
Authors response to Referee 3 comments

General comments

The authors apply local and regional frequency analysis (RFA) for extreme rainfall on two radar data products (advanced

QPE and basic CAP) for Belgium and compare the results with station based extreme value statistics. They find that the basic

radar product shows unrealistic high extremes, the 24h extremes need bias correction and that the fit of the QPE probability5

distribution is within the confidence interval of the point distribution. The results for RFA are more complex. The topic of

the paper is very important and of high relevance for the community. The results are interesting. However, the description of

methodology is not clear enough to follow the procedures and understand all the results. This concerns especially the sampling

strategy for RFA. Also the presentation of results could be more distinct. Details are given below. However, the research is

worth of publication after the authors have the opportunity to make some revisions.10

The authors would like to thank Referee 3 for his encouraging comments and suggestions to improve the paper.

Minor comments

1. Abstract, lines 10-15: I cannot really understand these sentences: RFA within 20 km?, which region(s)?, rain gauge vs.

automatic gauge?, which radar product?, etc.

The sentences have been reformulated. Please see from page 1, line 10.15

2. Page 6, lines 23ff: It is not fully clear if the 10 highest gauge extremes or the 10 highest radar extremes are selected.

In the abstract “rain gauges and collocated radar estimates” is mentioned, so I assume the highest gauge values with

collocated radar data are used. This should be stated clearly here in the text as well. The rational for this choice should

also be discussed.

This has been reformulated from page 8, line 27.20

3. Page 7, lines 26ff: see comment 2

This has been reformulated from page 10, line 7.

4. Page 8, section 4.1: The sampling for RFA is not clear to me. Do you do a separate RFA for each 20 km radius? How

can you apply a minimum distance of 50 km to secure independence with a 20 km radius? If you apply RFA for each

radar pixel and consider a minimum distance of e.g. 10 km, then the (collocated) sample is different for each estimate?25

What about the “index rainfall”? How did you regionalise it? etc.

The decorrelation distance (50 km) and the size of the region (20 km) are not directly related. But the former implies

that all extremes observed within the region are independent. The sample is indeed different for each target location.

Since we consider that the extreme statistics are the same for the region, no "index rainfall" is used. The section has been

rewritten for the sake of clarity.30

42



5. Page 10, lines 11-12: “.. using a radius of 10 km (with a decorrelation distance of 50 km)” I don’t understand this.

This means that all pixels in the region are considered spatially dependent. To avoid confusion, the reference to the

theoretical decorrelation distance (50 km) has been dropped. Please see page 12, line 30.

6. Fig. 2-5: The many lines in in these figures are hardly to disentangle visually. I have not really a good idea what to do

here, may be showing only two distributions with confidence limits or excluding the confidence limits of the radar data,5

or showing additionally bar plots with a comparison of selected quantiles, etc.?

We acknowledge that these figures contain a lot of lines but we don’t see directly how to simplify them while keeping

the essential information.
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Abstract. In Belgium, only rain gauge time-series have been used so far to study extreme precipitation at a given location. In

this paper, the potential of a 12-year quantitative precipitation estimation (QPE) from a single weather radar is evaluated. For the

period 2005-2016, 1 h and 24 h rainfall extremes from automatic rain gauges and collocated radar estimates are compared. The

peak intensities are fitted to the exponential distribution using regression in QQ-plots with a threshold rank which minimises the

mean squared error. A basic radar product used as reference exhibits unrealistic high extremes and is not suitable for extreme5

value analysis. For 24 h rainfall extremes, which occur partly in winter, the radar-based QPE needs a bias correction. A few

missing events are caused by the wind drift associated with convective cells and strong radar signal attenuation. Differences

between radar and gauge values are caused by spatial and temporal sampling, gauge rainfall underestimations and radar errors.

Nonetheless the fit to the QPE data is within the confidence interval of the gauge fit, which remains large due to the short

study period. A regional frequency analysis for 1 h duration is performed at the locations of 4 gauges with 1965-2008 records10

using the spatially independent QPE data in a circle of 20 km. The confidence interval of the radar fit, which is small due to the

sample size, contains the gauge fit for the two closest stations from the radar. In Brussels, the radar extremes are significantly

higher than the gauge rainfall extremes; but similar to these observed by an automatic gauge during the same period. The

extreme statistics exhibit slight variations related to topography. The radar-based extreme value analysis can be extended to

other durations.15
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1 Introduction

Localised precipitation extremes can have a strong impact on human activities especially in urban areas (Ootegem et al., 2016).

For flood management applications (e.g. sewer system and dam design) it is needed to know the probability that rainfall exceeds

a given amount. This probability is often expressed as the rainfall level which, on average, will be exceeded once over a given

period of T years, which is defined as the return period. For infrastructure design application, one is interested in return periods5

from 50 to 100 years. Such long return periods often exceeds the available observation period and a model is needed.

Extreme values are often extracted from a time series using block maxima, typically over one year (AM) for meteorological

data. The performance of the statistical modelling applied to AM data is limited by the number of years available. The peak-

over-threshold (POT) method, where values exceeding a given threshold are kept, allows to increase the number of samples.

The extreme value theory showed that for independent random variables, AM and POT series converge asymptotically to the10

3-parameters distributions known as GEV and GPD, respectively.

Different fitting methods to the extreme value distributions have been developed in the literature. The maximum likelihood

estimator (MLE) is the most widely used fitting method but for small samples it can lead to unrealistic parameter estimates.

This problem is partially addressed with the generalised MLE proposed by Martins and Stedinger (2000) or the L-moments

method (Overeem et al., 2009). The above methods do not focus on the tail of the distribution, which is the most relevant for15

risk analysis. For this goal, (Willems et al., 2007) proposed a method based on regression in Q-Q plots.

To reduce the uncertainty associated with the limited number of data at a single site, regional frequency analysis (RFA)

methods have been proposed (Svensson and Jones, 2010). The RFA is characterised by the selection of the regions and the pa-

rameter estimation approach applied to each region (Buishand, 1991). There are numerous studies of RFA for rainfall extremes

based on rain gauge datasets. The index flood approach, which considers that only the location parameter varies in the region,20

is very popular (Gellens, 2000; Sveinsson et al., 2001; Rulfova et al., 2014). Uboldi et al. (2014) used a bootstrap technique to

randomly select data from neighbouring locations with a probability depending on the distance and altitude difference with the

target location. The combined use of POT and RFA methods is recommended by Roth et al. (2015).

One of the challenges in RFA is the intersite dependence (e.g., Hosking and Wallis, 1988). Even for 1 h duration, precipitation

maxima exhibit spatial correlation (Vannitsem and Naveau, 2007). Using the sum of the length of all sites is common but causes25

underestimation of the extremes (e.g., Bardet et al., 2011). Several approaches have been proposed to deal with this problem

(e.g., Castellarin, 2007; Weiss et al., 2014).

To obtain the rainfall statistics at any given point, spatial models have been developed using geographical and climatological

covariates (e.g., Cooley et al., 2007). In Belgium, Van de Vyver (2012) derived a spatial GEV model depending linearly on the

altitude. Rulfova et al. (2014) found for 6 h precipitation in the Czech Republic that the assumption of a linear model might be30

too restrictive, especially for convective precipitation.

The rain gauge network can perfectly capture rainfall extremes for widespread situations. However, they can only catch a

small part of rainfall extremes caused by convective storms, which exhibit strong spatial variations over short distances. The

use of high resolution gridded precipitation datasets to study rainfall extremes is still in its infancy. This can be explained by
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their unavailability, their processing requirements and their limited quality. Precipitation estimations from satellite offer global

and relatively long records suitable for extreme value analysis (Marra et al., 2017) but still suffer from large uncertainties

(Sapiano and Arkin, 2009). The best potential is currently provided by radar-based quantitative precipitation estimation (QPE)

products. It should be noted that the radar estimates represent the averaged rainfall over a given area (typically a square of

1 km). While this area is much bigger than the gauge area, we will consider it as representative for small scale precipitation. Is5

has been shown that the sub-pixel variability of precipitation extremes is significant, especially for short durations (Peleg et al.,

2016). The relatively short record of radar datasets is an issue if the extreme statistics depend only on time (i.e. are completely

dependent spatially). While this is a reasonable assumption for larger duration (e.g. 1 day), it is difficult to prove for short

duration (e.g. 1 h). In case of significant climatic variations, a short record will be more representative of the extreme statistics.

In a pioneer work, Overeem et al. (2009) showed that a 11-year radar data set is suitable to derive depth-duration-frequency10

(DDF) curves for the Netherlands. But some differences with rain gauge results were found for short durations. Based on a

unique 23-year radar data set in Israel, Marra and Morin (2015) found that the DDF curves were generally overestimated but

60 % of them lay within the raingauge DDF confidence intervals. In Ontario (Canada), Paixao et al. (2015) demonstrate the

potential to integrate radar (Digital Precipitation Array product) to rain gauge analysis, especially to identify homogeneous

regions of extreme rainfall. Saito and Matsuyama (2015) used a 26-year radar-gauge dataset (without RFA) to study the spatial15

variation of hourly precipitation extremes in Japan. They found significant spatial patterns but also large uncertainties in the

radar datasets. Different index flood approaches were tested by Eldardiry et al. (2015) in Louisiana, who defined a region as

a square window of 44 km size. They found for Louisiana (USA) that the relatively short period (13 years) explains the high

uncertainty of the analysis, that the index flood method is recommended and that a systematic underestimation is associated

with the radar products (its spatial resolution is 4 × 4km). Haberlandt and Berndt (2016) found that the operational DWD20

product is only suitable for studies on longer durations after bias correction. Using a 10-year high resolution radar rainfall

dataset, Wright et al. (2014b) performed a regional frequency analysis using stochastic storm transposition. They found that

the radar-based IDF estimates generally reproduce conventional gauge-based IDF estimates but overestimate these for longer

return periods and shorter durations.

The potential of the radar data can be fully exploited by studying the extremes of the mean (or maximum) rainfall over25

areas. With the goal of deriving alert thresholds for 159 regions in Switserland, Panziera et al. (2016) studied the areal rainfall

maxima (with sizes from the pixel to the region). Using RFA on squares, Overeem et al. (2010) derived areal rainfall depth-

duration-frequency curves for the Netherlands. Wright et al. (2014b) applied a similar methodology but on different catchments

in Louisiana.

In this study, we want to demonstrate the potential of high-resolution radar-based QPE to derive rainfall extreme statistics at30

a given location. To our knowledge none of the previous studies combine a high quality radar-based QPE with a high quality

reference rain gauge measurements. At the Royal Meteorological Institute of Belgium (RMIB), a QPE has been derived from

the reprocessing of raw volumetric radar measurements. This dataset has been used for various applications such as case

studies and model verification. The methodology to derive this dataset has been verified for the period 2005-2014 against an
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Figure 1. Elevation map centered on Belgium with the Wideumont radar (black dot) covering 240 km range (the black circle denotes the

120 km range) with AWS (square), SPW (triangle) and BUL (circle) rain gauge networks. The gauge locations selected in this paper are in

cyan. Country borders with France, Luxembourg, Germany and the Netherlands are also displayed.

independent rain gauge network (Goudenhoofdt and Delobbe, 2016). RMIB also has a unique 40 year dataset of 10-min rain

gauge measurements which has been used in extreme value studies (Vannitsem and Naveau, 2007; Van de Vyver, 2012).

Unlike existing radar studies, we select our data using the POT approach and use the QQR fitting method. Radar-based

extreme statistics for 1 h and 24 h duration are compared with the ones derived from rain gauge data covering the same period.

We propose a new regional frequency analysis which makes use of independent radar data in a predefined neighborhood. The5

results are compared with those obtained using the long-term rain gauge network. Finally, the regional approach is applied at

each radar pixel on the whole of Belgium to study the spatial variations of the precipitation extremes.

2 Precipitation data

2.1 Raingauge measurements

Over the years, Belgium (Fig. 1) has been covered by several raingauge networks for different purposes.10
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Since the end of the 19th century, RMIB maintains a network (CLIM) of non-recording rain gauges from which precipitation

measurements are taken at 8 am LT. The data are carefully controlled and used for climate applications (Journée et al., 2015).

A Hellmann-Fuess pluviograph has been in operation in Uccle (RMIB) from 1898 to 2008 and has enabled the compilation of

a continuous time series of 10 min precipitation (Demarée, Gaston, 2003). The 10 min precipitation values had to be manually

extracted from line graphs on papers. Starting from the fifties, additional rain gauges were installed to constitute a network5

(BUL) for hydrological research. Since the rain gauges underestimate the rainfall by 5-10% due to its mechanism, its records

have been calibrated using a collocated gauge from the CLIM network.

For weather forecast purposes, the RMIB maintains a network of automatic weather stations (AWS) in Belgium. These sta-

tions provide precipitation measurements at 10 min temporal resolution. The tipping-bucket gauges are progressively replaced

by weighted gauges (the first one was installed in Uccle on 10 February 2009). The data are available since 2002-2004 and10

have been quality controlled.

The hydrological service of the Walloon Region (SPW) maintains a dense network of hourly (every 5 min since 2012)

precipitation measurements. The tipping bucket gauges are progressively replaced by weighting gauges since 2015. The data

have been quality controlled by RMIB since April 2004.

It is important to know the limitations of the respective rain gauges in case of extreme precipitation. It is known (Nystuen,15

1999; Duchon and Biddle, 2010) that tipping buckets underestimate high rainfall rates. The use of weighting gauges for

extreme precipitation is discussed in Colli et al. (2012). Every 10 mm, the pluviograph has to be emptied which results in

an underestimation in case of extreme precipitation. The calibration of the pluviograph is probably not sufficient for sub-daily

extremes. Finally, the quality controls, albeit conscientious, can never be considered as perfect.

2.2 Radar estimation20

The quantitative precipitation estimation (QPE) available on a 1 km grid every 5 min is made using an elaborated process-

ing chain from the radar volumetric reflectivity measurements. The quality of the radar volume is controlled using several

algorithms :

– a static clutter map : pixels with unrealistic high probability of rainfall are identified as clutter

– a beam blockage map : the percentage of the beam blocked by topography is computed using a simple propagation model25

– a first clutter identification based on reflectivity differences between radar beam elevations

– a second clutter identification based on strong deviations of a pixel from its neighborhood and unrealistic lines

– a third clutter identification for radar echoes in cloud free areas determined by satellite observations

A maximum threshold for reflectivity is set to 55 dBZ to mitigate higher reflectivity values due to hail. The rainfall rate

estimates are obtained using stratiform-convective classification, a 40 min averaged vertical profile of reflectivity (VPR), a30

bright band identification and a specific transformation to rain rates for the two precipitation regimes. The detailed procedure
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is described in Goudenhoofdt and Delobbe (2016). As a reference for the QPE product, the CAP product is defined as the

interpolation at 800 m above the radar level. It makes use of a standard Z R relationship, which comes from the hypothesis that

the drop size distribution follows the distribution of Marshall-Palmer, as discussed in (Uijlenhoet and Pomeroy, 2001).

Consecutive rainrate estimates are integrated to obtain 10 min accumulations (5 min gaps are tolerated) to match the lowest

resolution of the rain gauge data. Hourly accumulations are combined with the SPW gauges using a mean field bias correction.5

This method applied to the QPE product is referred to as the MFB product from now on. A more complex merging method

(i.e. external drift Kriging) was tested but found to be unstable for some time moments.

It is important to mention the limitations of the radar products in case of extreme precipitation. The most important impact

of the QPE processing on extreme values is the 55 dBZ reflectivity threshold used to mitigate hail. Using the convective Z R

relationship, this corresponds to a maximum rainfall rate of 80 mm/hour. Higher values of about 100 mm/hour are possible when10

the standard Z R relationship is used for stratiform areas. This can only happen close to the radar where convective precipitation

can not be identified. Slightly higher thresholds have been used by Overeem et al. (2009) (100 mm/hour) and (Wright et al.,

2014b) (105 mm/hour). A higher threshold is used by Marra and Morin (2015) (150 mm/hour) but for a Mediterranean climate.

Only half of the AWS gauges recorded up to 3 times more than 100 mm/hour in 10 minutes. Given the sub-pixel spatial

variability, one can assume that this threshold will never be exceeded for the pixel average. This threshold can only partly15

correct for the overestimation due to hail. The second most important error is related to signal attenuation especially in case of

well organised convective systems. This is why extremes might be underestimated the further the distance from the radar. In

addition, the increasing radar sample volume will produce an underestimation of small scale extremes. The uncertainty in the

Z-R relation is another important source of error.

2.3 Comparison framework20

In this study, we will only consider validated rain gauge data. Given that the SPW network is used for merging, the radar

dataset for 2005-2016 is used. To perform a direct comparison, the gauge data of AWS and SPW for the same period are used.

For comparison against the reference BUL network, the gauge data for the period 1965-2010 are used. The timeseries of the

BUL and CLIM networks have been tested for homogeneity by Van de Vyver (2012) and a selection of useful stations has been

made. Gellens (2000) and Vannitsem and Naveau (2007) found that the vast majority of the CLIM and BUL time series are25

stationary for summer precipitation. However, the existence of a multi-decadal oscillation in precipitation extremes has been

found in the Uccle time series (Ntegeka and Willems, 2008; Willems, 2013).

The 10 min precipitation accumulation from the gauge networks (AWS, BUL) and radar products (CAP, QPE) are summed to

obtain sliding 1 h precipitation accumulations. Such duration is associated with convective storms, which can only be properly

seen on radar images. The hourly bias obtained by the MFB method could be applied to the 10 min accumulations. However, it30

will not be used due to the possible risk of representativity errors related to convective storms and the small benefits expected.

The hourly precipitation from the SPW network and the radar products (CAP, QPE, MFB) are summed to obtain sliding 24 h

precipitation accumulations. The SPW network is preferred to the AWS network because it is denser and more homogeneous.

Such duration is mainly associated with widespread precipitation for which the benefit of merging methods is clear. The risk
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of instability with MFB (e.g., in case of strong spatial variation of the bias) is tolerated given the significant expected benefit

for widespread precipitation events.

It should be noted that using the lowest available duration for each network would result in an underestimation of the

extremes due to the discrete time sampling (Marra and Morin, 2015). Additionally, random errors and time sampling difference

can be compensated by performing the sum. For both the radar and the gauge, no missing data is tolerated in the sum to avoid5

underestimation. Furthermore, only timestamps with both radar and gauge data are kept.

Due to the amount of stations, it is not possible to analyse in details the results at each station. Therefore a few stations

are picked at different distances from the radar (see Tab. 1 and Fig. 1). The Uccle station is chosen because it is included in

the 3 networks, which makes inter comparison possible. The availability of the 1 h accumulation data is about 95 % for the

radar products and close to 100 % for the AWS gauges. The radar availability of the 24h accumulation is lower than the 1 h10

accumulation because a significant part of the intervals without data are short. The availability of the SPW gauges is around

90 % but this is mainly due to the removal of snow events, when no extreme rainfall is expected. The availability of the BUL

stations for the period 1965-2010 is highest at Uccle with 96.3 %, then about 86 % at Deurne and Gosselies. The station of

Nadrin has only 60 % of availability (for the period 1965-2010) because it was started in 1978.

3 At-site frequency analysis15

3.1 Methodology

It has been shown by Pickands III (1975) that the extreme values converge asymptotically to a generalized Pareto Distribution

(GPD) :

F(ξ,µ,σ)(x) =





1−
�
1 + ξ(x−µ)

σ

�−1/ξ

for ξ �= 0,

1− exp
�
−x−µ

σ

�
for ξ = 0.

(1)

with ξ, µ and σ commonly defined as the shape, location and scale parameters. The special case when the shape parameter20

is equal to zero is defined as the Exponential distribution (EXP).

The choice of the threshold has an important impact on the estimation of the distribution parameters. When the number

of selected values increases, the variance naturally decreases but the bias increases (due to the deviation from the theoretical

distribution). It is more practical to use a threshold rank instead of a threshold value to control the sample size.

To apply the theory, the extreme values have to be independent but successive peaks within the same time window can be25

observed due to the nature of precipitation. For 1 h duration, two peaks are considered dependent if the time interval is less

than 12 h as proposed by Ntegeka and Willems (2008). This choice is consistent with the characteristics of convective storms

analysed in Goudenhoofdt and Delobbe (2013). Jakob et al. (2011) used a separation time of 24 h but found little sensitivity

when taking lower or higher values. We also found that using 3 days hardly affects the selection of the 1 h extremes. For 24 h

duration, we use a time interval of 3 days which is the typical scale of synoptic regimes. These choices are consistent with30
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Roth et al. (2014) who found empirically a temporal dependence of 1 day and 2 days for winter and summer precipitation,

respectively. In practice, a peak is kept if it is the maximum compared to its dependent peaks (if any).

The type of the distribution can be derived by looking for the QQ-plot where the extremes behave in an asymptotic linear

way. (Willems, 2000) found for the Uccle series that the tail of the distribution has an exponential behavior for all durations.

In the gauge datasets used in this study, we also found a tendency for the EXP distribution. The EXP distribution is preferred5

for short period since estimating the shape parameter is very uncertain. Blanchet et al. (2015) found that GPD fails to robustly

estimate the tail of the distribution because of lack of data and unrealistic return levels for very long return periods (when the

shape parameter is positive). An additional argument for the EXP model is that it is less affected by observational errors, which

plays an important role here.

In this study we use a fitting method based on regression in Q-Q plots (QQR) proposed by Willems et al. (2007). The10

Exponential Q–Q plot is the extremes x versus minus the logarithmically transformed exceedance probability 1−G(x). The

EXP distribution appears as a line in this plot, with slope equal to the scale parameter σ:

x = xt −σln(1−G(x)) (2)

where xt is the threshold level. The same properties hold for the plot of the return level xT against the return period T when

the latter is plotted on a logarithmic scale :15

xT = xt +σln(T ∗M/n) (3)

where M is the number of extremes and n the length of the timeseries.

The estimators for the slope are based on linear regression in the Q–Q plot above the specific threshold level xt. Amongst

the available estimators for σ we used an unconstrained and unweighted linear regression.

The optimal threshold rank t is found by minimization of the mean squared error (MSE) of the calibration. With our datasets,20

this rank is chosen between 18 and 30 considering the uncertainties and the relatively short period, respectively. Confidence

intervals for the scale parameter are computed using a parametric bootstrap technique. The fitted distribution is used to generate

1000 extreme values series with a size corresponding to the optimal rank. The fitting procedure is applied to each of the 1000

series to obtain 1000 simulated scale parameters. The 10 and 90 percentiles of the simulated parameters are taken as the 10 %

and 90 % confidence interval bounds for the true scale parameter.25

3.2 Comparison of 1h extremes

The extreme events as seen by both the radar and the gauge are compared in table 2. Since the focus is on the tail of the

distribution, only the 10 highest values from either the gauge or the radar data are selected. The events for which the probability

of hail is high (i.e. when the threshold was applied) are highlighted. An event is considered as problematic if the corresponding

radar or gauge extreme rank is below 30. For these events, the underlying precipitation patterns are analysed using the radar30

images. This comparison allows identifying the weaknesses of the gauge and radar datasets.

The maximum at Humain has been observed by both the radar and the gauge on 7 June 2016. This relatively high value

can be due to randomness and the short period of records. But it is also possible that the other quantiles are underestimated
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(the maximum was recorded by the new weighted gauge). There is generally a good match between the radar and the gauge

quantiles except for the following events :

– event 2 : the radar underestimates globally

– event 6 : the gauge is located at the boundary of the convective cell

– event 11 : the radar signal is strongly attenuated by a mesoscale convective system.5

– event 13 : there was probably snow in the gauge

– event 14 : the gauge is located at the boundary of a convective cell.

The second highest quantile at Uccle has been observed by both the radar and the gauge on the 7th of October 2009. There

is generally a good match between the two datasets. A few events are problematic :

– event 1,4 : the gauge is at the boundary of a cell10

– event 9 : there is a stationary storm underestimated by the gauge

– event 10 : the gauge is at the boundary of a cell and the radar is attenuated (same as event 2 in Humain)

– event 11 : the radar signal is strongly attenuated (same as event 11 in Humain)

– event 13 : the radar is attenuated

The problems with cell boundaries are easily explained : the radar estimation is taken at a given height above ground and15

the rain is subject to wind drift before reaching the ground. This effect increases with the distance to the radar. Due to its

randomness, it should not affect the statistics. The other problematic events can be considered as missing data and are expected

to have only a small impact on the statistics.

Figure 2 shows the results of the extreme value analysis for 1 h precipitation accumulation. The return levels are obtained

using formulas from Willems et al. (2007) which are based on the Weibull plotting position. Numerical values of the temporal20

independence, the optimal rank, the location parameter and the scale parameter can be found in table 3. The percentage of

independent peaks (among peaks exceeding the threshold) is around 20 % for both the radar and the gauges at the two locations.

This low value is mainly due to the fact that 5 consecutive values at 10 min resolution are correlated.

The empirical quantiles of the QPE product are systematically slightly lower than those for the AWS gauges. This may be

expected as we compare point rainfall observations with rainfall averaged on a 1 km square. However, the underestimation of25

very high rainfall rate by tipping-bucket gauges can compensate for this effect. One also notes small groups of similar values for

both the radar and the gauge, which are mainly associated with hail events. This can be explained by the effect of hail threshold

and the rainfall rate limit, respectively. The extremes tend to be heavy tailed but this can be at least partially explained by the

observation biases described above.

9



The fit of the EXP distribution is relatively good for the two locations with a relatively low MSE (not shown). The scale

parameter tends to be higher for the gauge data than the radar data. In general, the uncertainty for the scale parameter remains

high and this results in wide confidence intervals for higher return periods.

When using the CAP product, the higher quantiles are overestimated especially for Uccle. This can be mainly attributed to

the effect of hail. This results in an overestimation of the scale parameter.5

3.3 Comparison of 24h extremes

The comparison of the 10 highest extremes from either the radar (MFB) or the gauge (SPW) can be seen in table 4. For Uccle,

most extreme values occurred during summer and are therefore associated with convective storms. There is a good match

between the gauge and the radar except for a few events:

– event 8, 11 : the gauge is at the boundary of a convective cell10

– event 13 : strong radar attenuation by a mesoscale convective system

– event 14 : snow episode probably underestimated by the radar

For Saint-Vith, the extreme values occurred either in summer or in winter with therefore a mix of convective and widespread

precipitation episodes. The match is very good except for the following events :

– event 2 : at the boundary of a cell (probably with hail)15

– event 3 : slight overestimation due to snow melting (QPE) ; overestimation due to non-uniform bias (MFB)

– event 13 : at the boundary of a cell

The problematic events not related to boundary effects can be considered as missing data. Since they are limited it is expected

that they only slightly affect the statistics.

Figure 3 shows the results of the extreme value analysis for the 24 h precipitation accumulation. Numerical values can be20

found in table 5. The percentage of independent peaks (amongst peaks exceeding the threshold) is between 6 % and 9 % for

the two locations and for all datasets. This is what we expect from 24 h accumulation available every hour.

For Uccle there are not many differences between QPE and MFB because most events are associated with convective

storms. Compared to the gauge quantiles, the radar quantiles are lower below 1-year and higher between 1-year and 5-year

return periods. This can be attributed mainly to hail overestimation by the radar and gauge losses. It results in a higher scale25

for the radar, which is close the upper bound of the gauge confidence interval.

For Saint-Vith, there is a clear effect of the bias correction (MFB) to remove the underestimation of the QPE product. As

for Uccle, the radar quantiles are higher for return periods higher than 2 years but the effect is limited because less convective

storms are involved. The final result is a good match of the two distributions for this station.

For the two stations, no significant instability in the MFB values have been found.30
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For Uccle, the CAP product overestimates the scale parameter and underestimates the location parameter due to hail and VPR

errors, respectively. For Saint-Vith, the quantiles (not shown) are similar to QPE except for a very high unrealistic maximum.

4 Regional frequency analysis

4.1 Methodology

As in Overeem et al. (2009) and Wright et al. (2014b) we consider that the extreme statistics are the same within the region.5

The region should be sufficiently large to have a large sample size (many extremes) and small enough to neglect extreme

statistics variability. No strong variability is expected in Belgium because it is a relatively flat country. Therefore we define

our region as the radius of 20 km around the target location. A similar size has been used in other radar studies (e.g., Overeem

et al., 2009; Wright et al., 2014b; Eldardiry et al., 2015).

We also consider that the extremes observed within the 20 km radius during a time window of 12 h are dependent. As in10

Wright et al. (2014b), we keep only the maximum amongst dependent values. We therefore implicitely assume that the regional

maximum follows the same distribution as the local extremes. The possible benefit of taking one extreme value at random is

an open question. It is important to remind that we are interested in the extreme statistics of any given pixel in the region.

This is different from studying the extreme statistics of the maximum rainfall over the region as in Panziera et al. (2016). We

also tested the hypothesis that 1 hour extremes are independent after a certain distance which is set to 10 km. This distance15

corresponds to the maximum expected size of a convective cell (Goudenhoofdt and Delobbe, 2013). If this is true it allows to

reduce the uncertainty of the analysis. In the text, we will refer to these datasets by the names RFA and R10, respectively.

Due to the spatial dependence, the effective length neff of the pooled time-series is smaller than the total length of the

records. The total length is obtained by multiplying the number of years n by the number of pixels N :

nmax = n × N. (4)20

In this study neff is computed by multiplying nmax by the fraction of spatially independent peaks, amongst peaks exceeding

the threshold. The latter is obtained by dividing the number of independent peaks by the total number of peaks. It can be shown

that this is the same as the method based on the averaged exceedence rate found in Wright et al. (2014b) and explained in

details by Weiss et al. (2014). The large number of peaks available from the radar data allows us to choose a higher threshold

rank. This increase in sample size leads to a more reliable extreme value analysis, which is the final goal of this radar-based25

RFA. Accordingly the QQR method is applied for threshold ranks between 30 and 100 and the optimal rank is found.

4.2 Comparison with rain gauges

Figure 4 and 5 shows the results of the regional frequency analysis for 1 h precipitation accumulation at the 4 locations selected

from the BUL network. The results of the at-site frequency analysis for the gauge and collocated radar pixels are showed

as reference. Numerical values can be found in table 6. The percentage of temporally independent extremes for the gauge is30

close to 30 % for Deurne and Uccle while it is slightly above 20 % for the two others stations. This suggests that there are
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larger clusters which might be related to altitude. Above the threshold, the percentage of spatially independent extremes (RFA)

ranges from 1.1 % (Uccle) to 2.6 % (Nadrin). The effective period length of the pooled dataset is then between 200 and 500

years. Using a decorrelation distance of 10 km results in twice more data, which is more than one expects from randomness. It

suggests that convection can be organised at large spatial scales.

The radar images associated with each maximum of the radar-based RFA is analysed :5

– Deurne and Uccle (28 July 2006) : several supercells on the whole of Belgium

– Gosselies (22 August 2011) : a squall line moving parallel to the flow

– Nadrin (26 July 2008) : a stationary convective cell

The highest extremes exhibit abrupt variations in the form of steps for both the gauge and radar. This could be explained by

the siphonage of the gauge and hail threshold, respectively. Since Nadrin is close to the radar, the standard Z-R relationship is10

used instead of the convective Z-R relationship. This permits higher rain rates (i.e. 100 mm/hour).

The gauge extremes are relatively low at Deurne and Uccle compared to Nadrin and Gosselies. The radar extremes are lower

at Deurne compared to the other stations. This can be at least partially attributed to the large sample volume at this range.

The match between the gauge and the radar (RFA and R10) is good except at Uccle with much higher radar extremes. The

RFA exhibits higher extremes than R10 suggesting some dependence beyond 10 km. Indeed the results should be similar if the15

hypothesis of independence after 10 km was valid.

This can be partially attributed to hail but the similar 4 highest extremes suggest a gauge limitation. It is also striking that half

of the 20 highest gauge extremes occurred during the period 1999-2008 (not shown). This positive trend for Uccle is possibly

related to the urban heat island effect (Hamdi and Van de Vyver, 2011). The uncertainty of the radar fit is low because of the

larger sample size, due to which a higher rank can be chosen. Furthermore, the fit is less impacted by the potentially large20

errors of the highest extremes. The location parameter (corresponding to the threshold) increases with the sample size of the

products.

Except for the Uccle station, the scale parameter is the lowest for the QPE dataset due to the bias as a result of the small

sample size. The scale parameter of the pooled radar datasets is slightly higher at Deurne and significantly higher in Uccle. For

Gosselies and Nadrin, the R10 and BUL data have similar scales while it is slightly higher for the RFA data. The fit to the RFA25

and R10 data is within the uncertainty bound of the fit to the BUL data. For those two stations, the fit to the BUL data is even

in the small uncertainty bound of the fit to the RFA data.

4.3 Spatial maps

We apply the regional frequency analysis described above for 1 hour duration to all pixel locations in Belgium with some

modifications. We use a smaller radius of 10 km to reduce the computation cost and consider that all pixels are spatially30

dependent. This smaller radius improves the resolution of the maps at the expense of a higher uncertainty. Several pixels in the

radar dataset are affected by permanent non-meteorological echoes. They can be identified by an unrealistic high frequency of
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extremes. In practice one looks at the distribution of the number of values exceeding 12 mm/hour. The pixels with more than

50 exceedances have been found as outliers and removed. To make the comparison easier, we choose a fixed threshold rank of

60. No larger ranks have been considered due to computational limitations.

Figure 6 shows the results of the regional frequency analysis applied to Belgium. The provinces of Belgium are also displayed

to help comparison between the maps. No values are shown beyond the 180 km range because the quality of the radar QPE is5

significantly reduced. The return periods are computed using equation 3 and therefore depends on the scale parameter and the

effective length. The higher the scale the higher the difference between the 10-year and 100-year return levels.

Some artifacts due to the radar and the regional approach can be seen on the maps. The effective length decreases significantly

beyond 100 km meaning that the spatial dependence increases. This is due to the fact that the actual radar sample is larger than

the 1 km pixel at those ranges. The circles of 10 km with very high values (e.g. at the German border) are caused by the10

remaining problematic pixels. A stronger filter could remove actual meteorological information but using a higher threshold

rank (if computing power is not an issue) could solve the problems. Areas with a 10-year return level exceeding 30 mm are

mainly located beyond 100 km. This is probably due to an increased contamination by hail with the distance to the radar (and

the height of the measurements). The small scale variability in the study area can be explained by uncertainties due to the

sample size.15

There is some correlation between the 10-year return level and the scale parameter. Therefore the spatial patterns between

the two return periods are similar. Within the 100 km radius, the maps are only slightly influenced by the topography and the

mean annual rainfall (Journée et al., 2015). This suggests that applying our regional approach is valid, at least for 1 h duration.

Van de Vyver (2012) obtained slightly lower values for the 10-year return level but slightly higher 100-year return level due

to the positive shape parameter. One notes that the scale is very high around the Brussels region where the Uccle station is20

located.

5 Conclusions

The potential of a radar-based precipitation dataset to study extreme precipitation at a given location is evaluated. The quan-

titative precipitation estimation (QPE) is obtained by a careful processing of the volumetric reflectivity measurements from

a single weather radar in Belgium. The radar dataset covers the period 2005-2016, has a resolution of 1 km, and is available25

every 5 minutes.

The first evaluation is based on a comparison of the extreme statistics between the radar dataset and two automatic raingauge

networks with 10 min and 1 h resolution, respectively. For each network, two locations are chosen to study sliding 1 h and 24 h

extremes using the collocated radar estimation. A regression method in Q-Q plots is used to fit an exponential distribution to

independent peaks. This method has the property to focus on tail of the extreme value distribution, which is of interest when30

studying extremes. An optimal threshold rank is selected by minimising the MSE of the regression.

The 10 highest 1 h extremes occurred in summer and are well captured by both the radar and the gauge. A few problematic

events are caused by wind drift or severe radar signal attenuation and should be considered as missing data. Differences up
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to 30 % between the gauge and radar values are observed and can be explained by spatial sampling and estimation errors.

The radar extremes tend to be lower than the gauge extremes especially for short return periods. This is consistent with the

results of Peleg et al. (2016) on the small scale spatial variability of extreme rainfall. In particular, tipping bucket gauges

underestimate heavy rainfall rate and can be blocked by accumulated snow. The radar underestimates due to signal attenuation

and overestimates in case of hail. Additional radar uncertainties come from time sampling and the Z-R relationship. Despite5

the uncertainties in the datasets, the fitting of the exponential distribution to the QPE product is within the large uncertainty

bound of the AWS one. This result is in accordance with the fact that the temporal variability (related to the sample size) is

higher than the spatial variability (Peleg et al., 2017).

For 24 h accumulation there is a mix of summer and winter events, with more of the latter for stations with higher altitude.

There is a clear benefit of bias correction for the highest station, making the distribution fits similar for both stations. For both10

1 h and 24 h accumulations, the basic radar product exhibits unrealistic high extremes, which results in an overestimated scale

parameter. Such product is therefore not suitable for an extreme value analysis.

In the second evaluation a regional frequency analysis is applied to 1 h radar data at the location of 4 pluviographs with

recordings from 1965 to 2010. Spatially independent extremes within a circle of 20 km are selected using a novel approach.

They are fitted with a maximum threshold rank extended from 30 to 100 thanks to the increased sample size. There is a good15

agreement between the radar and the gauge for the two closest stations. The most important result is that the uncertainty is

significantly lower using the available radar data. The extremes are lower when a decorrelation distance of 10 km is assumed

suggesting that this hypothesis is not valid. In Uccle, the radar extremes and therefore the scale parameter are significantly

higher. This can be attributed partially to radar overestimation due to hail and gauge underestimations, but the increasing urban

heat island effect should not be ruled out. The decreasing tail of the radar extremes is at least partially caused by hail threshold20

but a physical limit for the Belgium climate could play a role. The extreme statistics for 1 h duration are slightly influenced by

the topography. The reliability of the radar results beyond the 100 km range is questionable.

There is still some room to improve the quality of the radar and gauge datasets. The recently installed weighting gauges are

able to cope with intense rainfall and snowfall. One will have to wait a few decades before it can produce reliable statistics.

Radar calibration errors can be mitigated by computing a monthly bias using rain gauges. The attenuation can be solved easily25

by using other radars when available. To avoid overestimation of the extremes, an advection correction can be used for the time

sampling error. Dual-polarization radars can potentially provide better estimation for high rainfall rates (Figueras i Ventura

and Tabary, 2013). However uncertainties related to relation between the radar measurements and the rainfall rate remain,

especially in case of hail. In this study, all kind of precipitation including hail is considered. For some applications, it could be

necessary to remove the precipitation associated with hail. Identification of hail at ground level is a challenging problem using30

radar and ground station networks (Lukach et al., 2017).

For each of the rain gauge networks, only a few stations have been selected and presented in this paper. The results from

these stations are representative of the variability of the results obtained from the other stations.

Since the paper focuses on comparison between radar and rain gauges, the extreme value analysis has been kept simple.

While the EXP distribution was found to fit generally well with the empirical data, the generalised Pareto distribution should35
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be considered as well for the regional frequency analysis. The analysis of longer durations can be refined by taking into

consideration the effect of the type of precipitation (e.g., Rulfova et al., 2014; Panziera et al., 2016). A bias correction should

also be considered for a proper handling of the asymptotic behavior of the distribution (Willems et al., 2007).

The extreme value theory was applied to the radar datasets by removing the spatially dependent extremes in the region of

analysis. This is performed using a simple technique based on a decorellation distance. Evin et al. (2016) decided not to use5

such method because it reduces the sample size. Better performance are expected using recently proposed statistical models

(Buishand et al., 2008; Davison et al., 2012).

The radar-based regional frequency analysis can be extended to other durations to derive IDF curves. Note that the hypothesis

of constant parameter over the region might not be valid for longer durations. In many applications in hydrology, it is the

averaged rainfall over a given area which is relevant. A popular technique is to apply areal reduction factors to point-based10

statistics. The radar dataset can be used directly to derive areal rainfall statistics (e.g., Durrans et al., 2002; Overeem et al.,

2010; Wright et al., 2014a).

6 Code availability

The code used in this study is part of the RMIB radar library.

7 Data availability15

The rain gauge and radar precipitation estimation data are archived at the RMIB.
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Figure 2. Return levels for 1-hour duration at location Humain (top) and Uccle (bottom) of the AWS gauge (red stars) compared to CAP (blue

triangles) and QPE (magenta squares) radar products. The extreme value distribution (solid line) fitted to the extremes and its confidence

intervals (dashed line) are also displayed.
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Figure 3. Return levels for 24-hour duration at location Uccle (top) and Saint-Vith (bottom) of the SPW gauge (red stars) compared to

QPE (blue triangles) and MFB (magenta squares) radar products. The extreme value distribution (solid line) fitted to the extremes and its

confidence intervals (dashed line) are also displayed.
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Figure 4. Return levels for 1 hour duration at location Deurne (top) and Uccle (bottom) from the BUL gauge data (red stars) compared to the

at-site QPE (blue triangle), REG (purple square) and R10 (green diamond) radar data. The extreme value distribution (solid line) fitted to the

extremes and its confidence intervals (dashed line) are also displayed.
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Figure 5. Return levels for 1 hour duration at location Gosselies (top) and Nadrin (bottom) from the BUL gauge data (red stars) compared

to the QPE (blue triangle), REG (purple square) and R10 (green diamond) radar data. The extreme value distribution (solid line) fitted to the

extremes and its confidence intervals (dashed line) are also displayed.
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Figure 6. Results of the regional frequency analysis for 1 hour duration applied over Belgium up to 180 km from the radar. The scale

parameter and the effective length are showned in the top panel. The levels coresponding to a 10-year and 100-year return periods are shown

in the bottom panel. A circle with a radius of 100 km centred at the radar is also drawn.
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Table 1. Rain gauge stations used for comparison and availability of the extreme rainfall datasets. The last column is the percentage of time

when both radar and gauge data are available

Station Altitude (DNG) Distance to radar (km) Duration Avail. Gauge (%) Avail. Radar (%) Avail. Both (%)

Humain (AWS) 296 36 1h 98.5 94.8 93.5

Uccle (AWS) 100 128 1h 99.9 94.8 94.7

Uccle (SPW) 100 128 24h 90.6 86.0 78.2

St-Vith (SPW) 456 61 24h 89.2 86.0 76.7

Deurne (BUL) 12 161 1h 86.0 – –

Uccle (BUL) 100 128 1h 96.3 – –

Gosselies (BUL) 187 97 1h 85.7 – –

Nadrin (BUL) 403 30 1h 59.3 – –
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Table 2. Comparison of the 10 highest 1-hour precipitation extremes from the gauge (AWS) and radar (QPE) at Humain and Uccle stations.

The events with a high probability of hail have their number in bold. The events are ordered by the maximum of the gauge and radar values.

Humain

Event Date Time (end) Gauge [mm/hour] Radar[mm/hour]

1 2016-06-07 18:50:00 57.65 45.25

2 2005-07-30 00:40:00 28.60 11.62

3 2014-04-24 15:40:00 27.00 20.35

4 2014-06-10 21:40:00 15.60 26.40

5 2007-06-14 01:20:00 25.80 16.32

6 2008-05-14 17:40:00 13.10 24.35

7 2009-05-25 13:10:00 24.10 25.17

8 2015-07-19 01:00:00 22.87 15.47

9 2009-06-27 14:30:00 20.40 19.83

10 2009-07-22 21:20:00 19.80 12.08

11 2010-07-14 15:40:00 19.80 —–

12 2012-06-12 22:20:00 18.30 15.61

13 2013-03-23 07:40:00 —– 17.30

14 2005-06-28 22:20:00 —– 16.74

Uccle

Event Date Time (end) Gauge [mm/hour] Radar [mm/hour]

1 2016-06-07 15:20:00 18.08 38.21

2 2011-08-23 08:40:00 35.50 23.22

3 2009-10-07 18:40:00 30.79 33.32

4 2012-05-20 16:30:00 12.37 29.79

5 2005-09-10 19:40:00 29.10 17.54

6 2011-08-18 15:50:00 28.98 14.77

7 2007-06-14 14:50:00 21.90 25.88

8 2011-09-03 22:40:00 25.34 18.46

9 2016-06-11 18:50:00 —– 24.88

10 2005-07-29 19:10:00 24.29 —–

11 2010-07-14 15:20:00 24.15 —–

12 2014-07-29 16:10:00 20.10 18.17

13 2013-07-27 22:20:00 20.07 —–

14 2008-07-26 10:40:00 16.60 18.30
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Table 3. Results of the extreme value distribution fitting at two locations of the AWS network. The tables shows successively the temporal

independence, optimal rank, the location parameter and the scale parameter. A value is indicated as missing when its extreme rank is below

30

temporal independence [%]

Station Gauge CAP QPE MFB

Humain 25.6 20.7 22.6 –

Uccle 20.8 19.4 21.0 –

optimal rank

Station Gauge CAP QPE MFB

Humain 30 30 28 –

Uccle 29 23 30 –

location parameter [mm/hour]

Station Gauge CAP QPE MFB

Humain 12.2 11.0 10.7 –

Uccle 12.3 13.9 12.3 –

scale parameter

Station Gauge CAP QPE MFB

Humain 7.5 8.9 6.6 –

Uccle 6.8 10.8 6.4 –
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Table 4. Comparison of the 10 highest 24-hour precipitation extremes from the gauge (SPW) and radar (MFB) at Uccle and Saint-Vith

stations. A value is indicated as missing when its extreme rank is below 30. The events are ordered by the maximum of the gauge and radar

values.

Uccle

Event Date Time (end) Gauge [mm/24h] Radar [mm/24h]

1 2010-08-16 23:00:00 63.30 48.99

2 2009-10-07 23:00:00 52.50 61.83

3 2011-08-23 15:00:00 59.31 61.00

4 2006-08-03 23:00:00 43.00 58.44

5 2016-05-30 23:00:00 35.30 53.34

6 2014-08-26 15:00:00 45.30 48.51

7 2012-10-04 08:00:00 34.60 45.63

8 2012-06-12 11:00:00 —– 44.87

9 2016-06-12 17:00:00 31.30 39.45

10 2011-09-04 21:00:00 38.70 26.10

11 2015-08-16 03:00:00 —– 37.75

12 2007-06-15 11:00:00 36.99 33.91

13 2014-07-10 04:00:00 36.90 —–

14 2016-01-16 02:00:00 36.30 —–

Saint-Vith

Event Date Time (end) Gauge [mm/24h] Radar[mm/24h]

1 2007-01-18 16:00:00 74.60 56.88

2 2009-07-03 16:00:00 37.90 61.68

3 2011-12-16 23:00:00 —– 56.62

4 2012-07-28 21:00:00 53.60 46.72

5 2012-10-04 12:00:00 49.70 39.86

6 2007-08-22 19:00:00 47.50 48.73

7 2010-08-16 03:00:00 45.80 55.50

8 2006-08-05 06:00:00 43.70 41.10

9 2007-12-03 08:00:00 43.40 46.09

10 2007-09-28 08:00:00 42.40 38.87

11 2014-09-21 14:00:00 34.00 40.71

12 2016-05-31 02:00:00 40.01 33.44

12 2016-07-23 21:00:00 40.00 —–
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Table 5. Results of the extreme value distribution fitting at two locations of the SPW network. The tables shows successively the temporal

independence, optimal rank, the location parameter and the scale parameter.

temporal independence [%]

Station Gauge CAP QPE MFB

Uccle 7.1 6.0 6.6 6.7

St-Vith 7.4 8.4 9.0 8.4

optimal rank

Station Gauge CAP QPE MFB

Uccle 30 26 19 23

St-Vith 30 30 30 28

location parameter [mm/24h]

Station Gauge CAP QPE MFB

Uccle 27.2 25.0 27.2 27.5

St-Vith 30.2 25.8 26.3 31.5

scale parameter [mm/24h]

Station Gauge CAP QPE MFB

Uccle 9.0 13.5 12.7 12.9

St-Vith 8.9 8.2 6.9 9.1
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Table 6. Results of the extreme value distribution fitting for the regional frequency analysis. The tables shows successively the independence

(temporal or spatial), the optimal rank, the location parameter and the scale parameter.

independence [%]

Station QPE BUL R50 R10

Deurne – 27.5 1.4 2.6

Uccle – 28.0 1.1 2.6

Gosselies – 22.2 1.7 3.9

Nadrin – 19.9 2.6 7.0

optimal rank [%]

Station QPE BUL R50 R10

Deurne 28 22 100 99

Uccle 30 30 70 88

Gosselies 29 30 96 90

Nadrin 23 30 100 91

location parameter [mm/hour]

Station QPE BUL R50 R10

Deurne 10.8 16.7 16.5 20.0

Uccle 11.5 17.5 21.1 24.2

Gosselies 11.9 15.2 20.4 26.5

Nadrin 12.2 12.9 21.0 29.0

scale parameter [mm/hour]

Station QPE BUL R50 R10

Deurne 4.7 5.7 8.0 7.3

Uccle 6.4 4.4 11.7 10.7

Gosselies 6.4 8.7 10.1 8.6

Nadrin 6.1 9.3 11.7 9.5
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