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1 Reason for comment

I write this short comment to discuss a minor part of the discussion paper by Lu et al. (2020), in which a
statistical condition is erroneously interpreted. This condition erroneously appears in many other sources of
literature, and the belief in this condition has seemed to be confounded as a result.

The condition is that in equations (6) and (7) of Lu et al. (2020), which states that

JA(x̂) = (x̂− xA)TS−1
A (x̂− xA) ≈ n, (1)

and
JO(x̂) = (y −Kx̂)TS−1

O (y −Kx̂) ≈ m, (2)

using the variables in Lu et al. (2020). These conditions state that the sum of log-likelihood and log-prior
terms in the ‘cost function’ should be approximately equal to the number of observations, m for y, or inferred
parameters, n for x, respectively at the maximum a posteriori value of x.

The paper elaborates on this condition, for example for the component concerning the prior distribution,
saying that “JA(x̂) >> n implies overfit to the observations because the posterior state vector estimates are
far outside the estimated errors on the prior estimates.” In addition, there is the statement “In our case the
prior error covariance matrix is not strictly diagonal because of covariance for the wetland terms (Bloom
et al., 2017), so one may expect JA(x̂) to be somewhat deviated from n.”

I hope in the following that I will demonstrate that these statements have no foundations in Bayesian
probability theory, and likely have become pervasive due to an earlier misinterpretation of the mathematics,
and subsequent adoption of this. I will explain what the mathematics show with respect to the error
distribution of such distributions.

2 Properties of the Multivariate Normal

My assumption is that the confusion has stemmed from a misinterpretation of the condition outlined in, for
example, Tarantola (2005), Ch6, which discusses the application of the Chi-squared distribution. It is worth
noting that there are many other texts with a more mathematical description of this concept (e.g. Mardia
et al., 1979). We can apply the properties of the Chi-squared distribution in Tarantola (2005), using less
ambiguous notation, to the problem as framed in Lu et al. (2020), for example to the likelihood, where

JO(x) = (y −Kx)TS−1
O (y −Kx), (3)
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where the random variable JO(x) is distributed for all possible values according to the χ2 distribution with

ν = dim(y) = m (4)

degrees of freedom. Note here that it doesn’t say that JO(x) = ν, nor JO(x) ≈ ν, but JO(x) ∼ χ2
ν , i.e. it is

distributed with this distribution.
This is where I assume much of the confusion has come from. The earliest erroneous statement that I

can find is in Michalak et al. (2005), but there may be others before this. Note also that the presence or lack
of off-diagonal elements in the covariance matrix makes no difference to the statement in equation 3 and its
subsequent distribution.

So what does JO(x) ∼ χ2
ν mean practically? In a frequentist (i.e. non-Bayesian) setting, the ‘cost’ corre-

sponds to a particular probability contour, following the quantile function of the Chi-squared distribution.
Figure 1 shows a toy frequentist ‘inversion’ of two parameters, shown by the values on the x and y axis.
The true values are 1 and 2. These were informed using 5 observations. The coloured background shows the
‘cost’ over the parameter space and the contours show the corresponding probability content according to
the Chi-squared distribution. This has a practical application, for example to define the uncertainty in an
estimated value (see e.g. Western et al., 2020).

Figure 1: A toy frequentist ‘inversion’ of two parameters, shown by the values on the x and y axis. The true
values are 1 and 2. These was informed using 5 observations. The coloured background show the ‘cost’ at the
parameter values and the contours show the corresponding probability content according to the Chi-squared
distribution.

This idea can also be readily applied, for example to equation 2. In a frequentist setting, if JO(x̂) = m,
this also has a corresponding probability following the quantile function of the Chi-squared distribution.
That is, all values of x which are less or equal to some value of JO(x) can be translated into a confidence
region with a defined probability. For example, if m = 100, for all values of x where JO(x) ≤ 124.3421, then
all these values fall within the 95% confidence region of the maximum likelihood estimate, or we can say
with 95% certainty that the ‘true’ value falls within this parameter space. Figure 2 shows this probability
for JO(x̂) = m for 1 ≤ m ≤ 100. Or, in other words, Figure 2 shows the probability contour of a confidence
region at JO(x̂) = m, for a problem with m degrees of freedom. This probability asymptotes for large m,
but what is key is that this probability content at m (or n) changes depending on the degrees of freedom.
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Therefore, unless m and n are equal, or at least both very large, equations 1 and 2 are not making a
comparison to the same probability. If m = 1000, then this probability contour for all values of JO(x̂) ≤ m
is around 51%, whereas if n = 10, all values where JA(x̂) ≤ m is around 56%. I do not see a reason why
(even assuming m = n) it is supposed that each term should be evaluated with a probability content ∼0.5
at x̂. If JA(x̂) < n, and JO(x̂) < m, why would this suggest an overfit?

Figure 2: The probability contour at JO(x̂) = m according to the quantile function of the Chi-squared
distribution with m degrees of freedom.

3 Does any of this matter?

The reason I am talking about uncertainty regions is that this seems to be implicit in the concept applied.
My interpretation of, for example, equation 2 (Lu et al., 2020, equation 7), is that if JO(x̂) ≤ m in equation
2, one would assume that the inversion is over confident in its estimated value, and hence the uncertainty is
smaller than it should be. In Figure 1, this would translate as the contours on the plot being much smaller
than they should be – the results are showing too much confidence in the inversion’s estimates. This makes
intuitive sense (even if equations 1 and 2 do not make sense statistically). However, a problem with the
discussion in Section 2 is that the connection to uncertainty regions is valid for frequentist statistics, but not
for Bayesian statistics, which is the stated approach to inference taken. Instead, measures of uncertainty in
Bayesian inference rely on integration over the parameter space, which results in a fixed interval in which
the ‘truth’ resides, as opposed to the uncertainty about a fixed most probable value in frequentist statistics.
This means that the derived uncertainty is not the uncertainty in x̂ (a frequentist idea), but rather a fixed
uncertainty region for x in which some metric x̂ resides. An example of a suitable Bayesian uncertainty
region is the Highest Posterior Density (see e.g. Box and Tiao, 1992, Ch.2), defined as the narrowest region,
R, in the total posterior parameter space that holds probability content (1− α), or

1. p{x ∈ R} = (1− α)

2. for x1 ∈ R and x2 /∈ R, p(x1 | y) ≤ p(x2 | y).

Although, in the case presented in the paper due to the Gaussian likelihood and prior, and resultant Gaussian
posterior, such an integration is simple and readily available.
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In my opinion, an improvement on trying to post hoc adjust probability distributions can take one of
two paths. The first is to explicitly include uncertainty in parameters within the inversion itself, following
either an empirical Bayes or hierarchical approach (e.g. Michalak et al., 2005; Ganesan et al., 2014), and
thus formally considering the probabilities. The second is to invest some time in creating a better prior
probability distribution that is representative of your actual prior belief of the possible parameter space. See
e.g. Rougier (2007), Sect 2, for a more thorough discussion on this topic.

The second suggestion raises an interesting question – is the inversion approach taken in this work, and
many others, actually probabilistic or is it a regularisation but explained using concepts from Bayesian
probability? This has previously been raised in the context of remote sensing by e.g. Cressie (2018).
The adjustment of ‘probability distributions’ to better fit models using the concept of a ‘cost function’ in
my opinion falls closer to a regularisation problem. That is, if your posterior probability indicates that
the mean inferred parameters have a low probability according to your prior probability, then this does
not mean that the posterior/prior is wrong, and you may miss low-frequency events by removing this. If
this happens consistently, then of course some reevaluation of the model or prior knowledge should take
place. Using post hoc adjustment instead gives the impression that the prior probability (its functional form
and parameter values), the uncertainties in the likelihood and the use of the extra variable γ, are instead
weightings given to guide an optimisation procedure. The use of a the regularisation factor γ (as used in Lu
et al. (2020)) in inverse modelling comes from regularisation rather than anything probabilistic (Tikhonov,
1963), which is somewhat ‘un-Bayesian’ in its current application unless included within the probabilistic
hierarchy. Regularisation is fine – the machine learning community in particular has had a lot of success
in working with optimisation through regularisation – but it then means that concepts such as uncertainty
in the posterior estimate is not probabilistic and as such is difficult to interpret. As a result, the approach
taken in the work should probably not be described as Bayesian, or probabilistic.

4 Final remarks

I do not want this to seem like an attack on the paper – it is not. In fact, I think the paper is very good
and hence a suitable platform to raise this issue (rather than some work which generally has more pressing
issues). I commend the work that has been done and hope for its eventual publication.

I have also been purposefully slightly provocative in my arguments, in order to facilitate discussion,
which I hope others in the community will contribute to – including the nominated reviewers. I am willing
to be proved wrong in my arguments, and indeed welcome a proof of the statement that has thus far, to my
knowledge, not been sufficiently presented, even as a heuristic.
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