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Abstract. Anthropogenic climate change is likely to increase the frequency risk of extreme weather events in the future. The term 

‘risk’ here means the probability of occurrence of a hazard, e.g., an extreme rainfall event that can trigger sudden flash-flood, 

landslide or flood. Previous studies have robustly shown how and where climate change has already changed the risks of weather 15 

extremes. However, developing countries have been somewhat underrepresented in these studies, despite high vulnerability and 

limited capacities to adapt. How additional global warming would affect the future risks of extreme rainfall events in Bangladesh 

needs to be addressed to limit adverse impacts. Our study focuses on understanding and quantifying the relative risks of extreme 

rainfall events in Bangladesh under the Paris Agreement temperature goals of 1.5°C and 2°C warming above pre-industrial levels. 

In particular, we investigate the influence of anthropogenic aerosols on these risks given their likely future reduction and resulting 20 

amplification of global warming. Using large ensemble regional climate model simulations from weather@home under different 

forcing scenarios, we compare the risks of rainfall events under pre-industrial (natural), current (actual), 1.5°C, and 2.0°C warmer 

and greenhouse gas (GHG)-only (with pre-industrial levels of anthropogenic aerosols removed) conditions. Analysis of percent 

change, standardized precipitation index and absolute change in seasonal mean rainfall revealed that there both GHGs and 

anthropogenic aerosols play important roles in determining the overall climate change impact over this region. For extreme 25 

rainfall events, we find that the risk of a 1 in 100 year rainfall event has already increased significantly compared with pre-

industrial levels across parts of Bangladesh, with additional increases likely for 1.5 and 2.0 degree warming (of up to 5.5 times 

higher, with an uncertainty range of 3.5 to 7.8 times). Climate change impacts on the probabilities of extreme rainfall events were 

observed are found during both pre-monsoon and monsoon seasons, periods but were the level of impacts are spatially variable 

across the country. in terms of the level of impact. Results also show that reduction in anthropogenic aerosols plays an important 30 

role in determining the overall future climate change impacts; by exacerbating the effects of GHG induced global warming and 

thereby increasing the rainfall intensity. We highlight that the net aerosol effect varies from region to region within Bangladesh, 

which leads to different outcomes of aerosol reduction on extreme rainfall statistics, and must therefore be considered in future 

risk assessments. Whilst there is a substantial reduction in the impacts resulting from 1.5°C compared with 2°C warming, the 

difference is spatially and temporally variable, specifically with respect to seasonal extreme rainfall events. 35 

 

1 Introduction 

The 2015 Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC), on "Holding the 

increase in the global average temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit the 

temperature increase to 1.5°C" (UNFCCC, 2015), needs strong support from research on the nature, benefits and feasibility of 40 

this challenging goal. This Agreement calls for the quantification and comparison between the  impacts of 1.5C versus 2.0C 

warmer global temperatures on different climate related aspects such as extreme weather events. While assessing both risks 

and vulnerabilities to incremental increases in global mean temperature, the discrimination of the  impacts of different radiative 
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forcing contributions as well as the quantification of spatially varying changes in risk are crucially important. For example, 

highly unusual heat extremes that are virtually absent in the present climate in South Asia, would affect around 15% of land 

area of this region under 1.5°C and around 20% of land area under 2°C warming (The World Bank, 2012). The increase in 

heavy monsoon rainfall intensity for South Asia is projected to be 7% under 1.5°C and 10% under 2°C warming compared to 

pre-industrial conditions (Schleussner et al., 2016). Populations of this region largely depend on the stability of the monsoon, 5 

which provides water resources for agricultural production (The World Bank, 2012). It is projected that the years with above-

normal monsoon rainfall will be more frequent (Endo et al., 2013; Kripalani et al., 2007). The seasonality of rainfall will be 

amplified with more rainfall during the wet season (Fung et al., 2011; Turner and Annamalai, 2012). The number of extreme 

rainfall events are projected to increase as well (Endo et al., 2012; Kumar et al., 2011 in Vinke et al., 2017). As a consequence of 

additional global warming, parts of East Asia and India are likely to have more frequent daily extreme rainfall events in monsoon 10 

season (Chevuturi et al., 2018). Here we assess whether these generalized projections are also valid using a large ensemble 

regional climate model framework focusing on Bangladesh. 

 

Bangladesh is potentially a hotspot of climate change impacts as it is vulnerable to a combination of increasing challenges  

from record-breaking temperatures, extreme rainfall events, more intense river floods, tropical cyclones, and rising sea levels  15 

(The World Bank, 2012). Bangladesh has a tropical monsoon climate, flat and low-lying topography, and unique geographical 

location in the Ganges-Brahmaputra-Meghna Basin (Banglapedia, 2012; Rawlani and Sovacool, 2011). For these features, heavy 

rainfall events in the pre-monsoon (Mar-May) and monsoon (Jun-Sep) seasons are associated with a high risk of flooding and 

landslides almost every year. In recent years, the frequency of high-intensity rainfall events has shown an increasing trend in the 

observations. The frequencies of observed high-intensity rainfall events are increasing in the recent years (Murshed et al., 2011). 20 

For example, in 2017, heavy rainfall across the upstream Meghalaya hills in India and in Bangladesh caused pre-monsoon floods 

in March in the northeastern parts of the country. Consequently, vast areas of Haors (local name for lowland wetlands) and low-

lying areas were inundated and most of the nearly-harvestable ‘Boro’ paddy crop (a local high yielding variety of paddy) was 

damaged (Nirapad, 2017). In June 2017, heavy rain induced floods and landslides killed at least 156 people. at southeastern parts 

of Bangladesh heavy rainfall caused devastating floods and multiple landslides killing at least 156 people (Paul and Hussain, 25 

2017). National Aeronautics and Space Administration (NASA)’s near-real time Integrated  Multi-satellitE Retrievals for Global 

Precipitation Measurement, GPM (IMERG) data estimated the heaviest rainfall accumulation of more than 510 mm in only 3 days 

(12-14 June 2017) in southeastern Bangladesh (Gutro, 2017). 

 

Considering the unfolding change in risk of heavy rain in the region under present-day conditions how would a 1.5C and a 2.0C 30 

warmer world change the probability of extreme rainfall events in Bangladesh? If climate change is already playing a role, then 

similar events are likely to occur even more frequently as global warming continues in the future (Faust, 2017). Reliable 

information regarding the relative changes in future risks of extreme rainfall events can help to provide local decision makers to 

address the problem, develop appropriate adaptation strategies and allocate resources to minimize loss and damage associated 

with potential climate extremes. A multi global climate model (GCM) ensemble based study conducted for northwestern part of 35 

Bangladesh reported 9% and 18% increase in mean seasonal rainfall during pre-monsoon (Mar-May) and monsoon (Jun-Sep) 

seasons respectively by 2090 According to global climate model (GCM) ensemble based study, by 2090, the north-western part of 

Bangladesh would experience 9% and 18% increase in the pre-monsoon and monsoon mean rainfall respectively (Kumar et al., 

2014). Caesar et al., (2015) used the high resolution (25 km) regional climate model (RCM), HadRM3P that is nested in the global 

HadCM3 model and projected a large increase in the very heavy daily rainfall events (>99th percentile, i.e., >23.8mm/day) and a 40 

decrease in the light-moderate rainfall events (<75th percentile, i.e., <12.3mm/day) during monsoon season (Jun-Sep) over 

Bangladesh by 2099. According to PRECIS (Providing REgional Climates for Impact Studies) model projection for 2080, the 

north-eastern parts of Bangladesh would experience 0.42–75% more pre-monsoon rainfall compared to the baseline of 1971–2000 
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(Nowreen et al., 2015). While previous studies projected future changes in the seasonal mean or extreme rainfall events over a 

specific part or whole Bangladesh; none had the benefit of using very large model ensembles of high resolution regional climate 

model RCM to examine exceptionally rare extreme rainfall events (e.g., events with 100-1000 year of return periods); explained 

whether or not anthropogenic climate change played a role in changing the probabilities of those projected future rainfall events; 

and explored how anthropogenic aerosols changed the overall climate change impacts on rainfall events. The Fifth Phase Coupled 5 

Model Inter-comparison Project (CMIP5) models produced a broad range of temperature projections as a function of model 

sensitivity (van Vuuren et al., 2011). However, the specified warming targets set in the Paris Agreement were not addressed in 

those experiments. Hence the Half a degree additional warming, prognosis and projected impacts (HAPPI) framework has been 

developed, specifically targeted for 1.5°C and 2.0°C warming (Mitchell et al., 2016). There are only a few studies using CMIP5 

(e.g., Fahad et al., 2017), or PRECIS ( e.g., Nowreen et al., 2015) runs simulations that investigated future changes in the rainfall 10 

events over Bangladesh, but none of these have specifically addressed the warming targets of the Paris Agreement. The novelty of 

this study lies in meeting all these aforementioned challenges.   

 

We considered anthropogenic aerosols in addition to greenhouse gases (GHGs) as a potential contributing factor in changing the 

risks of extreme rainfall events. Because aerosols can influence regional climate and change the risks of rainfall events by 15 

radiative forcing and microphysical effects (Guo et al., 2013; Li et al., 2016). Furthermore, extreme rainfall events have higher 

sensitivity to aerosols removals, per degree of surface warming, in particular over the major aerosol emission regions like Asia 

(Samset et al., 2018). Therefore it is important to explore aerosol impacts while assessing the changes in the risks of extreme 

rainfall events under additional global warming scenarios of 1.5 and 2.0 degrees’ of Paris Agreement.  

 20 

Drawing on the large ensemble of regional climate model (RCM) runs generated with the weather@home system (Guillod et al., 

2017; Massey et al., 2015) within the HAPPI experimental framework, here we quantify changing rainfall risks for Bangladesh 

during MAM and JJAS pre-monsoon (Mar-May; MAM) and monsoon (Jun-Sep; JJAS) seasons. In order to look at local sub-

regional scale rainfall risks within Bangladesh, we use sub-regions 1-4 located at north-west (88-90E, 24-26N), north-east 

(90.5-92.5E, 24-25.5N), south-west (89-91E, 21.5-23.5N) and south-east (91-93E, 20.5-24N) respectively. The risk of 25 

extreme rainfall events is evaluated for a counterfactual ‘natural’, current ‘actual’ and future 1.5 and 2.0 degrees warmer climate 

scenarios, a counterfactual ‘natural’ scenario as well as a current climate with no anthropogenic aerosols (GHG-only) scenario. In 

particular, the The impact of anthropogenic aerosol emissions is quantified and discussed based on the GHG-only scenario. 

 

We first introduce data and methods in Section 2, whilst a summary of model performance is presented in Section 3.1. 2.2. Further 30 

details on model evaluation are provided in Rimi et al. (under review). We then assess percentage changes and standardized 

changes in the seasonal mean rainfall within five forcing scenarios (Natural, Actual, 1.5°C, 2.0°C and GHG-only) in Section 3.2. 

Finally, in Section 3.3 we explore detect the relative shifts in the probabilities of MAM and JJAS daily and 5-day rainfall 

extremes during the pre-monsoon and monsoon seasons using return times over the four sub-regions, and identify the relative 

shifts in the probabilities of extreme rainfall events between the different forcing scenarios. The results are discussed in context of 35 

regional vulnerabilities and observed changes in Section 4.  

 

2 Data and Methods  

2.1 Observational data  

Two The daily observational dataset data sets that are used as a comparison against model results include:, observational (i) Asian 40 

Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) daily 

rainfall data for the duration of 2006-2015 (Yatagai et al., 2012) and (ii) NOAA’s Climate Prediction Center (CPC) global 0.5° 
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analysis of daily rain gauge measurements covering 2006-2015 (Chen et al., 2008a). APHRODITE is a the only long-term 

continental-scale, daily gridded rainfall dataset (available for 1951-2007) with high-resolution grids for Asia; high-resolution daily 

gridded rainfall dataset for Asia (V1901, available for 1998-2015); created primarily with data obtained from a rain-gauge-

observation network. CPC global daily rainfall dataset (available from 1979 to present) is constructed through a unified analysis 

of gauge-based daily rainfall over global land (Chen et al., 2008b). Basic facts about these two observational data sets are 5 

presented in the Table S1 in the supplementary information. APHRODITE and CPC were also used in the model evaluation 

conducted by Rimi et al., (2019). Both model and observation data is re-gridded using bi-linear interpolation method to have 

similar and comparable grid structures.  

 

2.2 Model setup and experimental design  10 

The weather@home is part of the climateprediction.net programme (Stainforth et al., 2005) programme and is able to generate 

very large ensembles of climate model simulations by harnessing spare CPU time on a network of volunteers’ personal computers 

(Allen, 1999; Stott et al., 2004; Massey et al., 2015; Otto, 2017). For this study, we use the high resolution (50 km) RCM, of 

HadRM3P (over South Asia region) that is nested in the global atmosphere-only HadAM3P model of weather@home system and 

is driven by prescribed sea surface temperatures (SSTs) and radiative forcing (Massey et al. 2015; Guillod et al. 2017) to generate 15 

the required model ensembles with initial condition perturbations. of present-day actual climate conditions (denoted as ‘ACT’); 

the counterfactual world with natural climate conditions of pre-industrial period with no anthropogenic warming influences 

(denoted as ‘NAT’); and the hypothetical world with the GHG-only climate condition where the anthropogenic aerosols are 

reduced to pre-industrial levels (denoted as ‘GHG-only’). Evaluation of the model for the region was conducted by Rimi et al 

(Rimi et al., 2018), and demonstrated a reasonable agreement between model results and observational datasets for extreme 20 

rainfall events. The model is therefore considered fit for purpose in evaluating the potential impacts of climate change. 

 

HAPPI experiments are designed to address the research questions relating to 1.5°C and 2.0°C warming and as part of the 

experiments weather@home system is used to generate large model ensembles (Massey et al., 2015; Otto, 2017; Stainforth et al., 

2005). Following the experimental set up of the HAPPI framework (for details see Mitchell et al., 2017), this study uses 25 

experiments of three decadal model ensembles: 

 

1. Actual climate (denoted as ‘ACT’) ACT model ensemble with 98 members per year representing the current decade 

(2006–2015) with the actual climatic conditions, using observed SST data from the Operational Sea Surface Temperature 

and Sea Ice Analysis (OSTIA) dataset (Donlon et al., 2012; Stark et al., 2007) and present-day atmospheric GHG and 30 

aerosol concentration. 

2. HAPPI 1.5 model ensemble (2091–2100) with 98 members per year representing 1.5C warmer than pre-industrial 

(1861–1880) climatic conditions, and   

3. HAPPI 2.0 model ensemble (2091–2100) with 98 members per year representing 2.0C warmer than pre-industrial 

(1861–1880) climatic conditions.  35 

 

For the HAPPI 1.5 model ensemble, the RCP 2.6 scenario is used to provide the model boundary conditions. In RCP 2.6 scenario, 

the mean global temperature reaches to ~1.55C by 2100 (Mitchell et al., 2017). Since there is no analogous CMIP5 simulation 

available which results in ~2C warmer temperatures relative to preindustrial levels, a weighted combination of RCP2.6 and RCP 

4.5 is used to provide the model boundary conditions of SST and sea ice for the HAPPI 2.0 model ensemble. The global mean 40 

temperature response reaches to ~2.05C by the end of century in the HAPPI 2.0 model ensemble (Mitchell et al., 2017). 
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Following the RCP2.6 protocol, anthropogenic aerosol concentrations are approximately 1/3th one-third of the current levels 

(IPCC, 2013) in both HAPPI scenarios.  

 

In addition, we use two model ensembles of hypothetical world climate conditions: 

4. Natural (‘NAT’) NAT model ensemble with 98 members per year representing the current decade (2006–2015) climatic 5 

conditions, but here the modelled SST patterns of anthropogenic forcing (SSTs hereinafter) are removed from the 

OSTIA observed SSTs to simulate a counterfactual world. SSTs are generated from the CMIP5 archive. 

Anthropogenic forcing/signals, SSTs = CMIP5 Historical SSTs – CMIP5 Natural SSTs……(i) 

Counterfactual World’s SSTs = OSTIA Observed SSTs - SSTs………………………………(ii) 

In this case, HistoricalNat simulations are subtracted from the Historical simulations as described in Schaller et al. 10 

(2016), thereby generating a representation of human influences on the SSTs that can be removed from the OSTIA SSTs. 

GHG and aerosol concentrations are set to pre-industrial levels. 

 

5. ‘GHG-only’ model ensemble with 98 members per year representing the current decade (2006–2015) climatic conditions, 

but with anthropogenic aerosol concentrations reduced to pre-industrial levels to simulate a hypothetical climate, where 15 

impacts of aerosols are removed. The difference between ACT and GHG-only conditions simulates the net aerosol effect 

under current conditions assuming additive behaviour of different radiative forces forcing. The GHG-only model 

ensemble with anthropogenic aerosols reduction scenario in the HadRM3P model is satisfactorily representative when 

compared with the other GCMs (Haustein et al., in progress). Based on the very limited sample of CMIP5 aerosol only 

(AA) experiments, we found that the resulting SST patterns are reasonably similar compared with SSTs from ACT 20 

minus GHG-only (not shown).  

 

2.3 Methods 

To understand how seasonal mean rainfall changes from one climate condition to another, we looked at percent change (PC) and 

standardized precipitation index (SPI) change between different two forcing scenarios (from pre-industrial NAT to current ACT, 25 

ACT to HAPPI 1.5, HAPPI 1.5 to 2.0 and from ACT to GHG-only). For brevity, the supplementary text includes the details of the 

calculation methods for PC and SPI changes.  

 

Return time (or, return period) plots are used to explore the relative risks of rare events (like those with probabilities of <= 1 in 

1000 years). To construct the return time plots of for MAM and JJAS the daily and five 5-day mean rainfall events in pre-30 

monsoon and monsoon seasons, we use 98 plausible model realizations with initial condition perturbations for the 10-year period 

of each model ensemble within 2006-2015. For each year, three (MAM) or, and four (JJAS) months of data are used for pre-

monsoon and monsoon season, respectively. The model uses a 360-day calendar with all 12 months spanning for 30 days. 

Therefore, we have 90x10x98 3x30x10x98 = 88,200 simulated values to calculate the return periods of pre-monsoon rainfall 

events. Whereas, for the monsoon season, we have 120x10x98 4x30x10x98 = 117,600 simulated values to calculate the return 35 

periods. Such large sample size allows us to estimate a range of physically plausible climate conditions with focus on the tails of 

the distribution, which can be robustly determined.  

 

The return time plots are done for local sub-regional scale rainfall risks within Bangladesh. And for this purpose, we use sub-

regions 1-4 located at north-west (88-90E, 24-26N), north-east (90.5-92.5E, 24-25.5N), south-west (89-91E, 21.5-40 

23.5N) and south-east (91-93E, 20.5-24N) respectively. The two eastern sub-regions 2 and 4 are the rainier parts of the 

country compared to the other two western sub-regions of 1and 3.   
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To add a qualitative representation of the year-to-year natural variability from the present-day actual climate simulated in the ACT 

model ensemble, we use two of the wettest and two of the driest years during the decade of 2006-2015. The spatiotemporal 

average for the corresponding sub-region and season over the 10-year simulation period has been used to determine the wettest 

and driest year. ; see also Table S2). By comparing these two subsampled model ensembles with the ensembles of different 5 

forcing scenarios, we can estimate the signal-to-noise ratio in the return period plots. The supplementary material of Table S2 lists 

the wettest and driest years for pre-monsoon and monsoon seasons over the four different sub-regions.  

 

We presented the change in the occurrence probability of rainfall event, Risk Ratio (RR) (NAS, 2016) quantified as  

RR = Pf / Pcf…………………………(iii) 10 

In order to quantify changes in the probability of occurrence of extreme rainfall event, we use Risk Ratio (RR), which is 

calculated as RR = Pf / Pcf (NAS, 2016). Here Pf denotes the probability of the event in factual climate including climate change 

(ACT, HAPPI 1.5 and HAPPI 2.0) and Pcf denotes the probability of an event of the same magnitude in a counterfactual climate 

without anthropogenic climate change (NAT).Where probability of the event in the factual climate including climate change (here 

in ACT, HAPPI 1.5 and HAPPI 2.0 scenarios) is denoted by Pf and the probability of the same event in a counterfactual climate 15 

without anthropogenic climate change (here in NAT scenario) is denoted by Pcf. But, in case of RR for GHG-only scenario, it is 

calculated with regard to ACT instead of NAT. We provided quantified the changes in the RRs for four event thresholds in pre-

monsoon during MAM and monsoon seasons JJAS with return period of 10, 20, 50 and 100 year over the four sub-regions of 

Bangladesh.  

 20 

3 Results and Discussion   

3.1 Model Evaluation for Five Day Mean Rainfall 

To explore how pre-monsoon and monsoon rainfall is likely to change in Bangladesh over the four sub-regions, We investigate 

the annual cycles of five day mean 5-day rainfall under different forcing scenarios in comparison to observations. Five day mean 

rainfall is used to represent the timescale responsible for river flooding as opposed to daily extremes that cause flash floods 25 

primarily in the pre-monsoon season. In Figure 1, annual seasonal cycles of five day mean 5-day rainfall as in the simulations of 

model ensembles under five different forcing scenarios (ACT, NAT, GHG-only, HAPPI 1.5 and HAPPI 2.0) and two observations 

(APHRODITE and CPC) are shown. The coloured lines represent the ensemble means, with light-coloured shading representing 

the 10-90% percentile ranges (only shown for ACT model ensemble and the observations). The annual seasonal cycles are based 

on 5-day rainfall, which is used to represent the timescale responsible for river flooding as opposed to daily extremes that cause 30 

flash floods primarily in the pre-monsoon season. 

 

The annual seasonal cycles of five day mean 5-day rainfall from the different model ensembles are adequately representative of 

the observed annual seasonal cycles. However, the monsoon JJAS rainfall during JJAS months is underestimated by 25-65 25-

50% depending on the observational dataset it is compared with and sub-regions. This the monsoon rainfall bias is higher (up to 35 

50% dry bias) at in the wetter sub-regions of 2 and 4 (see Figs. 1b & d) and lower (up to 30% dry bias) at in the drier sub-regions 

of 1 and 3 (see Figs. 1a & c). We note that The bias is apparently present in all model scenarios; hence it is unlikely to affect the 

comparison between model scenarios. We also note that the signal of the change due to the changing climate is relatively small in 

comparison to the total rainfall. Evaluation of the model simulations for the four sub-regions of Bangladesh conducted by Rimi et 

al (2019) demonstrated a reasonable agreement between model and observations for extreme rainfall events. The model is 40 

therefore considered fit for purpose in assessing the potential impacts of climate change. More details regarding the model’s 
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performance over can be found in Rimi et al. (under review). The differences between the forcing scenarios throughout the annual 

seasonal rainfall cycle are discussed below. 

 

3.2 Impact of Climate Change and Aerosol Reduction on Seasonal Mean Rainfall 

Our results suggest that changes in mean rainfall due to global warming are significant for both the pre-monsoon MAM and JJAS 5 

monsoon periods, and that aerosols play an important role in determining the magnitude of future changes (Figs. 2 & 3). Based on 

PC, these changes are particularly evident in the pre-monsoon season during MAM based on PC, yet a smaller PC during the 

monsoon season JJAS can still have a significant major impact given the magnitude of rainfall. Relative changes between pairs of 

forcing scenarios show large spatial variability over Bangladesh and the wider central South Asia region, although they suggest a 

general wetting trend across Bangladesh for both 1.5C and 2.0C degree warmer worlds. 10 

 

During MAM the pre-monsoon season (Fig. 2), results show a non-linear response to temperature change in the PC over the 

eastern part of South Asia (Figs. 2a, b, & c) that is likely to be caused at least in part by the response for aerosols in the Fig. 2d. 

The present-day (ACT) PC relative to the pre-industrial period (NAT) indicates that the mean pre-monsoon MAM rainfall is 

reduced by 15-30% over the eastern parts of South Asia and increased by 15-25% over the northern parts Bangladesh (Fig. 2a). 15 

Figure 2d shows the spatial distribution of the “omitted” aerosol induced rainfall over the South Asia region. Once aerosol levels 

drop to 1/3th
 
one-third

 
of its current values (following the RCP2.6 protocol, IPCC, 2013), an increase of up to 20% in the pre-

monsoon MAM rainfall is very likely to happen over most parts of South Asian region. Associated with this increased rainfall, the 

PC relative to present-day (ACT) in a 1.5C warmer world (HAPPI 1.5) increases up to 20% over South Asia (Fig. 2b), with 

Bangladesh being the region where the aerosol effect dominates the total change (Figs. 2f & h). Across Bangladesh, our results 20 

indicate that the pre-monsoon MAM rainfall increases approximately linearly with temperature, suggesting a primary relevant role 

for thermodynamic effects and only a secondary perhaps a smaller role for dynamic changes as far as our HadRM3P model results 

are concerned. The additional warming effects in a 2.0C world of (HAPPI 2.0) increase the mean pre-monsoon MAM rainfall by 

an extra 10-20% over Bangladesh (Fig. 2g), in contrast to other parts of Asia. We note that our conjectures are speculative at this 

point, yet likely based on established research into monsoon dynamics (e.g., Bollasina et al. 2011). 25 

 

Using other RCM projections (based on RCP8.5), Fahad et al. (2017) pointed out that pre-monsoon seasonal MAM mean rainfall 

may significantly increase by up to 20% relative to their baseline period (1971–2000) over the eastern mountainous region of 

Bangladesh, in line with our results for 1.5 and 2.0C warming. However, the fact that the northern parts of India show very non-

linear behaviour with regard to rainfall PC in response to the combined GHG and aerosol-related radiative forcing (Figs. 2a-d) is 30 

indicative of circulatory, dynamic shifts with stronger warming. This is opposed to a more linear thermodynamic response which 

usually scales with 20-40% of Clausius-Clapeyron for non-extreme rainfall.  

 

The PC of mean monsoon seasonal JJAS rainfall (Fig. 3a) in the present-day climate (ACT) relative to pre-industrial period 

(NAT) (Fig. 3a) indicates a weakening monsoon over central India and strengthening of the monsoon over Bangladesh and north-35 

east India (10-15% increase in mean monsoon seasonal rainfall). Evidence for reduced monsoon JJAS rainfall amounts over the 

last few decades in the South Asian region is also found in the observational records (Bollasina et al., 2011; Srivastava et al., 

2010; Turner and Annamalai, 2012; Wang et al., 2012). In contrast, the CMIP5 models simulate about 2.3% increase in rainfall 

per degree of warming for the Indian summer monsoon (Menon et al., 2013) due to an increase in moisture availability in a 

warmer world. These conflicting results can be attributed to an underestimated aerosol effect in many CMIP5 models. 40 

Subsampling those models that include indirect aerosol effects helps to resolve the discrepancy (Bollasina et al., 2011; Turner and 
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Annamalai, 2012). We highlight that HadRM3P model estimates the aerosol effects satisfactorily (Haustein et al., in progress); 

besides the results are largely consistent with observed rainfall trends.  

 

The most significant important change in the PC occurs in the 1.5C warmer world HAPPI1.5 relative to ACT the current actual 

world (Fig. 3b). Comparing HAPPI 1.5 and 2.0C, we find an additional increase in the mean monsoon JJAS rainfall but of lower 5 

magnitude (a further 10 to 20% increase; Fig. 3c). We find a very strong drying tendency during JJAS due to the presence of 

anthropogenic aerosols relative to ACT over most parts of South Asia (Fig. 3a). Correspondingly, the “committed” rainfall 

increase, which will be realised once aerosol emissions are reduced (Fig. 3d), is in the order of 15-30%. This means that the 

observed drying is entirely caused by the aerosols that have overcompensated, and hence efficiently masked, the GHG induced 

rainfall increase. In Bangladesh (Figs. 3e-h), the aerosol effect is less strong and GHG induced intensification of summer 10 

monsoon rainfalls have already increased the risk of more intense rain. The Standardized Precipitation Index (SPI) index analysis 

for the pre-monsoon and monsoon seasons (Supplementary Figs. S1 & 2) corroborates our results from the PC analysis.  

 

In addition to PC and SPI analyses, we looked at the absolute rainfall (Figs. 4 & 5) for all five forcing scenarios during MAM and 

JJAS (median, as well as the 25-75
th

 percentiles of seasonal mean rainfall) to explain the variability in the mean of absolute 15 

rainfall relative to the change between scenarios over the four sub-regions in Bangladesh (for locations of the sub-regions, see 

boxes in Figs. 2e & 3e). Changes in the mean absolute rainfall are much more pronounced over sub-region 1 and 2 during pre-

monsoon season (see Fig. 4 a & c), whereas smaller absolute changes occur in sub-region 3 and 4 during monsoon season only 

(Fig. 5 b & d). The magnitude of the mean absolute rainfall change is higher over sub-regions 1 and 2, where both MAM and 

JJAS rainfall exhibit pronounced shifts from one forcing scenario to another (Fig. 4). On the other hand, over sub-regions 3 and 4, 20 

only JJAS rainfall exhibited a robust shift towards more rainfall (Fig. 5 b & d). The absolute aerosol effect is strongest in summer 

during JJAS, yet the relative change is smaller which is in line with lower rainfall PC as discussed above. Most importantly, 

however, aerosols play a dominant role in all sub-regions and seasons, except for MAM rainfall over sub-region 3 and 4. Despite 

more effective aerosol removal from the atmosphere by means of wet deposition during JJAS the monsoon season, high regional 

emission rates prevent drastic reductions of the aerosol optical depth. As a result Consequently, direct and indirect aerosol effects, 25 

accompanied by feedbacks such as reduced lapse rate, increased atmospheric stability, reduced boundary layer turbulence, or a 

modified land-sea circulation, remain to be a potent driver for changing monsoonal rainfall amounts. 

 

For future warming scenarios of (HAPPI 1.5 and HAPPI 2.0) compared to current actual climate conditions (ACT), we find robust 

linear (absolute) increase in rainfall in almost all sub-regions and seasons. We notice a persistent change with increase in absolute 30 

mean rainfall from ACT to HAPPI 1.5 and HAPPI 1.5 to HAPPI 2.0. Conversely, we find no clear trend shifts between NAT, 

ACT and HAPPI 1.5 in during MAM in over sub-region 3 and 4 (Figs. 5a & c). While aerosol effects are consistent with those in 

other regions, the GHG induced rainfall is hampered, likely due to dynamic changes such as a delayed onset of the monsoon in 

response to warming. The proximity to the Indian Ocean may also be a contributing factor. While the atmosphere can hold more 

moisture, the slower ocean warming stabilises the atmosphere over sea in the same way aerosols stabilise the atmosphere over 35 

land.  

 

Impact of climate change and aerosol reduction on seasonal mean rainfall (as in PC, SPI and absolute) is in agreement with the 

findings in the annual seasonal cycles (Fig. 1) presented before. As shown in Fig. 1, the monsoon onset in sub-region 3 and 4 

(Figs. 1c & d) does not change notably under different forcing scenarios as far as 5-day mean rainfall is concerned. Otherwise, the 40 

aerosol and GHG induced response is consistent with the conclusions based on the spatial maps across the four sub-regions. Sub-

regions 1 and 2 show considerable changes in rainfall strength during MAM the pre-monsoon season, with an earlier onset in the 

HAPPI 2.0 scenario in over sub-region 2. The most pronounced change is simulated during at the peak of the monsoon season, in 
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early June in over sub-region 2, with an associated increase in magnitude of almost 1/3 one-third between NAT and HAPPI 2.0. It 

is noteworthy that this increase in rainfall is very linear with progressively warmer climate conditions (Fig. 1b).  

 

3.3 Extreme Rainfall Events   

An analysis of changes in extreme rainfall events suggests that Bangladesh is likely to experience significantly higher frequencies 5 

of occurrence magnitude for of 1 and 5-day rainfall events (Figs. 6-9 and S3-S6) during both pre-monsoon and monsoon seasons 

across all sub-regions (Figs. 6-9) for a 1.5C change. with The only exceptions of included pre-monsoon MAM rainfall events 

over sub-region 4 (Fig. 7b); and monsoon JJAS rainfall events over sub-region 3 and 4 (Figs. 9a & b). In contrast, changes 

between HAPPI 1.5 and HAPPI 2.0 are only significant in JJAS over sub-regions 1 and 2 in summer monsoon season (Figs. 8a & 

b). The signal-to-noise ratio is higher in the monsoon season across all sub-regions with the lowest and highest ratio in sub-region 10 

1 and 3, respectively (Figs. 8a & 9a).  Overall, the signal-to-noise ratio is higher across all sub-regions, during JJAS compared to 

that during MAM. During MAM, the highest and lowest signal-to-noise ratio is over sub-region 1 and 3, respectively (Figs. 6a & 

7a). On the other hand, during JJAS, we find the highest and lowest signal-to-noise ratio is over sub-region 3 and 1, respectively 

(Figs. 9a & 8a). The lower the ratio, the more difficult it is to establish causality as natural variability due to ENSO or circulation 

anomalies is higher. 15 

 

In summary, the The most linear rainfall response to warming is simulated in sub-region 2 in MAM and JJAS (Figs. 6b & 8b), 

with aerosols masking approximately 50% of the increased risk with regard to 1-in-100-year NAT return time. Hence future 

rainfall in sub-region 2 continues to increase, with accelerated pace once aerosol levels drop significantly. Sub-region 1 is likely to 

receive more extreme rainfall as well with continued warming, with strong increases once aerosol levels drop. Sub-regions 1 and 2 20 

are equally sensitive to aerosols, yet dynamic feedback processes appear to might partially counter the thermodynamic increase in 

rainfall risk with continued warming.  

 

Figures 10 and 11 give simple illustration for the change in risk ratios, which remarkably vary with seasons (pre-monsoon and 

monsoon) as well as locations (sub-regions of 1-4) and also indicate how aerosols impact risk ratios. Supplementary material of 25 

Table S3 presents the risk ratios with associated uncertainty ranges for both seasons over four sub-regions. Figure 10 demonstrates 

that there is noticeable masking effect of aerosols during MAM that repress the change between NAT and ACT worlds at sub-

region 1. Hence, present-day risk for MAM rainfall event has not changed (see RR for ACT/NAT in Fig. 10a). But then the risk of 

extreme rainfall event with respect to 1-in-100-year NAT return time increase by a factor of 4 (with uncertainty range 2.0-7.0) in a 

1.5C world (see RR for HAPP1.5/NAT in Fig. 10a). In contrast, the aerosol masking effect during MAM is minimal at sub-30 

region 2; leading to a robust change between NAT and ACT worlds (see RR for ACT/NAT in Fig. 10b).  

 

We find persistent increase in the RRs for JJAS extreme rainfall events at the sub-regions 2 and 4. At sub-region 2, risk of JJAS 

extreme rainfall event with respect to 1-in-100-year NAT return time increases 3-fold (with uncertainty range 1-4) in a 1.5C 

world and then 4.6-fold (with uncertainty range 2.9-7.2) in a 2.0C world (see RRs for HAPP1.5/NAT and HAPP2.0/NAT in Fig. 35 

10d). At sub-region 4 (Fig. 11d), where current risks of JJAS extreme rainfall events are already increased 3.9 times (with 

uncertainty range 2.6-5.8) with respect to 1-in-100-year NAT return time; the risk for similar event increases 4.1 times (with 

uncertainty range 2.2-5.3) in a 1.5C world and 5.5 times in a 2.0C world (with uncertainty range 3.5-7.8).  
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4 Conclusions 

Results of the weather@home HadRM3P South Asia regional model suggest that both, 1.5C and 2.0C warming are projected to 

increase seasonal mean and extreme rainfall probabilities during the pre-monsoon and monsoon seasons across Bangladesh. These 

increases are likely to be amplified by a reduction in aerosols, consistent with previous findings (e.g., Samset et al., 2018). These 

projected changes have important implications for agricultural yields and associated economic losses, particularly during the pre-5 

monsoon season. In contrast, property damage is more likely to occur during the monsoon season when large inhabited areas are 

inundated on a regular basis. We find that there are large spatial variations in the patterns of changes in the relative risks of 

extreme rainfall in Bangladesh.  

 

In conclusion, the drier s Sub-regions 1 and 2 shows a greater masking effect from the aerosols an enhanced susceptibility to 10 

aerosols during the pre-monsoon season; whereas, the wetter sub-regions 3 and 4 have show a smaller aerosol effect sensitivity 

particularly during the monsoon season. Aerosols have reduced the absolute daily rainfall amount by up to 1mm (~ 5-10%) during 

the monsoon season in sub-region 1 and 2, comparable to the simulated rainfall change in a future 2.0C warming scenario. This is 

in line with a growing array of research that has shown that anthropogenic aerosols play a substantial role in modulating the 

strength of the monsoon in South Asia (Bollasina et al., 2011, 2013; Lau and Kim, 2010; Ramanathan et al., 2005). As far as other 15 

regions in South Asia are concerned, our results imply that the present-day decline in the mean monsoon seasonal rainfall can be 

explained by the existing atmospheric aerosols impacts, which offsets the GHG-induced global warming effects. Future aerosol 

removal from the atmosphere will unmask the GHG induced rainfall increase with surprisingly fast changes in risk due to the non-

linear nature of the imposed external forcing contributions (e.g., over sub-region 1 in pre-monsoon season). For that reason we 

emphasize that the impacts of aerosol reductions on the changing risks of extreme rainfall events should be considered for future 20 

risk assessments.  

 

Finding of this study implies that policy-makers and relevant stakeholders not only need to take distinctively different regional 

responses in extreme rainfall into account, but also the non-linearity in the response. Relying on observed changes can be deeply 

misleading, creating an unwarranted sense of security. Our study highlights that preparedness for more frequent extremes is key in 25 

the northern part of Bangladesh during both the pre-monsoon and the monsoon season. The magnitude of change exceeds the 

current internal year-to-year variability in the associated sub-regions 1 and 2 during both pre-monsoon MAM and monsoon JJAS 

seasons. While additional regional model experiments are needed to confirm the weather@home model results, available data 

from other HAPPI GCMs point in the same direction (Chevuturi et al., 2018; Lee et al., 2018). However, since they do not allow 

for a quantification of the aerosol effect, we call for more nuanced experiments in that regard in the future. 30 
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Figure captions:  

Figure 1. Annual Seasonal cycles of five day mean rainfall under different forcing scenarios over the four sub-regions of Bangladesh. 

The HadRM3P ACT (black), NAT (green) and GHG-only (orange), and HAPPI 1.5 (blue) and 2.0 (red) ensembles are compared with 

the observations from APHRODITE (dark purple) and CPC (dark purple). The model can represent the annual cycles as in the 10 

observations but monsoon (JJAS) rainfall is underestimated in all sub-regions. A clearly distinguishable shift in the annual cycles of five 

day mean rainfall from NAT to ACT, from ACT to GHG, from ACT to HAPPI 1.5 and from HAPPI 1.5 to 2.0 forcing scenarios can be 

seen in sub-region2 only. The model adequately captures the annual seasonal cycle of rainfall compared to observation but 

underestimates monsoon rainfall. Only over sub-region 2, rainfall is clearly shifting from NAT to ACT, from ACT to GHG-only, from 

ACT to HAPPI 1.5 and from HAPPI 1.5 to 2.0 forcing scenarios.      15 

 

Figure 2. Percentage change (PC) in the pre-monsoon (MAM) MAM seasonal mean rainfall between different forcing scenarios. The top 

row (panels a-d) shows the regional PC over central parts of the South Asia. (SA) while, bottom row (panels e-h) shows the PC over 

Bangladesh. The four boxes (1-4) on top of the panel e approximately represent the four sub-regions of Bangladesh. These four sub-

regions 1-4 are used later for the relative quantification of risks of extreme pre-monsoon rainfall events. a. present-day rainfall PC 20 

relative to natural pre-industrial climate ACT rainfall PC relative to NAT over SA b. present-day ACT rainfall PC relative to HAPPI 

1.5C world over SA c. HAPPI 1.5C world rainfall PC relative to HAPPI 2.0C world over SA d. present-day ACT rainfall PC relative 

to GHG-only climate over SA. Bottom row (panels e-h) shows PC in the same way but over Bangladesh. The four boxes (1-4) on top of 

the panel e represent the four sub-regions of Bangladesh. 

 25 

Figure 3. Percentage change (PC) in the monsoon (JJAS) seasonal mean rainfall between different forcing scenarios. The top row 

(panels a-d) shows the regional PC over central parts of the South Asia (SA) while, bottom row (panels e-h) shows the PC over 

Bangladesh. The four boxes (1-4) on top of the panel e approximately represent the four sub-regions of Bangladesh. These four sub-

regions 1-4 are used later for the relative quantification of risks of extreme monsoon rainfall events. a. present-day rainfall PC relative 

to natural pre-industrial climate over SA b. present-day rainfall PC relative to 1.5C world over SA c. 1.5C world rainfall PC relative 30 

to 2.0C world over SA d. present-day rainfall PC relative to GHG-only climate over SA. Same as Fig. 2, but for JJAS rainfall PC. The 

This figure shows that the apparently non-linear response between panels of a, b, and c (or, e, f, g) can be explained by the response for 

aerosols GHG-only (anthropogenic aerosols reduced to pre-industrial levels) in the panel d (or, h). 

 

Figure 4. Mean Seasonal mean rainfall in pre-monsoon MAM (left column) and monsoon JJAS (right column) seasons during MAM 35 

and JJAS months over the sub-regions of 1 and 2 (top and bottom row) of Bangladesh. Green, orange, grey, blue and red colours 

represent the natural (NAT), actual climate with aerosols reduced to the pre-industrial level (AR) GHG-only, Actual (ACT), HAPPI 1.5 

(1.5) and HAPPI 2.0 (2.0) ensembles respectively. Each panel has different y-scale range to clearly indicate the details of changes in the 

median values between different model ensembles. The horizontal black line in each box indicates the median value, the bottom and top 

limits of the box represents the 25th and 75th percentiles respectively. The figure shows that aerosol impacts are distinguishable between 40 

the dry sub-region 1 and the wet sub-region 2. There is noticeable masking effect of aerosols that repress the change between NAT and 

ACT worlds at sub-region 1. In contrast, at sub-region 2, where highest amounts of observed rainfall can clear most of the pollution 

from the atmosphere, the masking effect in minimal hence, a robust change between NAT and ACT worlds can be seen. In future with 

additional warming the mean seasonal rainfall increases over both sub-regions but then again over the sub-region 2, we see larger 
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changes in the seasonal mean rainfall. The figure shows that aerosol impacts over both sub-regions 1 and 2 are larger in MAM dry 

season than that in JJAS wet season.      

 

Figure 5. Mean rainfall in pre-monsoon (left column) and monsoon (right column) seasons during MAM and JJAS months over the sub-

regions of 3 (top row) and 4 (bottom row) of Bangladesh. Green, orange, grey, blue and red colours represent the natural (NAT), actual 5 

climate with aerosols reduced to the pre-industrial level (AR), Actual (ACT), HAPPI 1.5 (1.5) and HAPPI 2.0 (2.0) ensembles 

respectively. Each panel has different y-scale range to clearly indicate the details of changes in the median values between different 

model ensembles. The horizontal black line in each box indicates the median value, the bottom and top limits of the box represents the 

25th and 75th percentiles respectively. There is noticeable masking effect of aerosols that repress the change between NAT and ACT 

worlds at both sub-region 3 and 4 during pre-monsoon season. On the contrary, in monsoon season, large amounts of rainfall can clear 10 

most of the pollution from the atmosphere; so, the masking effect is minimal, hence, a clear change between NAT and ACT worlds is 

happening. In future with additional warming the mean seasonal rainfall increases over both sub-regions but, larger changes occur in 

the mean rainfall in monsoon season. Same as Fig. 4, but for sub-regions 3 and 4. During MAM over both sub-regions 3 and 4, aerosol 

effects repress the mean rainfall change between NAT and ACT (i.e., ACT rainfall is lower than NAT). On the other hand, during JJAS 

over both sub-regions 3 and 4, with lesser aerosol masking effects, ACT has higher mean rainfall than NAT and GHG-only would have 15 

noticeably much higher mean rainfall.     

 

Figure 6. Return time plots for MAM daily rainfall during pre-monsoon (MAM) season in under different forcing scenarios over the 

sub-regions of 1 and 2 of Bangladesh. The HadRM3P ACT (black), ACT highest (upper grey with upward triangles sky-blue), ACT 

lowest (lower grey with downward triangles grey), NAT (green) and GHG-only (orange) ensembles are compared with the HAPPI 1.5 20 

(blue) and HAPPI 2.0 (red) ensembles. Anthropogenic warming effects have not strongly influenced the present-day risks of extreme 

pre-monsoon rainfall in the sub-region1. With a 1.5 or 2.0 degrees’ world, this sub-region might see extreme rainfall events with four-

fold higher risks.  Anthropogenic warming effects have not strongly influenced the present-day risks of extreme MAM rainfall over sub-

region 1 (Fig. 6a). With a 1.5 or 2.0 degrees’ world, this sub-region might see extreme rainfall events with four-fold higher risks. 

 25 

Figure 7. Same as Fig 6, but showing return time plots for MAM daily rainfall during pre-monsoon (MAM) season in under different 

forcing scenarios over the sub-regions of 3 and 4 of Bangladesh.   

 

Figure 8. Return time plots for daily rainfall during monsoon (JJAS) season in different forcing scenarios over the sub-regions of 1 and 

2 of Bangladesh. The HadRM3P ACT (black), ACT highest (upper grey with upward triangles), ACT lowest (lower grey with 30 

downward triangles), NAT (green) and GHG GHG-only (orange) ensembles are compared with the HAPPI 1.5 (blue) and 2.0 (red) 

ensembles. The most significant changes in the risks of extreme monsoon rainfall take place in the sub-region2, which is already the 

wettest part of Bangladesh.   

 

Figure 9. Same as Fig 8, but showing return time plots for daily rainfall during monsoon (JJAS) season in different forcing scenarios 35 

over the sub-regions of 3 and 4 of Bangladesh.  

 

Figure 10. The risk ratios of four specific rainfall events with return periods of 10, 20, 50, and 100 years between Actual/Natural 

ACT/NAT, HAPPI 1.5/NAT Natural, HAPPI 2.0/NAT Natural and GHG GHG-only /ACT Actual over the two northern sub-regions of 

1 and 2 during of Bangladesh in pre-monsoon (MAM) (shown in top two panels of a. and & b.) and monsoon (JJAS) (shown in bottom 40 

two panels of c. and & d.) seasons. The error bars indicate the associated uncertainty range with 95% confidence level for individual 

event. This figure demonstrates that the uncertainty range increases with the increase of the return periods of rainfall events (i.e., rarer 

events) in most of the cases, which should be considered in the risk assessment process. While there is no discernible climate change 

impacts on the current risks (i.e., all four risk ratios are ~1), in a1.5C world there would be 4 (with uncertainty range 2.0-7.0) times 

increase in the risks of extreme rainfall events of 100 years return period over sub-region 1 during pre-monsoon season (top-left panel 45 

a.). 
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Figure 11. The risk ratios of four specific rainfall events with return periods of 10, 20, 50, and100 years between Actual/Natural, HAPPI 

1.5/Natural, HAPPI 2.0/Natural and GHG/Actual over the two southern sub-regions of 3 and 4 of Bangladesh in pre-monsoon (MAM) 

(shown in top two panels of a. and b.) and monsoon (JJAS) (shown in bottom two panels of c. and d.) seasons. The error bars indicate 

the associated uncertainty range with 95% confidence level for individual event. Same as Fig 10, but for MAM and JJAS risk ratios 

over the two southern sub-regions 3 and 4. The risk ratios over sub-region 4 in monsoon (bottom right panel d.) indicate that the 5 

extreme rainfall events with 100 years return period are already made 3.9 (with uncertainty range 2.6-5.8) times likely in the actual 

climate compared to the events of natural climate. With additional global warming effects the same event will become 4.1 (with 

uncertainty range 2.2-5.3) and 5.5 (with uncertainty range 3.5-7.8) times likely in a 1.5 and 2.0 degrees’ worlds. 
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Table S1: Basic information about the two observation data sets 

Product 

Name 

Product version   Spatial 

Resolution 

Time 

Scale 

Source/reference  

 

APHRODITE 

 

Monsoon 

Asia (MA) 

V1003R1 

V1901 

0.5°X 0.5°  1951-2007 

1998-2015 

Yatagai et al., 2012. Available at:  

http://journals.ametsoc.org/doi/pdf/10.1175/BAMS-D-

11-00122.1  

CPC CPC daily 

rainfall 

0.5°X 0.5° 1979- 2016 Chen, M. and Xie, P. 2008. Available at: 

ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/G

AUGE_CONUS/DOCU/Chen_et_al_2008_Daily_Ga

uge_Anal.pdf  

 

 

 10 

Table S2: As per actual climate model ensemble during 2006-2015 - the wettest and driest two years over the four sub-regions. 

 pre-monsoon season (MAM) monsoon season (JJAS) 

Sub-regions  Wettest years  Driest years  Wettest years  Driest years  

Sub-region 1 (north-west region) 2008, 2011 2009, 2014 2008, 2009 2013, 2014 

Sub-region 2 (north-east region) 2008, 2015 2009, 2014 2008, 2012 2006, 2013 

Sub-region 3 (south-west region) 2008, 2012 2009, 2014 2008, 2014 2011, 2013 

Sub-region 4 (south-east region) 2008, 2015 2009, 2013 2008, 2014 2011, 2013 
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Table S3: The risk ratios with associated uncertainty ranges (in brackets) for four rainfall events.  

Return  Sub-region 1 (north-west region) – pre-monsoon season  Sub-region 2 (north-east region) – pre-monsoon season 

periods ACT/NAT  HAPPI1.5/NAT  HAPPI2.0/NAT  GHG/ACT ACT/NAT  HAPPI1.5/NAT  HAPPI2.0/NAT  GHG/ACT 

10 

years  

1.1 1.5 1.8 1.4 1.6 1.9 2.5 1.1 

(0.9-1.2) (1.2-1.6) (1.5-2.0) (1.2-1.6) (1.3-1.9) (1.5-2.3) (2.0-2.9) (1.0-1.2) 

20 

years  

1.2 2.1 2.5 1.9 1.5 2.1 3 1.4 

(0.9-1.5) (1.6-2.8) (1.9-3.4) (1.6-2.2) (1.2-2.0) (1.6-2.8) (2.2-3.9) (1.0-1.9) 

50 

years  

1.1 2.5 3.1 2.5 1.7 2.4 2.8 1.2 

(0.7-1.5) (1.8-3.8) (2.0-4.5) (1.9-3.8) (1.1-2.2) (1.7-3.4) (1.9-4.0) (0.9-1.9) 

100 

years  

1.1 4 3.9 3.3 1.9 3.2 2.9 1.9 

(0.6-2.1) (2.0-7.0) (2.1-6.8) (1.9-5.9) (1.1-3.1) (2.0-5.3) (1.9-4.5) (1.0-3.2) 

Return  Sub-region 3 (south-west region) – pre-monsoon season Sub-region 4 (south-east region) – pre-monsoon season 

periods ACT/NAT  HAPPI1.5/NAT  HAPPI2.0/NAT  GHG/ACT ACT/NAT  HAPPI1.5/NAT  HAPPI2.0/NAT  GHG/ACT 

10 

years  

1 1.1 1.4 1.1 1.1 1.4 1.5 1.3 

(0.9-1.1) (1.0-1.3) (1.2-1.6) (1.0-1.3) (1.0-1.3) (1.2-1.5) (1.3-1.6) (1.0-1.5) 

20 

years  

1.1 1.3 1.6 1.2 1.3 1.9 1.7 1.4 

(0.9-1.2) (1.1-1.8) (1.3-2.1) (0.9-1.4) (1.0-1.6) (1.3-2.3) (1.2-2.1) (1.0-1.6) 

50 

years  

1.2 1.5 2.5 1.5 2.1 2.2 2.2 1.6 

(0.9-1.8) (1.2-2.1) (1.9-3.8) (1.0-2.0) (1.4-3.0) (1.5-3.2) (1.6-3.2) (1.0-2.2) 

100 

years  

1.5 2 3.1 1.5 1.7 2.5 2.1                                                                            

(0.9-2.8) (1.0-3.0) (1.9-5.2) (0.9-2.4) (0.9-2.9) (1.6-4.0) (1.2-3.3) (0.9-2.3) 

Return  Sub-region 1 (north-west region) – monsoon season Sub-region 2 (north-east region) – monsoon season 

periods ACT/NAT  HAPPI1.5/NAT  HAPPI2.0/NAT  GHG/ACT ACT/NAT  HAPPI1.5/NAT  HAPPI2.0/NAT  GHG/ACT 

10 

years  

1.7 2.5 2.3 1.3 1.8 2.5 3.1 1.1 

(1.5-2.0) (2.1-2.9) (2.0-2.6) (1.0-1.5) (1.5-2.1) (2.1-3.1) (2.6-4.0) (1.0-1.2) 

20 

years  

2.3 3.7 3.2 1.5 1.5 2.2 2.9 1.1 

(1.9-2.9) (2.9-4.5) (2.5-4.0) (1.1-1.9) (1.1-1.9) (1.8-2.9) (2.2-3.8) (0.9-1.2) 

50 

years  

2.1 3.8 3.3 1.5 1.3 2.1 3.2 1.5 

(1.5-2.9) (2.8-4.9) (2.6-4.6) (1.1-2.1) (0.9-1.9) (1.5-3.0) (2.2-4.8) (1.0-1.9) 

100 

years  

1.6 4 3.8 2 1.8 3 4.6 1.8 

(1.0-2.5) (2.5-6.3) (2.3-6.0) (1.2-3.7) (1.0-3.0) (1.0-4.0) (2.9-7.2) (1.0-2.9) 

Return  Sub-region 3 (south-west region) – monsoon season Sub-region 4 (south-east region) – monsoon season 

periods ACT/NAT  HAPPI1.5/NAT  HAPPI2.0/NAT  GHG/ACT ACT/NAT  HAPPI1.5/NAT  HAPPI2.0/NAT  GHG/ACT 

10 

years  

1.6 1.5 2 1 1.9 2.1 2.3 1 

(1.4-1.9) (1.3-1.7) (1.7-2.2) (0.8-1.2) (1.6-2.1) (1.9-2.5) (2.0-2.8) (0.9-1.2) 

20 

years  

2 1.9 2.5 1.1 2 2.3 2.9 1.1 

(1.8-2.2) (1.4-2.3) (2.0-3.0) (0.8-1.8) (1.5-2.5) (1.8-2.8) (2.2-3.8) (0.9-1.5) 

50 

years  

2.1 1.9 2.1 1.2 2.5 2.6 3.9 0.9 

(1.7-2.5) (1.2-2.6) (1.5-2.8) (0.7-1.9) (1.9-3.5) (1.9-3.7) (2.9-5.5) (0.5-1.2) 

100 

years  

2.2 2.3 2.2 1.3 3.9 4.1 5.5 0.9 

(1.6-3.1) (1.3-3.6) (1.3-3.8) (0.5-2.2) (2.6-5.8) (2.2-5.3) (3.5-7.8) (0.3-1.8) 
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Supplementary Figure captions:  

Figure S1. Relative changes in the SPI of pre-monsoon (MAM) seasonal mean rainfall between different forcing scenarios. The top row 

(panels a-d) shows the regional SPI changes over central parts of the South Asia (SA) while, bottom row (panels e-h) shows the SPI 

changes over Bangladesh. The four boxes (1-4) on top of the panel e approximately represent the four sub-regions of Bangladesh. These 

four sub-regions (1-4) are used later for the relative quantification of risks of extreme monsoon rainfall events. a. present-day ACT 5 

rainfall PC SPI relative to natural pre-industrial climate NAT over SA b. present-day ACT rainfall PC SPI relative to HAPPI1.5C 

world over SA c. HAPPI1.5C world rainfall PC SPI relative to HAPPI 2.0C world over SA d. present-day ACT rainfall PC SPI 

relative to GHG-only climate over SA.  

 

Figure S2. Relative changes in the SPI of monsoon (JJAS) seasonal mean rainfall between different forcing scenarios. The top row 10 

(panels a-d) shows the regional SPI over central parts of the South Asia (SA) while, bottom row (panels e-h) shows the SPI over 

Bangladesh. The four boxes (1-4) on top of the panel e approximately represent the four sub-regions of Bangladesh. These four sub-

regions (1-4) are used later for the relative quantification of risks of extreme monsoon rainfall events. a. present-day rainfall PC relative 

to natural pre-industrial climate over SA b. present-day rainfall PC relative to 1.5C world over SA c. 1.5C world rainfall PC relative 

to 2.0C world over SA d. present-day rainfall PC relative to GHG-only climate over SA.  Same as Fig. S1, but for SPI changes in JJAS 15 

mean rainfall. The This figure shows that the apparently non-linear response between panels of a, b, and c (or, e, f, g) can be explained 

by the response for aerosols in the panel d (or, h).  

 

Figure S3. Return time plots for MAM five day mean rainfall during pre-monsoon (MAM) season in under different forcing scenarios 

over the sub-regions of 1 and 2 of Bangladesh. The HadRM3P ACT (black), ACT highest (upper grey with upward triangles sky-blue), 20 

ACT lowest (lower grey with downward triangles grey), NAT (green) and GHG-only (orange) ensembles are compared with the HAPPI 

1.5 (blue) and HAPPI 2.0 (red) ensembles.  

 

Figure S4. Same as Fig. S3, but for showing return time plots for MAM five day mean rainfall during pre-monsoon (MAM) season in 

under different forcing scenarios over the sub-regions of 3 and 4 of Bangladesh.   25 

 

Figure S5. Return time plots for JJAS five day mean rainfall during monsoon (JJAS) season in different forcing scenarios over the four 

sub-regions of 1 and 2 of Bangladesh. The HadRM3P ACT (black), ACT highest (upper grey with upward triangles sky-blue), ACT 

lowest (lower grey with downward triangles grey), NAT (green) and GHG-only (orange) ensembles are compared with the HAPPI 1.5 

(blue) and HAPPI2.0 (red) ensembles. The risks of extreme rainfall events are evidently increasing between different forcing scenarios 30 

over sub-region 2.  

 

Figure S6. Same as Fig. S5, but for showing return time plots for JJAS five day mean rainfall during monsoon (JJAS) season in under 

different forcing scenarios over the sub-regions of 3 and 4 of Bangladesh. 

 35 

Supplementary Text  

Analysis methods:  

1. Percentage Change (PC) in seasonal mean precipitation is calculated for one forcing scenario relative to another forcing 

scenario to indicate the magnitude of change between the scenarios across the study region. This approach enables the 

identification of areas at risk of becoming wetter or drier. For instance, the PC for ACT relative to NAT in monsoon (JJAS) 40 

season is calculated as:  

 

PCACT relative to NAT = [
JJAS precipitation in ACT  - JJAS precipitation in NAT 

Mean JJAS precipitation in ACT 
]× 100 
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The multi-year monthly means of JJAS months for each decadal model ensemble is used to calculate the PC in all cases. The PC 

for pre-monsoon (MAM) season is calculated using the same approach.  

 

2. The Standardized Precipitation Index (SPI) (Mckee et al., 1993; McKee et al., 1995) is a simple, flexible index which is 

powerful to effectively analyse both wet and dry periods. SPI is widely used for assessing wetting/drying effects (e.g., Du et al., 5 

2013; Li et al., 2015, 2008; Mahfouz et al., 2016). Precipitation data is the only required input parameter to calculate the SPI and 

this can be computed for multiple timescales from 1 to 24 months (WMO, 2012). For example, SPI for monsoon precipitation 

during JJAS months in GHG only climate model ensemble (denoted as GHG-only) relative to actual climate model ensemble 

(denoted as ACT) is calculated by the following equation:  

 10 

SPI GHG-only relative to Act = 
JJAS precipitation in GHG-only  - JJAS precipitation in ACT 

Standard deviation of JJAS precipitation in ACT 
 

 

The multi-year monthly means of JJAS months for each model ensemble is used to calculate the SPI in all cases. An SPI index 

value greater than 2.0 indicates areas are extremely wet, 1.5 to 1.99 indicates very wet; 1.0 to 1.49 moderately wet; -0.99 to 0.99 

near normal; -1.0 to -1.49 moderately dry; -1.5 to -1.99 severely dry; and -2 and less indicate areas to be extremely dry (WMO, 

2012).  15 


