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Spatial Relationship between Precipitation and Runoff in Africa
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Abstract, LackApart from the challenges, of
reseuree-planning-and-managementrunoff prediction, in Afriea:ungauged watersheds around different parts of the world, the

direct use of river discharges on non-catchment regional studies (i.e.: country scale) also seems to be an unrealistic method |

that requires scientific precautions, Hence, the-ebjective-of this research-isstudy intends, to examineestimate, the relationship /

countries—For-this-purpese; of the long-term-menthlyAfrican continent. Initially, observed, runoff esefficient(Re)coefficients, /
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were estimated using-the-torg-termfrom, monthly runoff (R) data (R)-calculated from historical streamflow records provided /
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Precipitation Climatology Centre (GPCC) precipitation—datasetsfor the period ef-time-spanning from 1901 to 20472016,
Subsequently, the observed Re data-were interpolated-in-order-to-estimate R-overthe-ungauged-basins under-guidance of runoff

coefficients for 535 catchments covering about 47.43% of the whole continent were downscaled at 0.5° grid scale based on

grids’ direct runoff contributions to their corresponding basins estimated following the Natural Resources Conservation

Service (NRCS) runoff curve number (CN) approach. NRCS-CN involves the land use and land cover (LULC) information

soil hydrological characteristics, antecedent soil moisture condition (AMC) estimated according to an antecedent precipitation

index (API) and precipitation. Predictions in ungauged basins (PUB) were achieved using the inter-gauged and ungauged basin

parameter transfer method based on spatial hydrologic similarities. Monthly hydrologic similarity’s feature datasets were

Surface temperature (T), precipiation{P)-andpetentialrunoffcoefficient{Co}-inferred-from-the-land-useand-tand-cover; /
slopeand topographic parameters (topographic_wetness index (TWI), and seil—texture—information-slope), The results ,“"k
shewindicated, that 2614% of the annual mean precipitation(672.52P (671.88 mm)-becomes-runoff(105-72-yr!) became R /
(94.9 mm)-with-a—runoff-coefficient-o£0-16,-yr’), and the remaining 84%(566-8086% (576.98 mm)-evapotranspirates-yr') /
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evapotranspirated, over the continent-during-1961—2017 Spatial analysis reveals that the preeipitation-runeffmonthly and
annual P-R, relationship variesvaried, significantly among different basins and countries, mainly dependent-endue to their, -
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climatic conditions-and-its-inter-annual-variabitity., Generally, highthe highest runoff depths and runoff coefficients arewere,

compared to these-located-insubtropical and temperate drylands.

observed everin, humid tropical basins—and-eeuntriesregions associated, with highhigher, precipitation intensityintensities
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1 Introduction

In the 21% century water resources management becomes a major concern to human life and environmental protection<

(Cosgrove and Loucks, 2015), It is well--known that precipitation is the source of freshwater on our planet, and its intensity

varies from one region to another. Lacking—precipitation—often—causes—droughts—which—would—further—indueces—severe

~Precipitation-to-runoff is the

main source of water for rivers, lakes and ocean replenishment (Edwards et al., 2015), Precipitation\Water, scarcity aggravates

poverty to an estimate of 300 million people living in the-Eastern—and—Western, drylands of Africa and the number is expected
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to increase by 65-80% in 2030 (Cervigni and Morris, 2016), By 2050, it is estimated that 40% of the global population will be
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exposed to river basins that experience severe water stress, particularly in Africa and Asia (UNISDR, 2015), On-the-other

threatsDroughts further induce severe environment degradation, social conflicts and hunger crisis (Messer et al., 2001;Clover
2003). On the other hand, intensive runoffs cause significant damages such as soil erosion, floods, landslides, water pollution,

and infrastructure destructions (Goudie, 2000;Weng, 2001;Karamage et al., 2017a). For instance, the population exposed to
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Geographical Information System (GIS) has evolved since its introduction in the 1960s, and now becomes a widely

used tool able to deal with multiple variables regarding basin management. However, GIS-based hydrological studies rely

strongly on databases (Terakawa, 2003). Various runoff-related studies have been carried out with different purposes such as,

for example, runoff depth estimation at global scale (Hong et al., 2007;Fekete et al., 2002a) (Hong et al., 2007;Fekete et al.,
2002b;Ruess, 2015;Smakhtin, 2004) and water stress assessment at country and global scales (Ruess, 2015;Smakhtin, 2004),

modelling blue and green water availability in Africa (Schuol et al., 2008) and runoff predictions in different parts of Africa

(Tesemma et al., 2010;0lang and First, 2011;Jaleta et al., 2017;Mahmoud, 2014;Karamage et al., 2017a). However, based on

our knowledge, there is no available detailed study on the relationship between precipitation and runoff in Africa indicating

how river discharges available at catchment scale can be downscaled at small unity of land or grid scale which could be utilized

reasonably to estimate P-R correlation at a non-catchment spatial scales (i.e.: countries, etc.), taking into consideration well-

known key runoff controlling factors such as land use, climate, soil characteristics, etc. Briefly, this study aims at assessing

the relationship between precipitation and runoff within 55 African countries and 25 major drainage basins. As scientific

contribution, this study highlighted step by step how the Natural Resources Conservation Service (NRCS) runoff curve number

(CN) can be a prominent proxy for the basin’s river discharge downscaling at a grid scale which can be reasonably utilized on

the non-catchment regional studies (i.e.: Country scale). Actually, runoff-related studies are often conducted at a drainage basin

scale, but, hydrological studies on the grid and country scales are very useful at national level since each government has own

policies for water resource management. For instance, it has been noticed that runoff discharges are useful in water stress

analysis on country scale (Ruess, 2015;Smakhtin, 2004). Integration of NRCS-CN in downscaling the runoff discharges do
not alter the quantity of observed runoff at a catchment scale, but it redistributes catchment’s discharged runoff volume to its
3
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grids_proportionally according to their respective climate and physical conditions. NRCS-CN is very useful in various

hydrological studies mainly in predicting the direct runoff discharges by incorporating the land use and land cover (LULC)

information, soil hydrological characteristics, antecedent soil moisture condition (AMC) and precipitation (Hawkins, 1993).

Besides this, the prediction of the P-R relationship in ungauged regions was achieved utilizing the inter-gauged and ungauged

basin parameter transfer method that was previously recommended in other hydrological studies as a reliable approach for

parameter predictions in ungauged basins (PUB) (Bérdossy, 2007;Bléschl, 2006). Using this method, the gridded observed

runoff coefficients (Orc) were transferred to ungauged regions according to their hydrologic similarity. Monthly hydrologic

similarity’s feature datasets were established from key runoff controlling factors such as: (i) AMC, (ii) NRCS-CN, (iii)

terrestrial water storage change (TWSC), (iv) land-surface temperature (T), and (v) topographic parameters (topographic
wetness index (TWI) and slope). The present study developed a uniqgue monthly hydrologic similarity feature dataset with

multiple zones. Each zone is composed by a set of grids with similar climatic and physical characteristics. The runoff

controlling factors were firstly classified into ranges, converted to non-simplified polygons and stacked together using an

overlay (intersect) analysis technique (Zhu, 2016) performed with the “intersect tool” available in “overlay tools”, one of the

“Analysis tools™ in ArcMap v.10.5. After that, the mean observed runoff coefficients were transferred to ungauged regions

employing the “Zonal Statistics as Table Tool” available in “Zonal tool” of the “Spatial Analyst Tools” in ArcMap v.10.5”

where, hydrologic similarity dataset were considered as “Input raster or feature zone data”, and gridded observed runoff

coefficient as “Input value raster”. Inter-gauged and ungauged basin parameter transfer approach was chosen to be used in this

study because of its simplicity and reasonable prediction in ungauged regions, yielding the results representing a real-world

phenomenon occurring in the same region. This method can be considered as one of the hybrid interpolation or gaps filling

technigues which are very useful in developing various datasets such as temperature, precipitation, soil, etc.

2 Data inputs and Methods

2.1 Study area

Africa (Figure 1) is the world’s second-largest continent (= 30.3 million km?) accounting for 6% of Earth's surface

area and 20.4 % of land area (Sayre and Pulley, 1999;-Mawere, 2017), It is the second-most-populous continent (1,256 million

people) after Asia (4,504 million people) as of 2017 (UN-DESA, 2017),
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Statistical computation from the

Fhe, European Space Agency (ESA) Climate Change Initiative (CCI) land cover (LC) map 2015 (ESA-CCI, 2017),
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ndicatesshowed, that Africa is comprised of forests (24.52%), grassland (24.51%), cropland (16.14%), built-up areas (0.16%), \E Formatted: Font: Times New Roman

5 wetlands (0.84%), inland water (0.99%), and bare areas (32.84%).
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Eigure 1, -Hydrological map showing major rivers, lakes, 25 major basins (FAO, 2009) and 55 countries of Africa (GADM, 2015).
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Over 60% of the soil is dominated by hot, arid or immature soil assemblages: Arenosols (22%), Leptosols (18%), Cambisols
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tropical features: Ferralsols (10%), Plinthisols (5%), Lixisols (4%) and Nitisols (2%) (Dewitte et al., 2013), Based on the |/
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continent has an overall long-term mean annual-surface temperature (T) of 24°C-yr’, and mean precipitation (P) of /. {
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672.52671.88 mm—Ht-yr. Africa has three major climate types including tropical (T = 25°C-yr’; P = 835836.36, mm-yr?), / ( Formatted: Font: Times New Roman
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issometimes-absentormasked-by-sand-seas-Approximately, 6

0% of the African continent is drained by 10 large rivers (Congo,

Limpopo, Niger, Nile, Ogooue, Orange, Senegal, Shebelle, Volta and Zambezi) and their tributaries (Paul et al., 2014),

2.2 Datasets and Application

Digita evation-Model (DEM)-and-soil-properties—employed-to-improve-the-interpolation-accuracy-of -observed—runoff

coefficient(R.)}—The-data-are-proecessed-and-analyzedThe data were processed and analysed, using the Esri ArcGIS software

version 10.5, SDMToolbox version 2.2 (Brown et al., 2017),and Excel VBA (Visual Basic for Applications) (Walkenbach,
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Monthly Worlds's river discharge data
(1901 - 2017) from
the Grobal Runoff Data Center
hittp://www.bafg. de/GRDC/

w

TR

GPCC globally gridded monthly rainfall
totals v.7.0 at 0.5° resolution (1901 - 2013)
GPCC globally gridded daily totals
at 1.0° resolution (2014 - 2017)
https://gpcc.dwd.de/

w

e

Global gridded mean monthly land-surface

0.5 resolution (1901 - 2016)

hitps: uea.ac.uk/ g/

Long-term mean
monthly runoff (R) of

Long-term mean

temperature (°C) data (CRU TS v. 4.01) at [*]

|

Estimation of the long-term mean

\s-_—//

Reclassification
of the land use
and land cover
(LULC) maps
from category Il
to category |

ESA CCl land cover maps v.2.0.7
at 300 m resolution (1992 - 2015)
www.esa-landcover-cci.org/

28?1g;cfg(;a%ins [ g‘o:r'ﬁ‘?;n'lu?% monthly and annual runoff (1901 -
of 288 African 217
basins R=R,xP
- |
R =P Estimation of the long-term mean
Long-term mean annual evapotranspiration (E;)
monthly (1901 - 2017)
precipitation (P) of |- - 7%
288 Afiican basins [~ Ep=B:R
1901 - 2017]
( ) 3 7 Study scales
/Classiﬁcation of \ Inverse » Aean contnent level
> 3 i
ce:ﬂv;m:;enﬁ:‘ v?/':i';m > 25 maior basins of Africa —
wi
the i (IDWybased of » 55 countries of Africa
runoff coefficient ¥ o
(Co).temp i e
and &
preci(:') =) guided by the
using the overlay - iOVenay
intersection intersections of
method C,, Tand P

WetSpa extension model-

based estimation of the
potential runoff coefficien
(C,) at 0.5° resolution

Slope

e

AfSIS's soil data at 250 m resolution
http://www.isric.org/data/Afrs 0l Grids 250m
ISRIC 's SoilGrids data at 1 km resolution

. Sand (%)
. Silt (%)
. Clay (%)

Soil texture classification
at 300 m resolution

Global Multi-resolution Terrain Elevation Data
2010 (GMTED2010) at 250 m resolution
https://topotools .cr.usgs.gov

at 300 m resolution
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Monthly river discharge records
(1901 - 2016) for 535 gauged
catchments from the Grobal Runoff
Data Center (GRDC)
htp.Afvivew.balg.de/GRDC/

GPCC ghoval grided monthly precipitation
{P) totals at 0.5° resolution (1901 - 2016)
and daly precipiaton totals at 1° resolution
(1962 - 2016) v.2018 (v.8)
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— R
— \ Longterm monthly cbserved Precipitation (P) and runoft (R) relationship
e T runaff coeficient for 535 gauged
—— 3 \, catchments Runoff Coefficient = ;

AISIE's soi data at 250 m resolution \ T

http:fiwww iSric.orgidatalAfrs oil Grids 250m \\ Temproral resolutions

Downscaling observed runoff
depth and coefficient from
basin to 05 grd scale based
pam—yo \ on direct runoff distributions
Silt (%) \ ¥
Clay (%) *

Long tem maan monthly and annual basis
(1801 - 2016)

Spatial scales

25 major drainage basins and all 55 countries of |
Africa

Natural Resources Conservation Senice
— ~ {NRCS) runolf curve number (CN) melhod- |
/\\ Soil J_. basad derivation of direct runoff variables T

- -

Mean O, transfer from gauged
1o ungauged areas with the
same hydrologic. similarity zone

ESA CCl land cover maps v.20.7
at 300 m resolution (1992 - 2015)
www 853 landcover-col org!

Long-term mean meonthly tarrestrial waler slorage

change estimated from the CSR RLO5 GRACE mascon
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grids based on runoff controlling {April 2002 to June 2016)

factors using a geospatial overlay hitp: w2, 5. ulexas. edu/grac e/RLOS_mascons.nlml
{interseclt) melhod

Global gridded mean monthy land-surface —
temperalure (*C) data (CRU TS v. 4.01) at T FR———— e
0.5° resolution (1801 - 2016) - Topograhic wetness index
s i o e oHero el Siape HyoroSHEDS DEM at 15 arcsecond resoluton
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Figure 2, A conceptual framework used for analyzing the precipitation-runoff relationship in Africa. “

2.2.1 Runoff eeefficient-estimation in gauged basirscatchments

The runoff eeefficientin-meonitored-basinsis-coefficients over gauged catchments were estimated fremwith, two types
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of data: (1) the monthly time series of river discharge data for 341535 African river—basins—{catchments (Figure 3)

discontinuously recorded since 1901 —20647until 2016 were, provided by request from the Global Runoff Data Centre

(GRDC}). The GRDC is an international organization based in Germany, a branch of the World Meteorological Organization

(WMO) that was established in 1988 to support scientific studies on global climate change and water resources management,

(GRDC, 2018)-and monthlvbrecinitation-datasets-acauired—from-the_Global-Precin on matoloav-_Proie PCP
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10-20 X £
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5 824 voiz 9138 B okes
2 525 zamvezi 9136 S5 Basin boundaries
) 1,650 3,300 6,600 9,900 13200

and (2) monthly precipitation datasets acquired from the Global Precipitation Climatology Centre (GPCC) Full Data Gridded
Monthly Totals Version 2018 (V.8) at 0.5° resolution for the period 1901-2016. GPCC product is a Rain-Gauges built on

5 GTS-based and Historical Data that is operated by the German Weather Service (DWD) under the auspices of the World

Meteorological Organization (WMO) (Markus et al., 2018).
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Eigure 3. Distribution of 535 GRDC gauged catchments (covering = 47.43% of the total African continent) and streamflow gauging stations
(GRDC, 2018) within 25 major basins of Africa (FAO, 2009).
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In addition, runoff coefficient is very useful for rainfall runoff management in different land cover types since it can easily [Formatted- Font: Times New Roman J
identify the ratio of rainwater flowed from each land use type under heterogeneous climate and physical conditions among [Formaued: Eont: Times New Roman J

different grids of the catchment. It may help to locate areas with high potential runoff risk which require special practices of

stormwater management (Chen et al., 2007). Higher runoff coefficient values are often observed on impervious surfaces and

unwell-managed croplands due to their low infiltration capacity compared to other land use classes such for example grasslands

and forests (Goudie, 2000; Weng, 2001). Areas with low runoff coefficients are those with a relatively higher infiltration and/or

evapotranspiration (Er) rates. Underground water storage change also plays significant role in runoff generation process

throughout the alteration of soil moisture condition. However, in the long-term annual mean basis of water balance analysis

the estimation of terrestrial water storage change provides approximately zero values due to a variety of wet and dry seasons

(Long et al., 2014).
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2.2.2 Runoff eeefficient-estimation in ungauged basinscatchments

variables(i-e--DEM)-to-improve-theresults-Runoff coefficients over ungauged regions were estimated using the inter-gauged
and ungauged parameter transfer method based on the hydrologic similarity feature zones established by means of overlay
(intersect) technique applied to major runoff controlling factors, including AMC, CN, TWSC, T, TWI and slope that were

selected among others based on their potential effect in runoff generation process as previously revealed by different

et al., 2011;McCabe and Wolock, 2011)-
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. Inter-gauged and ungauged parameter transfer method is one of acceptable approach for parameter predictions in ungauged
Basins (PUB) recommended in different hydrological studies (Bardossy, 2007;Bldschl, 2006;Chiew et al., 2018). Several
hydrologic models are available and utilized in different projects; but, most of them limited either due to their different input

parameter requirements, a lot of time required for preparing input data, and complexity model setting (Lim et al., 2006).

Ungauged regions accounting 52.57% of the total continent of Africa seems to be larger extent compared to the recorded

catchments (47.43% of African continent) (Figure 3) due to 31% of the continent occupied by the desert of Sahara (Cook and

Vizy, 2015) where the runoff depths and runoff coefficient is approximately 0 due to absence of precipitation in this region.

The remaining ungauged regions account only 21.57% of the total African continent and are distributed in different climatic

zones where it is possible to predict their hydrologic conditions based on the observed parameters of neighbouring gauged

catchments. Using any other model for P-R correlation assessment it might be a double task since it would be necessary to

calibrate the results using almost the same method of hydrologic similarity analysis.

2.2.2.1 Estimation of direct runoff using the NRCS-CN method

NRCS-CN is one of the ancient popular and efficient empirical hydrologic approaches adopted by various researchers

worldwide for water resources planning and assessment, especially estimating the direct rainfall-runoff. It was developed in
1956 by the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) (Cronshey,
1986;Silveira et al., 2000). This method is easily understandable, simple and useful for direct runoff prediction over ungauged

catchments (Mishra et al., 2006). CN is generally considered as a major input parameter in many hydrologic models such as

for example the Long-Term Hydrologic Impact Assessment (L-THIA) model (Lim et al., 2006), the Hydrologic Modelling
System (HEC-HMS) (Engineers, 2008;Halwatura and Najim, 2013), The Chemicals, Runoff, and Erosion from Agricultural
Management Systems (CREAMS) (Knisel and Douglas-Mankin, 2012), Simulation of Production and Utilization of
Rangelands (SPUR) model (Wright and Skiles, 1987). NRCS-CN method predicts the Drc and Dr by involving the land use
and land cover (LULC) data, soil hydrological characteristics and antecedent soil moisture condition, according to an

antecedent precipitation index (API) and precipitation (Cronshey, 1986). The LULC maps (Figure 4) used in this study were

reclassified from time series of annual global Climate Change Initiative Land Cover (CCI-LC) maps at 300 m spatial resolution
covering a period of 24 years (1992 — 2015) (ESA-CCI, 2017).
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Figure 4. A time series of annual land cover maps (ESA-CCI, 2017) of Africa with reclassified 7 classes (1992 — 2015).
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The recent updated dataset of sand, clay, and silt fractions available at =~ 250 m resolution were downloaded from the
Africa Soil Information Service (AfSIS) database (Hengl et al., 2015) and used to classify the soil texture dataset of Africa
(Figure 5). Soil texture data were utilized in conjunction with LULC maps (Figure 4) for the development of hydrologic soil
group (HSG) and CN dataset (Figure 5) following the studies of Yeo et al. (2004) , Cronshey (1986), and Sumarauw and
Ohgushi (2012) (Table 2). Because the AfSIS data have gaps over the Sahara desert, in this region the soil texture was classified

from the WorldGrids’ s sand, clay, and silt fractions available at =~ 1 km spatial resolution (Hengl et al., 2014). Soil texture
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Sand (%) Silt (%) Clay (%)
High : 99 High : 54 . High : 75
Low : 4 Low: 0 Low:0 ’
Soil texture
Silty loam
Silty clay loam
Silty clay
Sandy soil 5
Sandy loam .
Sandy clay loam ) Slope (%) Y
Sandy clay P 0-05
Loamy sand ', (5)-5 1'05 '
Loam 5
Clay loam 10-147
Clay
)N\
N —— T
0 3,500 7,000 14,000 21,000 28,000

Table 2. LULC classes and their corresponding HSG, soil texture and CN (adapted from (Yeo et al., 2004;Cronshey, 1986;Sumarauw and
Ohgushi, 2012).

LULC Soil Texture HSG CN
Grass Sand, loamy sand, or sandy loam A 35

19



Silt loam or loam B 56
Sandy clay loam C 70
_ Clay loam, silty clay loam, sandy clay, silty clay, or clay D 77
Forrest Sand, loamy sand, or sandy loam A 30
Silt loam or loam B 55
Sandy clay loam C 70
_ Clay loam, silty clay loam, sandy clay, silty clay, or clay D 77
Agriculture  Sand, loamy sand, or sandy loam A 64
Silt loam or loam B 75
Sandy clay loam C 82
~ Clay loam, silty clay loam, sandy clay, silty clay, or clay D 85
Barren Sand, loamy sand, or sandy loam A 77
Silt loam or loam B 86
Sandy clay loam C 91
_ Clay loam, silty clay loam, sandy clay, silty clay, or clay D 94
Urban Sand, loamy sand, or sandy loam A 81
Silt loam or loam B 88
Sandy clay loam C 91
~ Clay loam, silty clay loam, sandy clay, silty clay, or clay D 93
Wetland Sand, loamy sand, or sandy loam A 0
Silt loam or loam B 62
Sandy clay loam C 74
_ Clay loam, silty clay loam, sandy clay, silty clay, or clay D 85
Water Sand, loamy sand, or sandy loam A 100
Silt loam or loam B 100
Sandy clay loam C 100
Clay loam, silty clay loam, sandy clay, silty clay, or clay D 100

20



10

Sand (%) silt (%) Clay (%)

High : 99 High : 54 High : 75 ek
Low: 4 Low:0 ’ Low:0 % '
Soil texture

Silty loam

Sandy soil
Sandy loam
Sandy clay loam
Sandy clay
Loamy sand
Loam

Clay loam

Clay

0 3,700 7400 14,800 22,200 29,600
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Fhe-long-term-monthly-land-surface-temperature{Figure-6)Adjusted long-term monthly CN maps (Figure 6) were obtained

employing antecedent soil moisture condition (AMC) (Figure 6) using equations (2) and (3) (Hong et al., 2007;Zeng et al., \\\\{ Formatted: Font: 9 pt
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D Y W W,

I
I cn!
CNj = ————7 (2)
2.281-0.01281 + CN/

11
cn!
CNM' = —— (3)
0.427 - 0.00573 * CN

C', CN", and C"" are corresponding to AMC | (dry), AMC Il (normal), and AMC 111 (wet), respectively, determined utilizing
total 5-day antecedent precipitation index (API) and season types (dormant or passive and active or growing seasons) (Table

3) (Silveira et al., 2000;Hong et al., 2007). The glowing season is considered as the active (wet) season with the precipitation

intensity > 100 mm-month™, whilst, the passive (dry) season has a precipitation intensity < 100 mm-month™ (Murray-Tortarolo

etal., 2017).

Table 3. Seasonal rainfall limits for AMC (Silveira et al., 2000;Hong et al., 2007;Mishra and Singh, 2006).

Total 5-day API (mm)

AMC grou - - -
AV droun Dormant (passive) season Growing (active) season

1 <13 <36
1 1328 3653
i > 28 >53
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Five-day API was estimated using the GPCC Full Data Daily Product V.2018 of daily global land-surface precipitation totals.

This product is available at a regular latitude/longitude grid with a spatial resolution of 1° and covers the time period from
January 1982 to December 2016 (Anja et al., 2018). The API was estimated following Eg. (4) (Kohler and Linsley,
1951;Heqggen, 2001).

APl =YL P« k™t (4)

where, i is the number of antecedent days, P is the precipitation amount during day t, and k is a decay constant. It has been

revealed that k factor is not critical, its values range from 0.85 to 0.90 over most of the eastern and central portions of the

United States where it was well tested (Kohler and Linsley, 1951), and this study used a value of 0.90 that is recommended

for the basins without a measured k decay constant (Abdi et al., 2017;Viessman Jr and Knapp, 1977;Heggen, 2001). The

NRCS-CN method was modified by different researchers depending on the climatic condition of their study area. The most

frequently modified parameter was the initial abstraction coefficient (L), arguing that the assumption of the A = 0.2 in the

original SCS-CN method seems to be high and suggested that L with values between 0.01 and 0.05 are more realistic and

recommended a value of A = 0.05 (5% of the storage is assumed as the initial abstraction instead of 20%) because it involves

either both lower CN values and small rainfall amount (Yuan et al., 2014;Beck et al., 2009;Shi et al., 2009;Hawkins,

1993;Ponce and Hawkins, 1996;Woodward et al., 2003;Lim et al., 2006). Based on these recent studies, our study used an
adjusted SCS-CN equation with a value of A = 0.05 as demonstrated by Hawkins (1993) with the equations (5), (6) and (7).

0 forP < 0.05%S
o onses 2
br= { £095:%05 forp > 005+ =
P +0.95 * Sg 05
So.0s = 1.33 % Sy50™"° (6)
So20 = ot — 254 0a)

where, Dr = the direct runoff (mm), P = rainfall (mm) (Figure 6), S is the maximum potential soil water retention (mm), and

CN is the curve number (dimensionless). I, = 0.05 = S_is the initial abstraction (all losses before runoff begins). Dr. = the direct

runoff coefficient (dimensionless) (Figure 6). S is related to the soil and land cover conditions of the watershed through the

CN which has a range of 0 to 100 values.
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Figure 6. Maps of the runoff curve number (CN) adjusted according to antecedent soil moisture condition (AMC), precipitation (P), direct
runoff depths (Dr) and direct runoff coefficients (Drc).

2.2.2.2 Downscaling process of the runoff discharges

5 Equations (8), (9). (10), (11), (12), (13), and (14) express the process used to downscale the observed runoff coefficients and
runoff depths from basin scaled to 0.5° grid spatial resolution (Figure 7) based on the direct runoff distributions within different
grids of each gauged catchment. This approach provides google results since the mean of observed gridded runoff coefficients

and runoff depths equals to the catchment’s average observed runoff coefficients and runoff depths, respectively.
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Dry, = 0.001 * D1y * G (8)

Drv, = 0.001 %D, * A 9)
0="T0 (10)
Orv, = 0.001 % 0m, * A (11)
Ory, = meb(;@ (12)
07y =222 5 1000 (13)
Oreg = opl (14)

g

where, (@) is the percent contribution of each grid’s direct runoff volume (Drvg) in m*month™ to its corresponding basin’s

direct runoff discharge (Drvs) in m*month™, Dry is the grid’s direct runoff depth (mm-month™), Dry, is the basin’s average

direct runoff depth (mm-month™), G is the size of a grid in m?, 0.001 and 1000 are the numbers for unities conversion, A is the

drainage area of basin in m% Orv, is the basin’ s observed runoff discharge (m*month™), Ory, is the basin’s observed runoff

depth (mm-month™), Org is the grid’s observed runoff depth (mm-month™), Orcg is the grid’s observed runoff coefficient

(dimensionless), P is the grid’s precipitation intensity (mm-month™).

2.2.2.3 Application of inter-gauged and ungauged basin parameter transfer approach

Overlay (intersect) is one of useful geospatial overlay methods that stacks several different types of dataset with the same

georeferencing system on top of each other in order to assess the relationship between features of each location. Overlay

method has been used in different applications such as relationship analysis between rainfall distribution and elevation
examination of environmental sensitivity based on slope, surface drainage, soil erosion and other environmental parameters

(Zhu, 2016). This method was applied to the present study in order to establish a unique zonal feature dataset that combines

together a set of important physical-climate variables which control the runoff (AMC, CN, TWSC, T, and TWI and slope).

Each intersection of these variables falls within gauged and ungauged grids at the same time, here immediately ungauged grids
receive an average of observed runoff coefficient locating within the same intersection. This operation was achieved using the

“Zonal Statistics as Table Tool” available in the Spatial Analyst Tools of the ArcMap v.10.5” where, hydrologic similarity’s

zonal feature dataset were considered as “Input raster or feature zone data”, and downscaled observed runoff as “Input value

raster”.

The hydrological similarity analysis involved AMC (Figure 6) based on its potential capability to separate the drying and

wetting areas, whilst CN (Figure 6) helps to recognize the effect of land use and soil characteristics in runoff generation

process. According to the water balance budget, during the rainy seasons water soaks into pervious ground and once filled in
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soil porosities starts to flow into rivers and lakes resulting in an increased level of underground water (acquirers) and surface

water reservoirs (rivers, lakes and oceans); in impervious surface rainwater flow forward immediately into surface water

reservoirs. Accumulation of water infiltrations improves soil moisture condition and boosts the rate of runoff depths while, a

declining water storage phenomenon leads to lower amount of runoff discharge (Edwards et al., 2015). Apart from the natural

cause of water storage change fluctuations (i.e.: rainfall and evapotranspiration), human activities (i.e.: water storage for
hydropower generation and its release, irrigation, water consumption, etc.) also affect the change of water storage and as well

river discharge volume. However, the change of water storage is generally controlled by climate and seasons patterns more

than human factors (Edwards et al., 2015).

In order to incorporate the effect of water storage change in hydrologic similarity analysis, this study used the long-term

monthly terrestrial water storage change (Figure 7) computed from the Center for Space Research (CSR) Gravity Recovery

and Climate Experiment (GRACE) RL05 mascon solutions available at 1° resolution for the period starting from April 2002
to June 2016. The Gravity Recovery and Climate Experiment (GRACE) mission was launched in March 2002 under the NASA

Earth System Science Pathfinder (ESSP) Program. GRACE is jointly implemented by the US National Aeronautics and Space
Administration (NASA) and German Aerospace Center (DLR) (Save et al., 2016).

The land-surface temperature also plays a big role in water balance where, hot regions are often characterized by higher«—

evapotranspiration rates compared to cold or temperate regions. The long-term monthly land-surface temperature (Figure 7)

used in this study,was calculated from the 4.01 release of the CRU TS (Climatic Research Unit Timeseries) dataset spanning

a period of 116 years (1901 — 2016) (Harris et al., 2014), This dataset was developed, subsequently updated, improved and

maintained with support from a number of funders, principally by the UK's Natural Environment Research Council (NERC)
and the US Department of Energy. Long-term support is currently provided by the UK National Centre for Atmospheric
Science (NCAS), a NERC collaborative center (Harris et al., 2014),
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The topography also acts on water flow movement and infiltration; where higher runoff depths are mostly found in regions

with steep slopes more than areas with flat and gentle slopes (Ogden et al., 2011). Sometimes, digital elevation model (DEM)

is used directly as a parameter that represents the impact of the surface shapes and feature on the hydrological process (Xiao

etal., 2017). The dataset of topographic wetness index (TWI) that is also called the Compound Topographic Index (CTI) was

developed by Beven and Kirkby (1979) within the runoff model TOPMODEL due to the effect of topography on soil moisture

(BEVEN and Kirkby, 1979). TWI (Eq. 15, 16 and 17) that combines local upslope contributing area and slope is commonly

used to quantify topographic control on hydrological processes. Higher TWI values represent drainage depressions which are

often wet and associated with greater runoff depths compared to crests and ridges relatively with the lower TWI values and

dry surfaces that suck a lot of water amount before the beginning of water flow process (Liu et al., 2015;Sdrensen et al.,
2006;Xiao et al., 2017). TWI and slope parameters (Figure 7) derived from the HydroSHEDS datasets at 15 arc-second
resolution (Lehner et al., 2008) were incorporated in the hydrologic similarity analysis of this study in order to separate areas

with different topographic features.
a
TWI =1 ( ) 15
n tan as

a=(f+1)*G (16)
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B = (m* (1/2)/90 a7

where, o is the upslope area draining through a certain point per unit contour length and B is the slope in radians, f is the flow

accumulation calculated from the flow direction that is generated in DEM (meter unity), G is the cell size in m?,m is the slope

in degrees, = is pi equals to 3.141592.
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Figure 7. Estimated runoff coefficients and runoff depths based on gridded observed runoff coefficients transferred using inter-gauged and
ungauged parameter transfer approach, according to hydrological similarity feature dataset resulted from an overlay (intersect) of the runoff
controlling factors (AMC, CN (Figure 6), TWSC, T, TWI, and slope).
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3 Results -~

Figure 78, presents the final resultant maps obtained by means of the methods above-described in sections 2.2.1 and 2.2.2.«

Gridded Jong-term mean-monthly and annual mean yunoff eeefficient,coefficients (RC), precipitation; (P), and runoff depths .
(R) were developed at 0.5° spatial resolution fer—the—period-starting—from—(1901 to 26172016) and, utilized to produce

thegenerate, zonal statistics at the continental level; (Figure 9 and 10), within 25 major basins and(Figure 11),55 countries of |

Africa- (Figure 12) and as well latitudinal profile (Figure 14 and Table 4),
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Figure 9. Figure-8-] ong-term average annual water balance of Africa (1901 — 20172016).
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relatively high precipitation of 1,028.56 and 917.16 mm-yr, the above-mentioned basins also comprised of, highest long-term
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annual rainfall intensities among others, ranging from 841-88873.71, mm-yr™ to 1,594-88854.64 mm-yr™, and,are amongst-the
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tep-ten, basins with the strongest correlation between rainfall and runoff compared to others with a mean runoff coefficient
ranging from 0.1312,to 0.3932, The basins with weak precipitation-runoff relationship indicates higher Et prepertionsratios, '
Figure 011, also illustrates the details about monthly precipitation-runoff relationship within 25 major basins of Africa.
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Eigure 11, Precipitation-runoff relationship within 25 major basins of Africa (1901 — 2016).
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3.3 Precipitation-runoff relationship within 55 African countries

Figure $112 correlates the long-term mean monthly and annual precipitation{P),-interpolated-observed-runeff{, R},
interpolated—observed—runoff-coefficient(Rs) and RC, and long-term mean annual evapetranspiration<Er), during 1901, —
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Leene:Gabon, It should be noticed that, with the-highest runoff depths > 300200, mm-yr™, Fhe-top-12 countries—including \
MauritiusSierra Leone, Equatorial Guinea, Gabon, Sierra—teene—Guinea-Bissau, Republic of Congo, Cameroon, Liberia, \

Cameroon-D—R—Congoe;-Seyehelles;-and-Guinea-BissauMauritius, Burundi, Guinea, and Rwandg, are ranked among the top |
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Comoros, Seychelles, Democratic Republic of the Congo, Madagascar, Sdo Tomé and Principe, Republic—ofCenge;
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range from 0.1718, to 0.5032, For comparative illustration of the long-term average monthly precipitation, runoff and runoff
eoefficientcoefficients between 55 countries of Africa, see Figure 112,
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Figure 12. Precipitation-runoff relationship within 55 countries of Africa (1901 — 26172016).

4 Discussions

StreamflowThe streamflow,and rain gauging stations are known as a trustable source of reliable data for different hydrological

studies (Urroz et al., 2001)-—TFhe- GRDGC riverdischarges-and-GPCC precipitation-datasets have-outreaching-accuracy-forspatia

river discharge data are available with temporal and spatial gaps mostly in low income regions including African countries

Figure 13). Obviously, trends in hydrological process are mainly associated with historical climate changes, land-cover

change, reservoir storage changes, hydropower releases, and irrigation abstractions which are known to be the primary

changing factors affecting the amount of rainwater flow over time (Fekete et al., 2002a). Except, the precipitation datasets
48
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available for the since the beginning of 20* century, even before, the other above-mentioned changing runoff controllers are

available for the recent decades (i.e.. GRACE data for water storage change analysis were collected since 2002 and good

quality land cover maps are available since 1990s). Lack of these data for the earlier decades constrained us to predict the past

runoff process. Again, if the earlier runoff discharges are excluded from the long-term runoff calculations, spatial gaps would

be increased and bring more challenge for validation.

— Total gauged extent in Africa (k) —— Total number of operational stations in Africa

12000000 50

10000000

8000000

6000000

4000000

Gauged extent (km?)

2000000

Number of operatianal stations

Years

Figure 13. Historical gauged extent and number of operational stations in Africa (1901 — 2016).

A 75.64% of the total observed extent comprise the river discharges with a record of more than 20 years (Figure 3). The

scarcity of runoff discharge data is common limitation in runoff prediction at a large extent such as continental scale, but they

can provide reasonable results that represent the real world phenomenon,(Loucks et al., 2005),, FhePre-analysis of the historical
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changes in annual runoff discharges suggested a linear trend varies between 10% and 40% among the stations which drain the
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catchments covered by a small extent (8.44% total gauged area). Indeed, a large proportion (91.56%) of the total African Formatted: Font: Times New Roman
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gauged area, including the catchments recorded in earlier to recent decades has stations that experienced a minor variance

ranging from 0% to 10% which is not a major problem in long-term bases analysis of runoff estimation.

Actually, runoff-related studies are often conducted at a drainage basin scale, but, hydrological studies at the grid and

country scales are very useful at national level since each government has own policies for water resource management.

Utilization of average basin estimates directly at a country level or any other non-catchment locality seems to be unrealistic.

This is the reason why this study highlighted the process of downscaling the basin” observed runoff discharges based on grids’

direct runoff contributions to their corresponding basins which helps to include the effect of major runoff controlling factors

(i.e.: land cover types, soil characteristics, moisture conditions and precipitation intensities) within different grids sharing the

same catchment according to the Natural Resources Conservation Service (NRCS) runoff curve number (CN) method. Even

though, the runoff generation process is governed by several environmental factors, but they don’t have the same sensitivity

and it is still too complicated to incorporate all of them in existing runoff models and methods. In this study, additional factors

to those ones utilized in NRCS-CN were considered in fact that there is a considerable dissimilarity of hydrological conditions

between separate catchments rather than the grids connected each other within the same catchment. It should be noticed that,
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the integration of NRCS-CN in downscaling the runoff discharges do not alter the quantity of observed runoff at a catchment

scale, but it redistributes catchment’ discharged runoff volumes to their grids according to their respective climate and physical

conditions. Some runoff controlling factors such as temperature, topography, etc., are not amongst inputs of the NRCS-CN-

based direct runoff prediction, but they also have minor sensitivity a catchment or grid scale with coarse resolution. Runoff

discharges were downscaled at 0.5° grid spatial resolution to allow their application at country analysis and facilitate their
utilization on estimation over ungauged regions. Gridded observed runoff coefficients were transferred to ungauged areas

using inter-gauged and ungauged parameter transfer approach. This is a Geo-spatial analysis technique acceptable for

hydrological predictions in ungauged basins (PUB) (Bardossy, 2007;Bldschl, 2006). This method assumes that two separate

catchments can have a similar hydrological process when they have the same range of climatic and physical conditions. Once

one of these catchments is observed it can be a source of data to unobserved one. Hydrologic similarity conditions were

investigated using the runoff controlling factors selected based on their potential impact highlighted in previous studies. Thus,

the efficiency analysis of the approach used to predict the data for filling the gaps suggested that the estimated and observed

runoff coefficients have the goodness of fit (R?) ranging from 0.56 to 0.67 for the long-term monthly Rc and 0.78 for the annual

mean Rc (Figure 14). These results are within permissible validity limits since an R? > 0.5 is considered acceptable for

calibration and validation in hydrological modelling (Santhi et al., 2001;Van Liew et al., 2003).

17 January R®=06341 14 Februay w:oslasg 19 March R?=0.6015 1

o April R?=0.6507
el

:l:'

0 0
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1 2= 1 2= 1 RI=0712 1 R2=
May R 0654y June & R?=0.606 uly - gR=0g Auguste 05538
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Figure 14. Scatter plots with a best - fit line indicating the efficiency of predicted runoff coefficients vs. gridded observed runoff coefficients

over the gauged regions of Africa (Figure 7).
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It can be concluded that inter-gauged and ungauged basin parameter transfer based on hydrologic similarity is an alternative

approach for gaps filling in runoff prediction and it can even perform much better if the input observed runoff discharges do

not have a lot of temporal gaps.
Furthermore, the, study conducted by the University of New Hampshire-Global Runoff Data Centre (UNH-GRDC):

“high-resolution fields of global runoff combining observed river discharge and simulated water balances™ that has been

considered as reference to validate the runoff-related hydrological studies since the beginning of 21% century (Fekete%pak,

TFhis-analysis-indicates-that-the long-term-mean(Fekete et al., 2002b;Hong et al., 2007) was compared with the current study

based on the latitudinal zones at 1° interval scale (Figure 15). This analysis indicates that the long-term,annual mean rainfall

(1920 — 1980) version 2.01 fA/iHmettetal 1998 Feketeetal—2002)(Willmott_ C_J et al1998, 1998;Fekete et al., 2002b),

that was utilized to simulate the UNH/GRDC composne runoff (Fekete—e{—al—%@@Q—)%—reugh#y—matehmgwﬂh—the%ng—teFm
-(Fekete et al., 2002b) is roughly

comparative analysis also shows better agreements over the northern hemisphere between 36°N and 14°N, in the southern
hemisphere between 17°S and 34°S latitudes, and in the equatorial zone laying between 4°N and 8°S. Major differences are
between 14°N and 4°N in the northern hemisphere and in the southern hemisphere between 8°S and 17°S latitudes. These
differences are possibly due to the UNH/GRDC method that assigned the same runoff depths in observed and unobserved

basins that led to overestimation of the runoff in drylands of Australia and Africa éFeke&eet—al—ZQ@Q—)—H—sheu#d—beneted—tha{

envirenmental-characteristies—and gridded runoff depth that was estimated by considering rainfall factor alone (Fekete et al.,

2002). The latitudinal profile analysis revealed that on the 2°S latitude is the runoff hotspot region of Africa with higher mean

R depth (387.65 mm-yr) and P (1,422.77 mm-yr™), and a relatively strongest P-R correlation with Rc of 0.27, followed by

the 1°S latitude zone with the R of 383.87 mm-yr™, P of 1,504.47 mm-yr™, and Rc of 0.26, and as well equatorial zone at 0°
latitude with a mean R of 379.99 mm-yr?, P of 1,490.18 mm-yr™, and Rc of 0.25,
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grewthCompared to the tropical zone, subtropical and temperate zones of Africa have low rainfall and runoff amounts (Figure

15 and Table 4), which may expose them to the water scarcity,(Maliva and Missimer, 2012), The countries and basins located [Formatted: Font: Times New Roman
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This study has highlighted step by step how the Natural Resources Conservation Service (NRCS) runoff curve number (CN)

can be a prominent proxy for the basin’s river discharge downscaling at a grid scale which can be reasonably utilized on non-

catchment regional studies. This approach helped us to produce gridded long-term monthly runoff depths and coefficients

datasets used to analyze the spatial relationship between precipitation and runoff over all 55 countries and 25 major drainage

basins covering the whole continent of Africa. The Global Runoff Data Centre (GRDC)’s streamflow records available for

535 catchments covering =~ 47.43% of the total African continent became a source of information for predicting the P-R

correlation over ungauged regions based on the inter-gauged and ungauged parameter transfer approach and spatial hydrologic
similarity analysis assed using the key runoff controlling factors including antecedent moisture condition (AMC), NRCS-CN,

terrestrial water storage, temperature, topographic wetness index (TWI), and slope. Both higher runoff depths and strong P-R

correlation were observed in the tropical humid regions due to their intensive precipitation more than in subtropical and
temperate zones. This study suggests the need for rehabilitation awareness of operational stream gauging stations and
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establishment of new ones where they are necessary to make sure streamflow are regularly and widely recorded in different

catchments of Africa to provide sufficient update data required for accurate water resource planning.
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