
Response to refree #2:

We appreciate the constructive and valuable comments by refree #2 and are very grateful for 
suggestions regarding the setup and assumptions. We fully agree that longer integration periods at 
different climates zones of the Earth and an evaluation with real observations are finally needed to 
assess the applicability of this type of data assimilaton for global land surface data assimilation. 
Certainly, this is a valuable long-term goal, but both from a technical and scientific point of view it 
reaches far beyond the scope of this paper.

From a technical point of view, the data assimilation experiments demand very high computational 
resources. The most expensive component is the atmospheric component of the TerrSysMP system 
in combination with the need to integrate 40 ensemble members. The suite of experiments for one 
seven-day period at one location, as it is presented within the manuscript, requires one month of 
simulation time at our high-performance computing center. Obviously, experiments on seasonal or 
annual time-scale at various locations are not affordable.

Likewise from a scientific point of view, the use of a localized ensemble transform Kalman filter 
(LETKF) for fully-coupled data assimilation at the land-atmosphere interface is at a very early 
stage. To the best of our knowledge, we are the first to explore the potential of the LETKF to 
improve the soil moisture analysis by assimilating the atmospheric boundary temperature at screen-
level. At least in the numerical weather prediction community this is a very timely question, as even
recent publications  (Carrera et al., 2019; Muñoz-Sabater et al., 2019) still question, whether 
atmospheric boundary layer observations can be used to improve the analysis and forecast of the 
soil moisture.

Bearing in mind the idealized setup and the limited integration period, this study contains relevant 
contributions to the scientific community. As a proof-of-concept, the study reveals the potential of 
the LETKF to advance soil moisture analyses with atmospheric boundary layer observations. In 
particular, it hightlights the superiority of the LETKF compared to commonly used simplified 
extended Kalman filter (SEKF) methods for this type of data assimilation. As a consequence, we 
have chosen to analyze these results more in-depth to showcase why and what we could expect for 
future work regarding the assimilation of atmospheric boundary layer observations into the land 
surface with advanced data assimilation techniques.

Following the raised major concerns, we will clearly indicate this idealized proof-of-concept scope 
of the study in the motivation and will state explicitly that further research steps are needed – as 
outlined by the concerns – to proof the applicability of the LETKF in real global land data 
assimilation systems. To additionally clarify that this study is a proof-of-concept, we will change 
the title to “Ensemble-based data assimilation of atmospheric boundary layer observations improves
the soil moisture analysis in idealized limited-area experiments”. We hope that this adds clarity to 
the scope of this study.

Answers to the major comments:

• We use a heterogeneous setup where each grid point has its own soil conditions, based on a 
single simulation with a spin-up time of 6 years and a similar model configuration as our 
simulations. Our setup is representative for mid-latitudes and spans a variety of soil 
conditions, ranging from quite dry conditions to quite wet conditions. To analyze the results 
with regard to different soil condition, we have splitted up the potential assimilation impact 
into different regimes in Figure 9 in the manuscript. In all of these regimes, we see a 
positive assimilation impact during daytime, though the highest impact can be found in the 



mixed regime. In the end, our setup is surely benefical for this type of data assimilation but 
includes a heteorogeneous mixture of soil conditions 

• As indicated above in the general statement, our study is a proof-of-concept study, where we
showcase of what might be possible in the future. In addition, our simulations have a high 
computational cost. We thus restricted the simulation timeframe to these seven days.

• Since the data assimilation system is at a very early stage, it would be quite difficult to apply
it directly to realistic scenarios in hindcast experiments. These experiments are likely to 
need other extensions to the data assimilation like other ensemble inflation methods or an 
adaptive localization. They are not implemented yet within the data assimilation system as it
is in a non-operational stage. In addition, the study is a proof-of-concept and we think that 
such hindcast experiments are out-of-scope for this study.

• To improve the clarity of the results, we will streamline the language.

Specific comments within the manuscript:
• Page 1:

◦ As indicated within the final answer, the whole introduction will be changed in the 
revised version of the manuscript. This will then include a more gentle entry into the 
manuscript.

• Page 2:
◦ In the new introduction, we will clarify that land surface models are often viewed as 

providing lower boundary fluxes for the atmospheric model component in numerical 
weather prediction. We instead promote with our modelling setup that a fully-coupled 
land-atmosphere system can be also advantageous for numerical weather prediction.

• Page 3:
◦ In our revised introduction, we will clarify the step going from the SEKF to the LETKF 

and its consequences.
◦ Our study is more focused on the aspect of SEKF compared to the LETKF than on 

weakly-coupled vs strongly-coupled data assimilation. The additional aspect of 
improving the soil moisture analysis with strongly-coupled assimilation is only a small 
additional result. Thus, we will remove the paragraph explaining the advantages of 
strongly-coupled data assimilation, instead we will elaborate more about the differences 
between SEKF and LETKF in our new introduction.

◦ Our data assimilation system does not preserve the mass and energy balance within the 
soil or atmosphere. COSMO for the atmospheric component of the modelling system is a
limited-area model that is driven by lateral boundary conditions given by another model 
(in our case COSMO-DE from the German meteorological service). As a consequence, 
there is always an income and outcome of mass and energy at the lateral boundaries 
within the atmosphere. In addition, we aim at time-scales of numerical weather 
prediction where other effects than preserving mass and energy come into play, e.g. 
correctly representing the incoming solar radiation. We have thus decided to neglect the 
conservation of mass and energy in our data assimilation system for simplicity. 
Nevertheless, on a global and much longer time-scale it might be necessary to take the 
conservation of mass and energy into account.

◦ Our setup is a synthetic and idealized setup, representing typical conditions in the 
midlatitudes. In the midlatitudes, we have only small areas with water surfaces (only
10 % of our surfaces in CLM are bare soil that also includes urban areas). These areas 
thus have only a small effect on the results.

◦ Will be corrected into stem area index, this was our mistake.
• Page 5:

◦ We will clarify that the used setup for the SEKF is similar to a typical numerical weather
prediction (NWP) setup. As our results clearly shows, the 2-metre-temperature is at most
affected by the soil moisture during daytime and noon. We thus expect here the largest 



assimilation impact. In a correlation analysis, we have seen the highest correlation of the
temperature at noon with the soil moisture at 00:00 UTC the night before. Because the 
soil moisture influences the sensible heat flux, the soil moisture has an impact on the 
diurnal cycle of the 2-metre-temperature. As a consequence, perturbations from the soil 
moisture are propagated to the atmosphere throughout the day. This asynchronous 
impact is mirrored with our SEKF setup.

◦ As our SEKF setup is similar to NWP setups, we use here the static diagonal background
covariances as it is used at the ECMWF for operational soil moisture data assimilation 
(“IFS Documentation CY47R1 - Part II: Data Assimilation”, 2020). It is true that a 
dynamic background covariance that also depends on the soil moisture itself might be 
benefical for data assimilation, as our results with the LETKF indicate. Since we mirror 
with the SEKF a common approach in NWP, we have kept the covariance static.

• Page 6:
◦ As only perturbations of our ensemble, we use initial soil moisture and soil temperature 

perturbations. These perturbations lead to differences in a order of magnitude of 0.3 K 
within the temperature at 10 meters height, as can be seen in Fig. 1 in this answer below. 
The observational error of the 2-metre-temperature is often in an order of magnitude of 1
K or even more for operational data assimilation. Using such large errors within our 
synthetic 2-metre-temperature would lead to a small signal-to-noise ratio; the signal 
would be then overshadowed by the noise. We reflect this by using smaller observational
errors with a magnitude of 0.1 K. This guarantees that our 2-metre-temperature 
observations have a meaningful information content about the soil conditions.

• Page 7:
◦ We explain the coupling between COSMO and CLM in section 2.1, where we also 

explain how the data is upscaled by averaging from the finer CLM grid to the coarser 
COSMO grid. For more information, we have refered to Shrestha et al. (2014). The 
COSMO fields are bilinearly interpolated to the CLM grid. In our revised manuscript, 
we will introduce a new second section, where explain our idealized twin experiments. 
This new second section will also include an overhauled description of the COSMO-
CLM coupling.

◦ Our assumption of spatial correlations within perturbations of the soil moisture reflect 
the dependence of the soil moisture on precipitation. Since errors and uncertainties 
within the precipitation can have similar correlation lengths, we use implicitly the 
assumption of larger precipitation events before the start of our simulation. Because we 
have perturbed the soil moisture saturation instead of the volumetric soil moisture 
directly, our setup catches local circumstances that also influence the porosity. The soil 
moisture perturbations itself have a much finer structure as can be seen in Fig. 6 (a) in 
the manuscript.

◦ The Kalman filters would have problems if the ensemble mean is far away from the 
nature run and if this is not represented within the B-matrix. This case would be then 
similar to having biases within the soil moisture.

◦ We will answer the question about the perturbations and the spin-up time within the new
second section with the overhauled idealized experiment description. To showcase that 
the soil perturbations are already propagated into the atmosphere after the first day, we 
will there introduce a novel figure that would look similar to the Fig. 1 in this answer 
below.

• Page 8:
◦ We will clarify our experiments and what is updated in these experiments in a revised 

experimental description.
• Page 10:



◦ We understand that the soil moisture saturation within Figure 3 of the manuscript is 
somewhat misleading. Here, the spatially-averaged soil moisture saturation is shown. 
Since we use heterogeneous soil conditions, there is a mixture of various soil moisture 
saturations across our area. To reflect this, we will revise Figure 3 of the manuscript and 
will replace the averaged soil moisture saturation with new subfigure where we show the
percentage of binarized soil conditions in our area. 

We believe that these answers and the proposed changes reflects the review of refree #2. Together 
with the proposed changes based on the review of refree #1, we think that this will increase the 
comprehensibility of our manuscript. 
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Figure 1: The spatially-averaged RMSE of the ensemble mean to the nature run and 
spatially-averaged standard deviation within the open-loop ensemble for the temperature in 
COSMO at 10 meters height. 
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