
Reply to John Quilty

Dear John Quilty,
We thank you very much for taking the time to review our manuscript, for your valuable com-

ments/suggestions and the points of discussion you raised. We have wisely revised our manuscript
according to your suggestions. Please find our detailed responses below:

Comment from John Quilty — ASSESSMENT:
This paper introduces a variational mode decomposition (VMD)-based support vector regres-

sion (SVR), i.e., VMD-SVR, model for multi-step ahead streamflow forecasting. The authors strive
to address the ‘boundary effects’ problem common to many time series decomposition approaches
that are typically coupled with data-driven models such as VMD, ensemble empirical mode decom-
position (EEMD), singular spectrum analysis (SSA), wavelet transforms (WT), etc. outlined in
earlier studies (Du et al., 2017; Maheswaran and Khosa, 2012; Quilty and Adamowski, 2018; Wang
and Wu, 2016; Zhang et al., 2015). This is a worthwhile problem to address due to the growing
interest in coupling these decomposition methods (VMD, EMD, SSA, WT, etc.) with data-driven
models for hydrological forecasting and the vast majority of studies that overlook the impact of
boundary effects on hydrological forecasting performance. Many of the just mentioned studies point
out flaws in existing strategies for coupling decomposition methods with data-driven models and
some go on to identify potential solutions.

In this paper, the authors put forth their own approach for addressing boundary effects. The
authors claim that the main benefits of their proposed approach include that it “. . . can reduce the
boundary effects, save the modelling time, and improve the prediction performance. This practical
streamflow forecasting framework can be outlined as follows:

(1) Divide the entire streamflow data into training and validation sets and decompose each
of these two sets separately into signal components. This procedure avoids using the validation
information for training purposes.

(2) Combine the predictors of individual signal components into a final predictors, and select
the original streamflow data as the prediction target in order to build only one optimized prediction
model.

(3) Generate training and validation samples and divide the validation samples into development
and testing samples. Mix and shuffle the training and the development samples to optimize the
prediction model, and reduce the boundary effects.”

Throughout the MAJOR COMMENTS section below, I raise several issues with how the au-
thors’ proposed approach actually satisfies these points. In my opinion, I think there is much
clarification required on the authors’ part to demonstrate that they adequately fulfill these points
(in a way that is meaningful for operational forecasting problems, which the present study appears
to be concerned with). In particular, the authors’ methodology for how they decompose the time
series using VMD (and other comparative approaches) and use it in training and validating their
proposed VMD-SVR (and comparative) method(s) is not entirely clear. Out of all issues raised in
this review, this point needs the most attention.

Nonetheless, I find that the paper is well-written, is properly structured, and is supported by
appropriate figures. The references are sufficient. The analysis carried out in the paper is reasonable
but the validity of the paper’s results, in terms of how useful the results are to those concerned
with developing operational forecasting models, largely depends on how the authors carried out
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decomposition of the time series (using VMD, DWT, etc.) and used it to develop the forecasting
models.

If the authors can adequately address each of the comments/suggestions mentioned below, I
would be happy to re-evaluate my current stance on the paper’s suitability for being published in
Hydrology and Earth System Sciences. In my opinion, the paper should not be published in its
current form.

Reply: We thank you for the positive evaluation of our work and all the comments/suggestions on our
manuscript. We have made improvements to the manuscript following your suggestions. Overall, the
main corrections are:

1. We have analyzed the VMD shift-variance and sensitivity of the addition of new data using the
underlying data of our study (the monthly runoff at Huaxian station) and discussed how to reduce the
influence of boundary effects caused by the VMD shift-variance and sensitivity of addition of new data.

2. We have compared the proposed TSDP framework with the WDDFF framework proposed by
Quilty and Adamowski (2018). Additionally, we have compared non-decomposition-based SVR with the
ARIMA model in the revised manuscript.

3. We have moved the “Section 3.1 Study area and data observations” of the original manuscript
to “Section 2 Monthly runoff data” to make it easier for the readers to start reading the methodology,
knowing where the research was developed. Additionally, the “Experiment 2 Performance evaluation of
the TSDP models”and “Experiment 5 Evaluation of runoff forecasting for long leading times” in Section
2.5 of the previous manuscript were combined to make the manuscript to be concise.

Please find more details about our changes below.

Comment from John Quilty — MAJOR ITEMS:
In the Introduction, the authors mention how their “. . . proposed scheme can reduce the bound-

ary effects, save the modelling time, and improve the prediction performance. This practical stream-
flow forecasting framework can be outlined as follows:

(1) Divide the entire streamflow data into training and validation sets and decompose each
of these two sets separately into signal components. This procedure avoids using the validation
information for training purposes.

(2) Combine the predictors of individual signal components into a final predictors, and select
the original streamflow data as the prediction target in order to build only one optimized prediction
model.

(3) Generate training and validation samples and divide the validation samples into development
and testing samples. Mix and shuffle the training and the development samples to optimize the
prediction model, and reduce the boundary effects.”

Some comments on each of these points are given below:
Point 1
To decompose the validation data, the authors imply that they append one validation record

at a time onto the calibration dataset (and any previous validation data) then perform VMD.
The authors do this for each validation record, keeping the VMD components for each previous
validation record static (this I my interpretation, the latter assertion was not specifically mentioned
by the authors, at least that I could find). This appears to avoid boundary effects in the validation
data due to the ‘future data’ issue; however, there are two major issues with this approach:

• The first issue is that VMD is sensitive to the addition of new data. I.e., by adding an
additional data point to a time series and performing VMD creates inconsistencies between the
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intrinsic mode functions (IMFs) with the appended data and the IMFs prior to the appended
data. Sometimes, these inconsistencies can be very large and tend to be largest at the edges of a
time series, the most important time series observations in real-world forecasting applications (see
example R script attached at the end of this review for the sensitivity of VMD to the additional of
new data points).

• Because of this last point, the parameters of a model calibrated on initial IMFs generated by
VMD that are then fed with updated IMFs based on the newly appended data may need to be
updated to account for these newly introduced errors not seen during model calibration. This begs
the question of whether each time the IMFs are updated whether the model should be updated too.
Which goes against the authors’ desire to implement a computationally-efficient forecasting method.
Perhaps the authors may wish to consider a Kalman Filter to update their model parameters if
they follow such an approach (as opposed to completely re-training the model). The Kalman Filter
could be used to update the model parameters at each time step or at larger intervals.

• The second issue is that VMD is shift-variant, meaning that performing VMD on lagged
versions of the same time series leads to distortions in the IMFs derived by the VMD at the same
times. This further exacerbates the issue raised above in terms of calibrating and validating a
data-driven model based on using time-lagged inputs that are decomposed via VMD (see example
R script attached at the end of this review that demonstrates the shift-variance problem in VMD).

Reply: Thank you for providing the R script to test the VMD shift-variance and sensitive to the
addition of new data. We have tested the VMD shift-variance and sensitive to the addition of new data
using a Matlab implementation. The secondary penalty parameter (α), the noise tolerance (τ), and
the convergence tolerance (ε) remain static for decomposing the training set and appended sets. The
decomposition level was tuned based on the training set and remain static for decomposing the appended
sets. The last decomposition of appended sets for each signal component is a validation decomposition.
We have clarified how to set and use decomposition parameters in our revised manuscript.

We agree with you that VMD is shift-variant and sensitive to the addition of new data. We think
the boundary effects cause these two issues. The boundary effects lead to large decomposition errors
at the edges of a time series, but the rest decomposition errors are very small by adopting appropriate
decomposition parameters, which can be proved by Fig. 1. Fig. 1(b), (d), and (f) show that VMD
has very small decomposition errors except for the boundary decompositions. Since the training set
was concurrently decomposed and the validation set was sequentially appended to the training set
and decomposed, the training decompositions (samples) are barely affected while the entire validation
decompositions (samples) are affected by the introduced decomposition errors. In other words, the
training and validation samples have different error distribution, which leads to the models calibrated
on the training samples generalized poorly to validation samples.

Since the training and validation samples can come from different distribution (see Machine learning
yearning by Andrew Ng), we think it is not necessary to update model parameters with Kalman Filter
because we have already dealt with the boundary effects with two different approaches. However, we do
believe that updating model parameters with Kalman Filter is a new great idea to deal with boundary
effects and we will research it in our subsequent experiments. One approach is to make the driving
pattern (the relationship between predictors and prediction targets) in the validation sample as close as
possible to that of training sample and the other approach is to make the models assess validation error
distribution during the training stage. In the first approach, the validation samples were generated from
the decompositions of appended sets rather than validation decompositions because the driving pattern
of boundary decomposition of appended sets is close to training decompositions (monotone increasing
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or decreasing, see minimap in Fig. 1a, c and e). In other words, the predictors selected from appended
decomposition are more correlated to the predicted target (see Fig. 2). In the second approach, we
mixed and shuffled the training and development (half validation) samples to build SVR models based on
cross-validation because the model calibrated on training and validation error distribution simultaneously.
We have proved that these two approaches worked by Experiment 1. The key ideas, potential reasons,
and procedures of the TSDP framework have been clarified in the revised manuscript.

Comment from John Quilty — MAJOR ITEMS:
Point 2
Although there are numerous studies that have considered forecasting each IMF (in EEMD,

VMD, etc. based models) separately (and summing their constituent forecasts to obtain the final
forecast), the authors should note that in the literature other studies have also built forecasts
using, for instance, all wavelet-decomposed time series in a single forecasting model (Maheswaran
and Khosa, 2013; Quilty and Adamowski, 2018). Many other examples of this approach can be
found in the literature. It is suggested that the authors ‘downplay’ this feature of their framework
as being something new or different.

Reply: Yes, you are right and we have downplayed “building a single forecasting model” as the new
feature of the proposed TSDP framework and we also have added references for building a single
forecasting model.

Comment from John Quilty — MAJOR ITEMS:
Point 3
In terms of the mix and shuffle approach used to the training and validation data in the VMD-

SVR models:
It is very difficult (for me) to see how taking all but the last 120 records of the red line in Figure

8 (b) (i.e., the development set) and randomly shuffling it with the red line from Figure 8 (a), (the
training set) would lead to such a high performance on the last 120 records in Figure 8 (b) (i.e., the
test set) as noted in Figure 9 and 11. Especially, when it appears that the training and combined
development and test sets have completely different distributions (with the training set having a
larger number of records).

I think it is necessary for the authors (at the very least) to provide pseudo-code for how they
decomposed the time series using EEMD, SSA, VMD, and DWT as well as how it was partitioned
into training, development, and testing sets including how the mixed sampling approach was carried
out. It would be ideal if the authors could provide the code that they used for these steps and (if
possible) the time series used to develop the models. This would allow for the substantial difference
in results (between SVR and VMD-SVR) to be validated.

Reply:
Generating validation samples from the decompositions of appended sets (i.e., appended decompo-

sitions), which is performed before the mixing-and-shuffling step, helps a lot in improving the prediction
performance. We have discussed why and how generating validation samples from appended decom-
positions and mixing and shuffling the training and development (half validation) samples improve the
generalization ability of TSDP models.

We agree with you that providing code and data is helpful for the readers to validate our research re-
sults. The code and data for this study were uploaded to GitHub (see https://github.com/zjy8006/
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Figure 1: Diagram of boundary effect for illustrating instances of VMD (a and b) shift-variance,
(c and d) sensitivity of appending one data point, (e and f) sensitivity of appending several data
points, (g) difference between sequential and concurrent validation decompositions and (h) differ-
ence between the summation of sequential and concurrent validation decompositions at Huaxian
station.
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Figure 2: Absolute Pearson correlation coefficients (PCC) between predictors and predicted target
of validation samples generated from VMD appended decompositions and validation decompositions
at Huaxian station. .

MonthlyRunoffForecastByAutoReg.git) (see readme for how to reproduce our study) and we will
later upload the code and data for this study to an open-source data repository (e.g., Mendeley Data).

Comment from John Quilty — Some other points include:
1. The authors seem to be familiar with the framework proposed by Quilty and Adamowski

(2018) and note that these authors avoided boundary effects through their approach (Wavelet Data-
Driven Forecasting Framework, WDDFF). Why did the authors not compare the WDDFF against
their VMD approach? As it stands, each of the comparison methods (EEMD, SSA, and DWT)
used in this study are all impacted by the boundary effect. At the end of this review, the reviewer
has included a MATLAB code for how the authors could obtain boundary-corrected wavelet and
scaling coefficients through the maximal overlap discrete wavelet transform. If the authors use this
script to decompose their input time series and include it in their SVR model, they can easily
replicate the WDDFF from Quilty and Adamowski (2018).

Reply: We thank you for providing the Matlab implementation of boundary-corrected maximal overlap
discrete wavelet transform (BCMODWT) to build WDDFF. We have compared the WDDFF framework
with the TSDP framework. However, we think the WDDFF is not feasible for our case study. Because
our underlying data does not include meteorological observation and we have to choose the explanatory
variables from the monthly runoff. Additionally, our underlying data only contain 792 monthly runoffs,
and remove the boundary-affected decompositions will lead to the sample size less than 792. In the
revised manuscript, we have selected twelve lagged monthly runoff as explanatory variables and tested
several wavelet functions (haar, db1, fk4, coif1, sym4, db5, coif2, and db10) and decomposition levels
(1, 2, 3 and 4). However, the WDDFF framework based on BCMODWT and SVR, namely BCMODWT-
SVR failed to predict our underlying data (see Fig.3 and Fig. 4).

Comment from John Quilty — Some other points include:
2. Also, since the authors are following only a univariate time series forecasting problem without

considering exogenous variables such as rainfall, evaporation, it would also seem plausible that
they should compare their framework to simple time series methods such as ARIMA or even
more appropriately, fractionally-differenced ARIMA (also known as Hurst-Kolmogorov processes,
HKp) that are known to be suitable for forecasting time series with multiscale behaviour. The
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Figure 3: Nash–Sutcliffe efficiency of BCMODWT-SVR for different wavelets and decomposition
levels. The horizontal axis represents the wavelets and the vertical axis represents the decomposition
level together with the modeling stage (e.g., 1T and 1D represent the training and development
stage with a decomposition level of 1).
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HKp method has been shown to be a useful method for monthly streamflow forecasting, with the
potential to outperform common machine learning methods (k nearest neighbours, neural networks)
(Koutsoyiannis et al., 2010).

Reply: We have added the ARIMA models for predicting the underlying data of this study.

Comment from John Quilty — Some other points include:
3. Line 266-7: ‘Therefore, only a few decomposition values of the training set are affected

by the boundary effects.’ Can the authors validate this claim (i.e., via a formula or through an
experiment)? How can one determine which training records in the various VMD components
include boundary effects?

Reply: That’s a misstatement. We have confirmed that every decomposition of VMD will be affected
by boundary effects through testing VMD shift-variance and sensitive to the addition of new data.
The decomposition errors except for the boundary decomposition errors can be ignored because these
decomposition errors are very close to zero (see Fig.1 b,d, and f). Since the training set was concurrently
decomposed, this sentence means that most training decomposition errors except for the boundary
decomposition errors can be ignored. We have rephrased this sentence in the revised manuscript.

Comment from John Quilty — Some other points include:
4. VMD has many tuning parameters that, by the discussion in section 2.1, seems to greatly

impact VMD performance. How then is VMD more user-friendly than the MODWT, which only
requires the selection of a decomposition level and wavelet filter (although not trivial), for which
there are only a finite number? From what I can tell, the parameters in VMD (aside from the
selection of the number of IMFs) can take on an infinite number of values. . .

Reply: We agree with you that the VMD has more parameters that should be pre-assigned than
MODWT. However, we think the VMD is more controllable than MODWT through the VMD parame-
ters. There are four parameters, i.e., the decomposition level (K), the secondary penalty parameter (α),
the noise tolerance (τ), and the convergence tolerance (ε), mainly affect the decomposition performance
of VMD. A value of K that is too small may lead to poor IMF extraction from the input signal, whereas
a too-large value of K may cause information redundancy in the IMFs. A too-small value of α may lead
to large bandwidth, information redundancy and additional noise to be included in the IMFs. A too-large
value of α may lead to a very small bandwidth and loss of some signal information. The Lagrangian
multiplier in VMD hinders the convergence when τ > 0 is used and the signal has a large noise level.
This can be avoided by setting τ to 0. Additionally, the value of ε affects the reconstruction error of the
VMD decomposition. As suggested by Zuo et al. (2020), the values of α, τ , and ε were set to 2000, 0,
and 1e-9, respectively. Setting τ to 0 can remove noise in the original time series as much as possible
and setting ε to 1e-9 can obtain more accurate decomposition results. Setting the α to 2000 tends to
get small bandwidth, hence, avoid information redundancy and additional noise to be included in the
decomposed signal components. As suggested by Xu et al. (2019), the decomposition results are very
sensitive to the K. Therefore, we only have to tune K by observing the center-frequency aliasing (see
Fig. 5) as suggested by Zuo et al. (2020). This can avoid mode mixing and extract more uncorrelated
signal components. The VMD is more controllable than DWT or MODWT because we do not know
how to select wavelet functions and decomposition levels to obtain uncorrelated signal components with
low noise level.
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Figure 5: Center-frequency aliasing for the last signal component of the Huaxian station.

Comment from John Quilty — Some other points include:
5. I think Line 320 should be re-cast in light of the fact that selecting the right combination of

VMD parameters is technically more computationally-intensive than for the DWT or MODWT.

Reply: We agree with you that tuning the all the four parameters (the decomposition level (K),
the secondary penalty parameter (α), the noise tolerance (τ), and the convergence tolerance (ε)) is
computationally-intensive than DWT or MODWT. However, we can control decomposition results in
term of mode mixing and noise with the VMD parameters. We only need to tune the most sensitive
parameter, i.e., the decomposition level, which has been demonstrated worked in our case study. There-
fore, we think VMD is not more computationally-intensive than DWT or MODWT because the most
VMD parameters do not need to be tuned.

Comment from John Quilty — Some other points include:
6. For Experiment 5, only odd numbered lead times were considered (3, 5, 7, and 9 months

ahead). Why were even numbered lead times (2, 4, etc. months ahead) not considered?

Reply: We aim to evaluate the performance gap of the TSDP models for long lead times and the
workload for evaluating both the odd- and even-numbered lead times is huge. Therefore, we think only
evaluate the odd-numbered (or even-numbered) lead times is enough to tell the difference of models.

Comment from John Quilty — Some other points include:
7. Section 3.4: which open-source software was used for EEMD, SSA, VMD, and DWT?

Reply: We have clarified the open-source software of EEMD, SSA, VMD, and DWT.
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Comment from John Quilty — Some other points include:
8. Given that a Bayesian approach (BOGP) was used for SVR hyper-parameter optimization,

could it not also be used to select the VMD-related parameters? One would think that you could
use the BOGP to optimize both VMD and SVR parameters at once. If possible, I think it would
be interesting for the authors to consider this. If it is not feasible, a short discussion on why it is
not feasible would be interesting.

Reply: Bayesian optimization is a sequential design strategy for global optimization of black-box
functions. We did not search VMD parameters using BOGP because it is hard to define an objective
function for VMD (for SVR the objective function is mean square error). Besides, only the decomposition
level is needed to be tuned in the case study, and determining the decomposition level by observing the
center-frequency aliasing can avoid mode mixing to obtain more uncorrelated signal components.

Comment from John Quilty — Some other points include:
9. Why was six-fold cross-validation selected for hyper-parameter optimization (why not 3, 5,

or 10-fold cross-validation)?

Reply: The CV fold is a vital parameter that influences the forecasting performance of TSDP models.
However, there is no theoretical method to determine the CV fold. The 10-fold CV and leave-one-out
CV (LOOCV) are two frequently-used methods (Zhang and Yang, 2015; Jung, 2018). The research
results of Zhang and Yang (2015) indicated the LOOCV has a better performance than a 10-fold or
5-fold CV. However, LOOCV is computationally expensive. Additionally, Hastie et al. (2009) empirically
demonstrated that 5-fold CV sometimes has lower variance than LOOCV. Therefore, the selection of
cross-validation folds needs to consider specific application scenarios. We used the 6-fold CV in the
previous version of the manuscript because we referred to an SVR model example. We have changed the
6-fold CV to the frequently-used 10-fold CV scheme in the revised manuscript rather than LOOCV due
to the limited computational resources. Additionally, the difference between the 6-fold CV and 10-fold
CV is small in the case of this study.

Comment from John Quilty — Some other points include:
10. Normally one has to set a range for the different hyper-parameters in the BOGP approach.

What range was set for the various SVR hyper-parameters? It would be good to include what
guided your selection of these particular ranges.

Reply: We have clarified the search range for the parameters of SVR.

Comment from John Quilty — Some other points include:
11. Line 495: Figure 8 (a) – I find it hard to agree with the statement that the training data is

‘barely affected by the boundaries’. Between record 550 and 555 there is a difference between the
red and blue lines of 2 *108 m3! I think one can hardly dismiss this as being a small difference. . . I
suggest acknowledging this rather large discrepancy as something significant.

In fact, this is one of the issues of VMD, EEMD, etc. They are not shift-invariant and are sensi-
tive to the addition of new observations (see supporting R code at the end of this review). I suggest
the authors discuss in detail these disadvantage of VMD, especially in relation to the MODWT,
which does not suffer from these problems and which may also be used, in a mathematically sound
manner, to decompose multiscale and/or non-stationary time series into sub-time series captur-
ing their prominent features (which potentially includes trends, periodicities, transients, etc.). I
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think more effort needs to be devoted to clearly identifying the particular advantages of using the
VMD-based approach in this study over the MODWT (which again, does not suffer from such
issues).

Reply: That’s a misstatement. We have rephrased this sentence in the revised manuscript. We agree
with you that the training data is affected by boundary effects. However, this sentence means that the
most decomposition errors except for the boundary decomposition errors caused by boundary effects
can be ignored. Although the boundary decomposition errors are large, only a small number of training
samples are affected by these boundary decomposition errors. We agree with you that VMD, EEMD,
DWT, and SSA suffer form the shift-variance and sensitive to the addition of new data, which lead to
decomposition errors. The boundary-corrected MODWT can avoid this problem. However, this study
aims to propose a general solution to this problem by using different approaches. In other words, we
think building practical forecasting models using VMD, EEMD, DWT and SSA without correcting and
removing the boundary decompositions is worth to try. We have compared VMD, EEMD, DWT, SSA,
and BCMODWT in the revised manuscript.

Comment from John Quilty — Some other points include:
12. Figure 8(b) drives the above-mentioned point home much further. . . Comparing Figure

8 (a) and Figure 8 (b) it also appears to be the case that the validation data and training data
come from distributions, too. It would seem logical that the forecasting model should be updated
to account for this change through time (e.g., perhaps through a Kalman Filter)?

Reply: As shown in Fig. 1(f), only a small number of decompositions at the edges of the training
set suffers from boundary effect. As shown in Fig.1(g), all the validation decompositions are suffering
from boundary effects. Therefore, we think the training decompositions and validation decomposition
have a different (error) distribution. Since the training and validation set can have different distribution
(see Machine learning yearning by Andrew Ng). We think it is not necessary to update the model
parameters because generating validation samples from appended decompositions and mixing and shuf-
fling the training samples and development samples (half validation samples) help a lot to improve the
generalization ability of the trained models (see Fig. 6). Generating validation samples from appended
decompositions obtain more correlated input predictors (see Fig. 2) and mixing and shuffling the training
and development samples can assess the validation error distribution during the training stage.

Comment from John Quilty — Some other points include:
13. Figure 10: it would make it much easier to read if the authors reduced the marker size for

the different methods in the scatter plots. For the hydrograph plots, it would be good to zoom in
on a particular section, perhaps concentrating on the largest peak event?

Reply: We have redrawn the scatter plots to make it easier to read.

Comment from John Quilty — Some other points include:
14. Figure 18: Why was the standard SVR not included in this analysis? I think it should

be included to show how much better the other approaches (DWT-SVR, VMD, SVR, etc.) are at
longer lead times.

Reply: We have analyzed the standard SVR and ARIMA model in the revised manuscript.
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Figure 6: Violin plots of the NSE criterion of TSDP models for one-month-ahead runoff fore-
casting. (a) Generate samples from training-and-development and testing decompositions without
mixing-and-shuffling step. (b) Generate samples from training-and-development and appended de-
compositions without mixing-and-shuffling step. (c) Generate samples from training and validation
decomposition with mixing-and-shuffling step. (d) Generate samples from training and appended
decompositions with mixing-and-shuffling step, which is exactly the proposed TSDP framework.
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Comment from John Quilty — Some other points include:
15. Line 755-756: ‘However, as far as we know, approaches of building a forecasting framework

that is adapted to the boundary effect never be tried.’
Are you sure? Quilty and Adamowski (2018) explored the boundary effect existing in popular

wavelet-based decomposition methods (DWT, MODWT, etc.), then introduced a set of best prac-
tices that addresses these boundary conditions (completely) and implemented these best practices
in a new forecasting framework tailored for real-world forecasting. I think one could say that their
framework ‘adapted to the boundary effect’. In an earlier study by Maheswaran and Khosa (2012),
the authors also discussed how to overcome some of the issues of the DWT by choosing a more
appropriate wavelet decomposition method (à trous algorithm) that did not suffer from the same
boundary conditions. I would also qualify their approach as ‘adapting to the boundary effect’. In
my opinion, the texted quoted from Line 755-6 is not entirely true and should be revised.

Reply: We have clarified this sentence. What we want to emphasize by this sentence is that the
approaches, which are adapted to the boundary effect without correcting and removing the boundary-
affected decompositions and providing users with a high confidence level on the unused data, never be
tried.

Comment from John Quilty — MINOR ITEMS:
• There are numerous grammatical and spelling errors. I did not note all of these issues. I

recommend that the authors carefully check the paper for grammatical and spelling issues (e.g., Line
673 ‘. . . increase and decrease patterns. . . ’ should read ‘. . . increasing and decreasing patterns. . . ’).

Reply: We have carefully revised the manuscript and check it for clarity and language. Additionally,
our revised manuscript was edited for proper English language, grammar, punctuation, spelling, and
overall style by one or more of the highly qualified native English speaking editors at Editideas. The
editorial certificate is shown in Fig. 7.

Comment from John Quilty — MINOR ITEMS:
• Line 709: ‘Orthometric’? I suggest trying to get your point across using different terms.

Reply: We have clarified this term. The ‘Orthometric’ term means uncorrelated signal components.

Comment from John Quilty — MINOR ITEMS:
• Line 761: simulating or forecasting? This applies to the whole paragraph. Simulation and

forecasting are generally regarded as different procedures in hydrology.

Reply: We have rephrased this paragraph in the revised manuscript.

Comment from John Quilty — MINOR ITEMS:
• Line 764: It is not clear what is meant by ‘. . . predictor-runoff relationship and the decomposition-

runoff relationship’.

Reply: We have clarified this sentence. We mean the relationship between input predictors and the
output targets, and the relationship between the original signal and decomposed signal components.

Comment from John Quilty — MINOR ITEMS:
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• Line 765: I think you mean accuracy instead of reliability (the latter is generally measured
using probabilistic performance metrics). The same comment also applies to the sentence two lines
below.

Reply: You are right, we have clarified this in the revised manuscript.

Comment from John Quilty — MINOR ITEMS:
• Line 773: ‘lead’ not ‘leading’.

Reply: We have revised this term.

Comment from John Quilty — MINOR ITEMS:
• Line 782: I would rephrase point ‘c’. Perhaps mention something along lines ‘Although some

overfitting of the VMD-SVR occurs, the model still provides accurate out-of-sample forecasts’.

Reply: Thanks. We have rephrased point ‘c’.

Comment from John Quilty — MINOR ITEMS:
• Line 789-90: Such as. . . ? It would be good to provide some ideas concerning how you think

this can be realized.

Reply: Such as using interpretable models (e.g., decision trees) to analyze feature (predictor) impor-
tance, using partial dependence plots to observing the global or local convergence, visualizing the model
structure and parameters to analyze how the model structure and parameters influence the prediction
results, generating against data to test the model behavior.
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