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Response to Reviewer 1 
Comment 1:  

The manuscript introduces a new framework for the evaluation of generated rainfall time series in terms of 
their ability to reproduce runoff time series characteristics. This is done by two tests, an integrated test and 
a unit test. This topic is of broad interest for the hydrological scientific community and suitable for a 
publication in HESS. 

However, I consider the integrated test not as a novelty, since it has been applied before in different 
studies, but the unit test is useful for rainfall model evaluation. Hence, I suggest to move the focus to the 
unit test and extend the validation by other runoff characteristics. Also, the theoretical elements of the 
paper are very long, the application and validation of the test should be extended and there is a lack of 
some crucial information regarding the applied r-r model and its calibration procedure (for details please 
see my specific comments). Due to the resulting workload I suggest a major revision of the manuscript.  

Response 1: We are pleased that the reviewer found our manuscript suitable and we are grateful for the 
insightful and constructive comments. They have been very helpful, thank you. The suggestions provided show 
careful consideration and will lead to an improved revision of the manuscript. Regarding the specific matters 
raised:  

Novelty of the integrated test  –  we will provide better referencing and discussion on existing uses of 
virtual-observed streamflow evaluation (calibration, validation, model 
selection and diagnosis) in the introduction, including the rewording 
presentation of objective 2. However, we feel that there are some 
important aspects of our implementation of our framework that distinguish 
it from existing presentations of virtual-observed streamflow evaluations. 
In particular, the presentation of the integrated test in this paper is the first 
time, a virtual-observed streamflow evaluation has been formalised used 
using a comprehensive and systematic evaluation (CASE) framework 
approach (Bennett et al. 2018). This distinguishing feature and others are 
further discussed in response to comment 2. We will take the reviewer’s 
advice and emphasize the novelty of the unit test and its diagnostic ability 
in the revised manuscript. 

Evaluation using other runoff characteristics –  we will examine if additional runoff characteristics such as 
flow duration curves provide additional insight on the deficiencies of the 
rainfall model, over and above what is already presented and incorporate 
discussion of these insights where appropriate. 

Length of theoretical elements  – we will reduce the length of the relevant sections.  

Information on the r-r model  – we will provide better explanation, including references of the calibration 
and validation procedure of this rainfall-runoff model. 

We further elaborate on these items in response to subsequent comments made. 
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Comment 2:  

P2l20-23: The so-called "virtual-observed streamflow“-approach and the integrated test is not new and a 
widely used evaluation method, especially in data-sparse regions or research fields. For example in urban 
hydrology, where measured runoff characteristics are not often available, the simulation of a reference 
streamflow is very common (e.g. Müller and Haberlandt, 2018). The authors even mention other studies 
using the integrated test (Li et al., 2014, 2016). However, the unit test is interesting and indeed provides 
useful insights into the rainfall-runoff (r-r) transformation process.  

Response 2:  

Thank you for supplying the references: Müller and Haberlandt, 2018; Sikorska et al. 2018. We will include 
them in the revised text along with additional references (e.g. Kim and Olivera, 2012). 

We agree that the concept of a virtual-observed streamflow evaluation is not new and we will revise the 
introduction, including the presentation of objective 2, to make this clear and discuss that the approach has 
been used in a variety of contexts (e.g. calibration, validation, model selection and as a diagnostic tool).1 
However, there are some important aspects of our framework that distinguish it from existing presentations 
of virtual-observed streamflow evaluation, as outlined below.   

1. This is the first time the virtual-observed streamflow evaluation approach has been formalised using a 
comprehensive and systematic evaluation (CASE) framework (pioneered by Bennett et al., 2018 and used by 
Evin et al. 2018, Khedhaouiria et al. 2018) to evaluate stochastic rainfall models in terms of the ability to 
produce key runoff statistics of interest. The integrated tests presented in this paper follow the CASE approach 
because they (i) present a comprehensive range of key statistics of interest, (ii) systematically categorise 
performance at specific spatial and temporal scales using quantitative criteria for each statistic, and (iii) 
systematically categorise aggregate performance over multiple spatial and/or temporal scales.  

Previous papers (Müller and Haberlandt, 2018; Sikorska et al. 2018, Kim and Olivera, 2012) have used a virtual-
observed streamflow evaluation approach, but have not used a CASE framework to evaluate the performance 
of stochastic rainfall model at multiple rainfall sites in terms of its ability capture key streamflow statistics of 
interest. For example, Müller and Haberlandt (2018) established the need for spatial consistency of rainfall 
generation in modelling sewer networks by comparing rainfall disaggregation approaches with or without 
spatial consistency. This virtual-observed streamflow evaluation is performed for identified extreme rainfall 
events only and therefore does not use a CASE approach that considers multiple temporal scales and the longer 
term effects of the applied rainfall on the translation of subsequent rainfall to streamflow. Sikorska et al. (2018) 

                                                           

 

1 We will rewrite the literature review to point out that this test is not new and that it has been employed in a variety of 

contexts, including:  

Calibration – Using virtual streamflow to directly improve the calibration of a rainfall model. For example, Kim & 
Olivera (2012) derived weights to reflect the importance of various rainfall statistics in terms of streamflow. As 
another example, Li et al. (2014, 2016) used catchment simulations to estimate soil moisture distributions as part of 
a new technique to derive flood frequencies. 

Validation – to establish a model as fit-for-purpose together with other validation tests (Kim & Olivera, 2012).  

Model selection – to identify key rainfall features of multiple competing models or model options in terms of 
hydrological behaviour. For example, Müller and Haberlandt (2018) established the need for spatial consistency of 
rainfall generation in modelling sewer networks. 

Diagnostic – to identify rainfall features of interest in a given rainfall model in terms of hydrological behaviour. For 
example, Sikorska et al. (2018) found that detailed rainfall time series were not needed to reproduce peaks in the 
modelled catchments and that simple rainfall disaggregation approaches were sufficient. 
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focused on identifying rainfall features of interest in terms of resultant hydrological behaviour for the purposes 
of determining the effective daily precipitation duration with a view to selecting a suitable rainfall 
disaggregation scheme. Their evaluations determined that detailed temporal rainfall time series were not 
needed to reproduce annual or seasonal peaks in their modelled catchments. Although the evaluations 
presented are comprehensive the motivation of the Sikorska et al. (2018) paper is different and does not 
provide a general formalised framework for systematically categorising stochastic rainfall model performance 
at specific and aggregate temporal and spatial scales. Kim & Olivera (2012) used virtual-observed streamflow 
evaluation as part of a larger calibration and validation approach in which various weights were trialled to 
reflect the importance of various rainfall statistics within a modified Bartlett-Lewis rectangular pulse (MBLRP) 
model. However the focus was on the improvement and validation of the MBLRP model rather than the 
presentation of separate framework for model evaluation. Finally, Li et al. (2014, 2016) used a virtual-observed 
streamflow evaluation approach, to evaluate the ability of range of techniques to estimate the derived annual 
flood frequency distribution - they did not use a CASE approach to evaluate stochastic rainfall models. In the 
revised paper we will improve the presentation of the approach, highlighting the key points above to more 
clearly demonstrate the novelty.  

Additionally, the formalisation of virtual-observed streamflow evaluation using a comprehensive and 
systematic evaluation (CASE) approach, the integrated test, forms a baseline for subsequent application of the 
unit test which has greater ability to pinpoint issues with respect to the source of the rainfall error on a monthly 
basis. 

2. As identified by the reviewer, we introduce an innovative unit test, which has never been used before in a 
virtual-observed streamflow evaluation approach. The key advantage of this unit test is that by splicing 
together the observed and simulated rainfall in a systematic manner, it is able to develop new insights on which 
months have deficiencies in simulated rainfall that produce poor runoff performance. We will put greater 
emphasis on this new innovative unit test in the revised manuscript. 

Comment 3:  

It would be useful to move the focus on this test and proof it with additional runoff characteristics, e.g. flow 
duration curves, not using only the monthly runoff amount. Therefore, no new simulations are necessary, 
only additional analyses of the existing r-r simulation results.  

Response 3: 

Good idea, we will examine if additional runoff characteristics such as flow duration curves provide additional 
insight on the deficiencies of the rainfall model, over and above what is already presented. Where appropriate, 
we will add them to the manuscript and/or supplementary material with additional discussion. 

Comment 4:  

P2l23-25 The sentence is not clear without the explanations given in section 2. Either here more information 
are provided or the sentence is left out. 

Response 4:  

Thank you. We will leave out the sentence. 
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Comment 5: 

P3l9-14 The idea behind the example provided by the authors is clear. Nevertheless, some of the rainfall 
characteristics mentioned are not clear and, since it is only an example, can be left out or can be replaced by 
other rainfall characteristics: 

- rainfall on wet days - What does this characteristic represent (the daily total rainfall itself is mentioned 
later)?; 

- Extreme value analysis on a monthly basis and autocorrelation on an annual basis are from my 
understanding rather uncommon rainfall characteristics for the evaluation of rainfall time series  

Response 5: 

Thank you. We will modify the example to be clearer, by only using rainfall statistics that are well-known and 
require no additional explanation.  

To address the specific questions regarding our original choice of statistics, our interest in some of these rainfall 
statistics arises from our context. For example, (i) rainfall on wet days is important because the calibration 
should match the moments of the truncated and power-transformed Gaussian upper tail; (ii) extreme value 
analysis of months is of interest to strongly seasonal locations (e.g. Leonard et al., 2008); and (iii) auto-
correlation of annual totals is of interest due to teleconnections in the rainfall signal (Thyer and Kuczera, 2000). 

Comment 5: 

P3l20-21 The details provided in brackets can be left out, since without reading the reference there are no 
additional information for the reader. 

Response 5:  

We agree that the details in brackets can be left out and will do so in the revised manuscript. 

Comment 7:  
P3l7-P4l20 The motivation for the introduction of the new evaluation strategy is quite long and can be 
shortened by the half. I think the majority of the community is quite aware of the issue with overlapping 
errors. Also Fig. 1 and Fig. 2 are quite clear from the text and could be left out. If kept, a box with "True 
rainfall“ should be added in Fig.1a) to be consistent with Fig. 1b ("True streamflow“) 

Response 7: 

We will shorten the explanation while maintaining the key points of the introduction. Based on our experiences 
explaining this work, we feel the figures in section 2 are helpful to avoid misconceptions. We prefer to retain 
them and will amended them as suggested.  

Comment 8: 

P5l10 "to match streamflow observations“ -> "to match streamflow observations or statistics“ 

Response 8:  

Thank you. We will modify the sentence as suggested. 
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Comment 9: 

P6Table1 The authors should include a definition of the applied symbols in the caption, since the difference 
between "x“ and "-“ is not too intuitive (from only the table). Is in the last line, first column something 
missing (virtual hydrological…)? 

Response 9:  

Thank you for this suggestion. Table 1 will be revised so that text is used in place of the original symbols (‘Yes’, 
‘No’, ‘Not Applicable’). The Table caption will also be amended to clarify this also (i.e. ‘Yes’ indicates that a 
source of error in included in the evaluation, ‘Not Applicable’ indicates that a source of error is not relevant to 
the evaluation and ‘No’ indicates a source of error is not included in the evaluation). The last line, first column 
will be amended to read ‘virtual hydrological evaluation’. 

Comment 10: 

P6Table 1 From my opinion the results from the virtual-observed streamflow approach can still be biased by 
the applied r-r model. For example, rainfall is generated in space and two rainfall generation methods show 
differences in terms of rainfall characteristics, but not in the simulated streamflow. After what I’ve read in 
the introduction and methods section, the conclusion is that the compared rainfall characteristics are then 
not practicable (“no impact“) und useless (for the study region). But this also depends on i) the model choice 
(including e.g. spatial resolution, model type (fully / semi-distributed), several model approaches) and ii) the 
parameter identification. In a semi-distributed model differences in spatial rainfall could be dampened, while 
they are (maybe) not dampened in a fully-distributed model. The parameters have to be chosen a priori – a 
calibration on one of the rainfall data sets is not possible to avoid biases. Will the parameters be calibrated 
by an additional rainfall data set (the observed data) and if so, how can be avoided that this calibration 
introduces a bias (e.g. maybe the observed rainfall data is more similar to rainfall data set A under 
investigation than to B)? So all of the results depend on the chosen setup for the r-r simulations and drawn 
conclusions are only valid in context with the model setup and parameter set. This is of course always the 
case in hydrology, but it becomes more important if a virtual runoff time series is applied, since the “relation“ 
between the model output and reality gets lost. However, the authors point these issues out later in their 
investigation (p20), but it should be communicated earlier to the reader. 

Response 10: 

The reviewer has raised some excellent discussion points. The immediate response is that while we have 
discussed some of these points later in the investigation (Section 5.2), we will communicate the key issues 
earlier to the reader. We appreciate the centrality of the issue raised and will highlight it in Section 2.2. We 
provide specific responses below to the discussion points raised.  

1. “Virtual-observed streamflow approach can still be biased by the applied r-r model” – Yes, we agree. 
This is a very important matter to consider. 

2. “Differences in terms of rainfall characteristics, but not in the simulated streamflow” – Yes, there is 
the potential that a chosen rainfall-runoff model is insensitive to certain important differences in 
modelled rainfall. Further to this, it is important to mention that a unit test can still get insights using 
a lumped rainfall-runoff model. This initial test is a necessary, but not sufficient condition for spatial 
rainfall models. If a rainfall model, cannot get the virtual-observed streamflow statistics from a well 
calibrated, well-known lumped rainfall-runoff model right, there is limited value in examining the 
spatial statistics. 

3. “But this also depends on i) the model choice … and ii) the parameter identification” – Yes, as with the 
comments in (2), all elements of the modelling method can potentially introduce bias. The end-user’s 
impact of interest and associated modelling process can influence an outcome. These observations 
reinforce the need for care when applying the framework. We have chosen a widely applied model, 
GR4J. We also adopted rigorous calibration which is presented compactly in a journal paper (Westra 
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et al. 2014a), but with a detailed report also available (Westra et al. 2014b). The calibration of the 
hydrological model is further discussed in the response to comment 15. 

4. "If so, how can be avoided that this calibration introduces a bias" – This is an excellent question, which 
we will address with further discussion. While best-practice models and methods are important, this 
does not necessarily guard against the possibility that a model poorly represents key processes of 
interest. One remedy for this limitation would be to use multiple rainfall-runoff models and this is 
discussed in Section 5.2. 

 

Comment 11: 

P9Fig3b Maybe the authors can spend a more detailed explanation of the two different indices k and t. For 
me the difference was not quite clear at the beginning. Also, it is clear that rainfall in June can affect the 
runoff in July (or from April by filling storages and hence affecting runoff in July). But how can rainfall in July 
affect runoff in June, although the months August to January obviously don’t? Is the rainfall information 
transformed into runoff over such a long period in the model? Since there is no rain in the summer half year, 
shouldn’t the storages run empty? 

Response 11: 

We will more clearly indicate the meaning of indices k and t in the descriptive text, Figure 3b and its caption to 
aid the reader. 

A unit test is undertaken by evaluating the ensemble of simulated streamflows from transforming the spliced 
rainfall from the 12 potential influencing months for an evaluated month, t. We believe it is necessary to 
evaluate all 12 potential influencing months because a priori the impacts of ‘poor’ rainfall can have long-term 
impacts on streamflow statistics due to catchment storage in the rainfall-runoff model. Some catchment 
models have short-term stores to represent features such as depressions, basins, and channels, but other 
catchments models have long-term stores to represent the long-term memory in subsurface catchment 
storages) that can have memory over multiple months. For the case study catchment the storages do not run 
empty each year in summer, so there is potential for persistence at longer timescales due to this ‘memory’ in 
the catchment. Therefore, it is plausible that rainfall from 12 months prior can influence the current state of a 
catchment (especially if that month/season was anomalously wet or dry). An additional figure of monthly 
rainfall and streamflow boxplots will be provided to illustrate the highly seasonal nature of the case study 
catchment in Section 3 (also see response to comment 14). 
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Comment 12: 

P9Section 2.4 It would be useful for the reader to illustrate the implementation of the framework with a flow 
chart, since the authors use step 1, step 6 and so on throughout the section (and the manuscript). 

Response 12: 

We agree, good idea. We will incorporate a flow chart to illustrate the implementation of the framework in 
Section 2.4. 

 

Comment 13: 
P10l14-17 What is the 90 % limit of the simulated statistic? If m=10 mm, everything between 1 mm and 19 
mm is considered as good? Here an additional explanation is required. 

 
Response 13: 
Thank you. We will add additional information to explain the 90% limit test as requested both in text and 
graphically (potentially as supplementary material). The relevant information is available in Bennett et al. 
(2018), but to be more accessible this information will be reproduced in the current paper. 
 

Comment 14: 
P11l9-10 From Table 2 it cannot be seen, how long the time series used for the calibration of the rainfall 
generator are. It would be useful to the reader to characterize the time series more in detail (wet spell 
durations and amount, dry spell durations and maybe even on a monthly basis, since further investigations 
are carried out on a monthly basis). At least a hint to Fig. 6 and Fig. 7, which include some monthly 
observations, would be useful. 

Response 14: 
We agree with the reviewer and recognise that the high-level summaries need more tangible details on the 
rainfall and streamflow statistics on a monthly basis to help the reader understand the seasonal behaviour of 
the case study catchment. We will revise Table 2 to characterise the rainfall time series in more detail including 
the addition of columns that present rainfall statistics (total rainfall, no. of wet days, average daily rainfall, 
average wet day length, average dry spell durations) in different seasons – for brevity in this table we will show 
two months: January to represent the dry summer and July to represent the wet winter. Further detail on these 
statistics for all months at each site will be also provided as supplementary material. In addition, a new figure 
that shows seasonal variation of catchment average rainfall and streamflow on a monthly basis will be added 
to Section 3 (Case Study) of the main paper to address the suggestion of the reviewer.  
 

Comment 15: 
P11l16 For the calibration of the model the reader is referred to Westra et al. (2014), which is a non-
reviewed technical report with 100+ pages, as far as I can see. In context with my former specific comment 
it is necessary to provide information in the actual manuscript, how the model has been calibrated. Which 
rainfall data was used for the calibration? If all 22 stations have been applied, how was the areal rainfall 
estimated as input for the lumped r-r model? 

 
Response 15: 
A paper (Westra et al., 2014a) will now be cited alongside the report. The paper provides a compact peer-
reviewed summary of the model and its calibration – for a neighbouring catchment (Scott Creek). This paper 
was acknowledged with a Research Spotlight Award from American Geophysical Union (top 5% of papers in 
AGU). The reference to the report, Westra et al. (2014b), is also retained since it gives details specific to the 
Onkaparinga catchment used in this paper and because it is comprehensive. The Scott Creek and Onkaparinga 
catchments were calibrated as part of the same project using consistent models and techniques.  
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The model development and calibration was comprehensive and considered a range of aspects including 
multiple sources of uncertainty (input, output, parameters, etc.)2 and it is beyond of the scope of this paper to 
include all the details. Instead relevant aspects of the calibration and model-selection will be added to the 
manuscript. The relevant features to be included will be: calibration approach, including parameter 
optimisation method and objective used, calibration and validation results (NSE etc.), and an explanation of 
the rainfall and runoff data used for calibration and validation.  
 

Comment 16: 
P11Section 3 Although the observed discharge time series is not used in the investigation, it would be 
useful for the reader to provide some runoff characteristics (e.g. mean discharge) to get a feeling for the 
catchment. 

 
Response 16: 
Thanks. Details of the catchment’s runoff characteristics at the annual and seasonal level will be added to the 
revised Table 2 and the new figure (see response to comment 13).  
 

Comment 17: 
P11l14-18 On p9l15-17 you mention "The hydrological model should be selected on the basis that it is 
capable of simulating streamflow for the timescales, magnitudes and physical processes of interest to the 
intended application.“ Is the lumped model able to simulate the physical processes of a catchment with a 
few 100 km2 catchment area (I could not find the catchment area in the manuscript). 

 
Response 17: 
The catchment area is 323 km2 and will be mentioned in the revision (Section 3).  

It is important that the chosen hydrological model is fit for purpose (see also discussion of comment 10). The 
GR4J model used in this paper is for catchment inflows to the Mount Bold reservoir and is appropriate for 
analysis of catchment yield (i.e. focussed on means and variances of inflow)3. However, if we were examining 
impacts on instantaneous peak flows impacts, this model would not be suitable and if we wanted to look at 
impacts of distributed rainfall, we would need a distributed rainfall-runoff model. However, for the purpose of 
this paper, which is to demonstrate the virtual hydrological framework (including the unit test) for evaluating 
the ability of a stochastic rainfall model to estimate catchment yield, the model is deemed sufficient.  

                                                           

 

2 The hydrological model calibration considered 24 model variants combined with likelihood estimation of a 
heteroskedastic error model. The calibration separated out multiple sources of uncertainty (input uncertainty from gauges 
and radar, output uncertainty associated with streamflow gauges, and model uncertainty). All 22 rainfall stations were 
used to estimate areal rainfall. The areal rainfall was interpolated using kriging with external drift on a daily basis using a 
similar latent-variable Gaussian model as the stochastic model from Bennett et al. (2018). The areal rainfall estimation 
was performed using Thiessen weights for comparison. The number of gauges is relatively dense and the uncertainty due 
to rainfall inputs was also assessed relative to other sources of uncertainty (Westra et al. 2014b; pg. 7). 

3 The GR4J model has a calibrated Nash Sutcliffe of 0.8 (reported in the original manuscript). This model (and its non-
stationarity variants) were used to project climate change impact on the Onkaparinga catchment (Westra et al. 2014b). 
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Comment 18: 
P12l8-10 Which result is analyzed? Integrated test or unit test? 

 
Response 18: 

We agree this is not clear, thank you for pointing it out. The result is from the integrated test (step 4). This will 
be clarified in the revised text. 

Comment 19: 
 
P19l19 In Fig. 5 the results for rainfall are worse than for runoff (for mean values). 

 
Response 19: 
There are many interesting features of Fig 5 like this. The fact that there is not a direct correspondence between 
‘good’ rainfall and ‘good’ runoff, and/or ‘poor’ rainfall and ‘poor’ runoff is one of the motivations for the virtual 
hydrological evaluation framework in addition to observed rainfall-based evaluation. Figure 5 shows that it is 
possible for seemingly ‘poor’ rainfall to yield ‘good’ runoff (as also ‘good’ rainfall can yield ‘poor’ runoff). We 
note that the discrepancy in Figure 5 is not in terms of mean values, but for the standard deviation of monthly 
aggregates (see Figure 5, sd(total) for rainfall and runoff in Jan, Mar, May, Jun, Oct, Nov, Dec). For drier months 
(Nov-Mar) the lack of correspondence (i.e. ‘poor’ rainfall producing ‘good’ runoff) is due to the low amount of 
runoff. While in wetter months (May-Oct) the relationship is more complicated as shown in the unit test 
demonstrations (Section 4.2). This will be fully explained in the revised Section 4.1 of the paper.  
 

Comment 20: 
P19 Results-section Before it was mentioned that also the influence of spatial rainfall patterns can be 
evaluated. Since this is not done in the manuscript, it can be moved to the outlooks of the manuscript. 
Otherwise a spatial analyses can be implemented in the manuscript (what I would recommend), to show 
further advantages of the unit test. 

 
Response 20: 
This concept has not been demonstrated in the main paper, therefore it will be deferred to the discussion on 
outlooks (Section 5.2). We believe the unit test has sufficient novelty to represent a substantial contribution, 
hence we will the leave spatial rainfall evaluation for future developments. 
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Comment 21: 
 
P20l20-21 With the introduced framework it is still not possible to identify, which rainfall characteristics are 
important for streamflow prediction. Based on the high non-linearity of the rainfall-runoff transformation 
process, a single rainfall characteristic cannot be sufficient to draw conclusions about the impact on the 
resulting runoff. If this would be the case, r-r models wouldn‘t have to be used anymore. However, could 
the authors identify, based on their analysis, which rainfall characteristics are important for the resulting 
runoff behaviour? (of course, the results depend on the study site, model choice and so on, but 
nevertheless…) 

 
Response 21: 
The comment is correct that the proposed method does not identify the impact of specific singular rainfall 
characteristics on the resulting runoff. However, the framework does provide a clear approach to isolate which 
set of components of the rainfall model require further attention. The integrated test focuses attention on 
hydrological properties, and the unit test can isolate deficiencies in rainfall by month. When applied to the case 
study in our paper, the limitations of the model are in the variability of the rainfall and not in the rainfall mean. 
The initial motivation for the approach can be seen in Figure 5 where the mean of the annual rainfall is ‘good’, 
but the mean of the annual runoff is ‘poor’. Figure 5 also shows that this is mostly attributed to ‘poor’ mean 
runoff in June, July and August. Unit tests were then used to show that the rainfall in the catchment ‘wetting-
up’ period (May-June) is of key importance. This is greater insight than could have been achieved with 
observed-rainfall evaluation and is greater insight than could be gathered from other virtual-observed 
streamflow approaches.  
However, we agree with the reviewer that the framework cannot currently distinguish between particular 
features of the rainfall (e.g. “Is it rainfall correlation, magnitude, or intermittency that causes a low standard 
deviation in monthly streamflow?”). Nonetheless, the framework has significant potential to be extended to 
diagnose which are rainfall characteristics are. This can be done by comparing multiple rainfall model variants 
(parametrically, or via bootstrap techniques) which are designed to have contrasting features of a key 
characteristic (e.g. intermittency, rainfall correlation). Such an approach was undertaken by Evin et al. (2018) 
using an observed-rainfall evaluation approach to compare model variants. In the revised paper, this will now 
be identified as a limitation and this extension will be highlighted for further research. 
 

Comment 22: 
P21l32-p22l1 This example is hard to follow, maybe the authors can extend it. From my understanding it 
depends on the calibration of the storage coefficients. If storage coefficients are small, the results from the 
monthly rainfall will be transferred to runoff immediately. This would be possible with the "traditional“ 
approach. 

 
Response 22: 
Thank you for pointing out that the example is hard to follow. We will add additional information on 
catchment seasonality in the case study description to better explain the importance of the ‘wetting-up’ 
months and storage in the catchment (also see responses to comments 14 and 16). We will then revisit this 
example to explain the concept more concretely. 
 

Comment 23: 
P23 There is a reference of Li et al. (2015b), but no Li et al. (2015a). Also Li et al. (2016) is mentioned before 
Li et al. (2015b) 

 
Response 23: 
Thank you, this will be corrected. 
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