order in preferential 550 

transport are established when solutes are transported through stronger heterogeneous hydraulic 551 
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conductivity fields. In this context, we recall that Edery et al. (2014) analyzed breakthrough 552 

curves using the continuous time domain random walk framework (Berkowitz et al., 2006). 553 

When fitting an inverse power law to the breakthrough curves, the corresponding ß parameter 554 

(which is a measure of the degree of anomalous transport, with ß increasing to 2 indicating 555 

Fickian transport) increased with increasing variance of ln(K). Here we analyzed the Shannon 556 

entropy of the breakthrough curves in time, and contrary to the flow path entropies, they grow 557 

with increasing variance of ln(K). This means that higher degrees in spatial order in solute 558 

transport that emerges at larger variances in ln(K), expressed by lower flow path entropies, 559 

translate into a higher entropy and thus a higher disorder and thus uncertainty in arrival times. 560 

This is reflected by an earlier first breakthrough, a retarded appearance of the peak 561 

concentration, and a longer tailing in the breakthrough curves and higher similarity of the BTC 562 

to a uniform, rectangular pulse. This finding coincides well with the illustrative case that 563 

Bianchi and Pedretti (2017) used to compare solute breakthrough through ordered and 564 

disordered alluvial aquifers.  565 

This space-time asymmetry in entropy and organization can, however, only be explained using 566 

the physical perspective of entropy and the second law. The emergence of spatially organized 567 

preferential transport and the related decline in flow path entropy essentially requires an export 568 

of the entropy from the system into the BTC. We thus conclude that the ß parameter of the 569 

CTRW framework, is also two-fold measure for spatial organization of solute transport through 570 

the system and temporal organization in arrival times and their asymmetry.  571 

5.3 Preferred flow and transport pathways as maximum power structures?  572 

The idea that preferential flow coincides with a larger power in fluid flow has been discussed 573 

widely in hydrology. Howard (1971, cited in Howard, 1990) proposed that angles of river 574 

junctions are arranged in such way that they minimize stream power; later he postulated that 575 

the topology of river networks reflects an energetic optimum, formulated as a minimum in total 576 

energy dissipation in the network (Howard, 1990). This work inspired Rinaldo et al. (1996) to 577 

propose the concept of minimum energy expenditure as an enslavement principle for the self-578 

organized development of river networks. Hergarten et al. (2014) transferred this concept to 579 

groundwater systems. They derived preferential flow paths that minimize the total energy 580 

dissipation at a given recharge, under the constraint of a given total porosity and showed that 581 

these setups allowed predictions of spring discharge at several locations. Minimum energy 582 
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expenditure in the river network implies that power therein is maximized. In this light, Kleidon 583 

et al. (2013) showed that directed structural growth in the topology of connected river networks 584 

can be explained through a maximization of kinetic energy transfer to transported suspended 585 

sediments.  586 

Our findings are in line with but step beyond these studies, which commonly refer to 587 

preferential flow in connected, highly conductive networks. Here we find that solute particles 588 

prefer to move through pathways of very high power, even when they are not connected by a 589 

continuous set of cells of relatively high hydraulic conductivity. On the contrary, these 590 

pathways incorporate regions of low hydraulic conductivity. This finding reflects the squared 591 

dependence of power on the spatial head gradient, which in turn becomes largest in regions of 592 

low hydraulic conductivity. We stress that this result, and our finding that a larger power input 593 

(due to a higher pumping rate) leads to a higher order in the macroscale preferential transport 594 

pattern, is a consequence of the imposed boundary condition. A steady-state head difference 595 

implies a positive energetic feedback: in a real-world experiment, the pump provides this 596 

feedback, as otherwise the gradient is depleted by the flowing fluid. Although such a positive 597 

feedback is straightforwardly established in a numerical model by assigning the desired 598 

constant head difference, it is important that this choice implies that such a positive feedback 599 

exists. Due to this virtual energy input, the fluid and solutes may perform the necessary work 600 

to rapidly pass through low conductivity bottlenecks and form an ordered preferential flow 601 

pattern at the macroscale. The higher necessary pumping rate and energy input into the domains 602 

with a larger variance in K explain, furthermore, why preferential flow patterns of higher order 603 

emerge with growing subscale randomness.   604 

6 Conclusions and outlook 605 

Based on the presented findings, we conclude that the combined use of free energy and entropy 606 

holds the key to characterize and quantify the self-organized emergence of preferential flow 607 

phenomena and to explain the underlying cause of their emergence. Information entropy is an 608 

excellent, straightforward concept to diagnose self-organization in space and time: Here, the 609 

formation of preferential transport is reflected in the downstream decline in the entropy of the 610 

transversal flow path distribution and that this decline becomes stronger with increasing 611 

variance of hydraulic conductivity. The concepts of free energy and physical entropy, however, 612 
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provide the underlying cause: steepening of transversal concentration gradients requires work, 613 

the formation of even steeper gradients and lower flow path entropies needs even more work 614 

and thus a higher free energy input into the open system. The higher necessary pumping rate 615 

and energy input into the domains is the reason, why spatial organization in preferential solute 616 

movement increased with growing subscale randomness of hydraulic conductivity. This is 617 

behavior is very much in line with what we discussed for the gas laser in the introduction.  618 

Entropy can, however, due to the second law not be consumed, and the declining flow path 619 

entropy is in fact be exported from the system into the breakthrough curve. Shannon entropy 620 

allows again for the straightforward diagnosis, while physical entropy provides the reason for 621 

this space-time asymmetry in entropy, organization and uncertainty. Transport of all solute 622 

particles through a single preferential flow paths implied a maximum spatial organization and 623 

maximum/knowledge certainty about the transversal spreading of solute. However, this would, 624 

due to the entropy export, into a maximum disorder of and thus uncertainty about the arrival 625 

times, as the BTC would correspond to rectangular pulse of uniform concentration. Advective 626 

diffusive transport through a homogeneous flow field implied, in case of a spatially 627 

homogeneous step input, maximum uncertainty about transversal position of solute molecules, 628 

while the BTC would be perfectly certain and providing minimum uncertainty about arrival 629 

times. This space-time asymmetry in entropy implies that perfect organization and certainty 630 

about both flow paths and travel times can never simultaneously occur. This required 631 

consummation of entropy and thus violation of the second law of thermodynamics. However, 632 

we wonder whether effective predictions of the entropies in the BTC and the flow path 633 

distributions based on the knowledge driving head differences and the variance and correlation 634 

lengths of hydraulic conductivity might be achievable in the future. This will of course not tell 635 

us where solutes move and when they breakthrough, but predict the related uncertainty as an 636 

important constraint of transversal distribution of transport pathways and travel times.    637 
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