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This paper deals with the top down estimate of biogenic CO emissions based on the 
GEOS-Chem model constrained with MOPITT observations. The paper brings inter- 
esting results about biogenic CO sources and their seasonal variability. The method 
provides improved estimation of these emissions. The paper is well structured, clear 
and well written. It should therefore be published in ACP. Nevertheless, the method- 
ology and results that looks solid are often described too briefly. Some more detailed 
explanations should be given for some specific points that are detailed below. 
 
We thank the reviewer for their effort and useful comments and questions. We think that 
addressing these concerns will improve the manuscript. Our responses are embedded 
below in blue with modified or new text.  
 

1) P3: it is mentioned that 3 different MOPITT products are used (columns, full 
profiles 

and tropospheric profiles) to empirically evaluate errors due to transport. How is this 
error estimate integrated in the total error of the posterior fuxes? What are the error 
values? 
Please see response to #4 below 
 
 

2) P4: could you provide details about prior BB uncertainties? Some values? 
Please see response to #4 below 
 
 

3) P4: why 50% is assumed for BIO and FF prior flux estimates Is this value coming 
from sensitivity tests with varying uncertainties? Is this the value that provides the 
best fit between model and observations? This choice should be discussed as well as 
the metrics and methodology used to evaluate the improvement of the modeled CO 
distributions relative to the MOPITT observations. And the criteria used to decide that 
convergence is reached. 
 
These uncertainties were chosen based on previous experience with error constraints 
and the objective of allowing the sector emissions to vary sufficiently to test new 
probability distributions within each grid cell. While a more complete sensitivity test 
would be desirable for future top-down inventory partitioning, our main goal for this 
manuscript was to demonstrate that this technique has skill in terms of reproducing the 
seasonal and spatial variability as found independently in top-down isoprene estimates 
using OMI HCHO observations. We will add the following to the text (section 3) where 
we state the use of ± 50%. 
 
"This choice of uncertainty for the BIO and FF sectors is based on previous experience with 
error constraints and allows sufficient variability in the sector emissions for testing new 
probability distributions within each grid cell".  



 
 
 

4) P5: the average posterior errors ar given. The different contributions to the error 
have been mentioned previously (such as the empirical transport error) but we do 
not have a clear idea about the complete budget. An equation indicating the 
different contributions to the posterior error and the contribution of each error 
source to the total error given here would be of interest. 

 
P.4 Eq. 1 shows how the probability distribution is re-partitioned based on the errors 
assumed in each sector. This partitioning is unique for each grid cell and month so that 
a single equation showing error terms would not be very meaningful. We will include the 
following table and text in section 4 to help the reader understand the error sources and 
average outcomes for the tropical regions of interest in this study. 
 
Table 1. Uncertainties applied in the Bayesian source attribution (Eq. 1). Values are 
monthly averages for single grid boxes (5° x 4° longitude x latitude) in the tropical study 
regions.  
CO sector 
distribution 

A priori source A priori uncertainty 
 

Average Posterior 
Uncertainty (tropics 
grid boxes)  

Total flux  
(top-down estimate) 

Jiang et al., 
(2017) 
Inversion based 
on MOPITT CO 
data 

± 50% (assumed) ± 12% average 
constrainta, with 
11% 1-sigma 
standard deviation 
for tropical grid 
cellsb 

BB 
(biomass burning) 

GFED4s  
(van der Werf et 
al., 2017) 

± 24%  
(Akagi et al., 2011) 

± 22% 

BIO  
(biogenic NMVOCs) 

MEGAN v2.0 
(Guenther et al., 
2006) 

± 50% (assumed) ± 24% 

FF (fossil fuels) EDGAR 3.2 
Olivier and 
Berdowski, 2001 

± 50% (assumed) ± 45% 

a  The total flux posterior error is estimated from 3 flux inversion types (see text for 
description) to approximately account for model transport errors. 
b Average and standard deviation are computed for tropics (20°S to 20°N) using grid 
boxes with with emissions > 0.1 gCO/m2/month. 
 
“Uncertainties are available by 5° x 4° grid cell, month and source sector (BB, FF or BIO) and 
represent the 1-sigma width of the posterior distributions; these distributions are critically 
dependent on the a priori uncertainties and therefore subject to change when different a priori 
distributions and covariances are assumed in the Bayesian attribution approach. Table 1 lists the 
sources of a priori data and uncertainties and gives average monthly values representative of the 



individual grid cells used in this study. For the remote tropical regions considered here, FF 
contributions to total CO fluxes are small and we find the most improvement over prior errors in 
BIO CO posterior flux uncertainties, especially in months with little or no BB emissions. This 
can be seen in Fig. 2, where monthly grid box posterior errors were averaged spatially for the 
region of interest and over years 2005-2012. One of the assumptions in this study is the prior 
uncertainty in BB, which only considers emission factor uncertainties (Akagi et al., 2011) and 
does not explicitly account for other factors in BB CO fluxes such as combustion completeness 
and biomass (fuel) amount (e.g. Bloom et al. 2015). Future work will examine the effects of 
using a wider range of prior uncertainties that reflect multiple inventories.”  
 
 

5) P5: it is unclear to me why posterior error for FF is twice larger than for BIO and 
BB. I would have expected that this source is better constrained in the prior 
inventory. And why MOPITT constrain this source much less than the 2 others? 
Could the authors elaborate on this point? 

The FF component is very small in the tropical regions we consider so there is little 
information to improve on the FF error compared to the prior. This was already stated in 
the text, but revisions to address the comment above (e.g., error table) make this more 
explicit. 
 
 

6) P6: the present study finds BB emissions (290 Tg/yr) of about 1/3 of those from 
Folberth et al. 2006 (811 Tg/yr). It is a large difference that is briefly justified by 
the fact that tropical fires have declined during the 2005-2012 period relative to 
the one used in Folberth et al. 2006 according to Andela et al. (2017). Could you 
give more details to convince the reader ? 

 
This could also be an overestimation in the BB CO emissions considered by Folberth et 
al (2006). Recent estimates using GFED4 (van der Werf et al., 2017) report annual 
mean emissions for the 1997-2016 period for CO as 357 Tg/yr, while Granier et al., 
2011 reported a range of 414 to 509 Tg/yr for 6 inventories in the 1997-2000 period, a 
period with significant interannual variability due to the strong 1997-1998 ENSO 
episode.  
 
We will modify the text to state:   
 
This contribution from BIO CO represents a larger percentage (~41%) of the sum of BB, FF and 
BIO CO sources than expected (~27%) based on Folberth et al. (2006) which has 811 Tg(CO)/yr 
for BB and 672 Tg (CO)/yr for FF). However, there is a wide range in reported biomass burning 
emission estimates, with large interannual variability. van der Werf et al., (2017) report 357 
Tg/yr mean emissions for BB CO over 1997-2016 while Granier et al., (2011) reported a range 
of 414 to 509 Tg/yr for 6 emission inventories in the 1997-2000 period. Because our 2005-2012 
study period did not include the significant ENSO episodes in 1997 and 2015, we would expect 
lower average values for BB CO emissions. Furthermore, in recent decades, there is a decreasing 
contribution of BB CO associated with a decline in tropical fires (e.g., Andela et al., 2017), as 



well as declining FF CO emissions (Yin et al., 2015; Strode et al., 2016; Jiang et al., 2017; Zheng 
et al., 2018).  
 

7) P7: how is the posterior estimate affected by the change in forcing fields (GEOS 
FP versus GEOS-5? Is the top down method more robust to such changes than 
MEGAN? 

 
Although there does appear to be less dependence on the version of the meteorological 
fields in the posterior results compared to the MEGAN apriori (see Response Figure 1 
below for the N. African savannas region), we did not want to draw conclusions, 
especially about trends in biogenic fluxes, without more consistent meteorological fields. 
Also, the dependence on the prior can still vary from region to region depending on the 
errors in the other emission terms (BB and FF). This is more obvious in Response 
Figure 2 for the Equatorial Africa region where there is more interference from BB 
emissions, and the time dependence of the prior is more clearly affecting the posterior 
result. Therefore, we chose the 2005-2012 period for the analysis in this paper. 
 

8) P7: the results concerning the seasonality of the biogenic emissions are very 
interesting. The coincidence of isoprene and CO bimodal variability gives 
confidence in these results. Nevertheles, it is a bit desappointing not to have 
more explanations about the discrepancy between biogenic emissions and LAI 
variabilities! Are there some possible explanations? Why temperature plays a 
controling role in this N African Savannahs? 

 
Marais et al., (2014) originally found that surface layer temperature dominates over LAI 
for controlling isoprene emissions in the N. African savannas. They hypothesized that 
since LAI is less than 2.5 m2 m-2 year round, MEGAN dependence is not saturated. At 
the same time, MODIS observations could underestimate LAI during the rainy season 
due to cloud contamination. This reference is already cited. Furthermore, the study 
presented here is meant to demonstrate the methods that we will build on in future work 
to test the processes and potential changes needed in MEGAN to reproduce top-down 
estimates of biogenic emissions.  
 
 
 
 



 
Response figure 1. Timeseries of apriori (dashed blue) and estimated CO flux (solid black, with 
error bars) for the N. African savannas region. Green arrows indicate the different time periods 
for the GEOS-4, GEOS-5 and GEOS-FP meteorological fields used to calculate the apriori with 
the MEGAN model and for the inverse analysis for total CO flux.  
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Response figure 2. Timeseries of apriori (dashed blue) and estimated CO flux (solid black, with 
error bars) for the Equatorial Africa region. Green arrows indicate the different time periods for 
the GEOS-4, GEOS-5 and GEOS-FP meteorological fields used to calculate the apriori with the 
MEGAN model and for the inverse analysis for total CO flux.  
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