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ACP-2019-241 (Editor – Rachel Law) 

Response to Reviewer 1 

 

The authors thank the reviewer 1 for a thoughtful review of the manuscript. The responses for 
the reviewer’s specific comments are as follows. 

 

General Comment: 

This paper describes an evaluation of different observing locations in Asia to infer Asian 
surface CO2 fluxes. The authors use the Carbontracker inversion system, with model 
generated pseudo-data, to assess different observing networks. They compare fluxes 
estimated with the existing network, with alternative networks based on random addition or 
relocation of sites, and the choice of sites using sensitivities from the inversion system. This 
contrasts with previous network design studies that use optimisation to locate the best 
observing sites, with higher computational cost.  

Some aspects of the methodology need improved description, as described below. I have some 
concerns with the methodology, also described below, however it is possible that I have 
misunderstood what was done and improved description would give me a better 
understanding of the methodology and address some of my concerns. There is a need for 
minor improvements to the English throughout, but this would be addressed with copy-editing 
and I don’t believe it has contributed to any difficulty in my understanding of the 
methodology or results. 

Author’s response: Following the reviewer’s suggestions, we have tried to improve 
descriptions. We also have addressed more explanations for the concerns with the 
methodology. Specific responses to the reviewer’s comments and revisions are shown 
below. 

 

Specific Comments:  

1. Self-sensitivity (page 4, line 6 and section 2.2) - it is not completely clear to me what 
sensitivity is used in this paper. On page 4, line 8 ‘the relative impact of each CO2 
observation for the optimized surface carbon flux can be calculated ... and used as a strategy 
for selecting potential sites of CO2 mole fraction observations’, however on page 8, line 8 
‘contribution of the observation vector (yo) to the analysis at the observation space (ya)’. 
From the description in the paper, I understand ya to be the model equivalent of the CO2 
mole fraction in air, also described as the predicted observation in Liu et al (2009) that the 
authors refer to. These are two different quantities (i.e. sensitivity of fluxes or sensitivity of 
surface mole fraction). Which was used in this study? I can see value in considering the 
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sensitivity of the optimised flux (or perhaps the scale factor in this study) to each observation, 
but I am not as clear on the value of the sensitivity of the predicted observation. Of course 
they are related, but not the same. I am also not clear about how time affects the sensitivities. 
For example, some information comes from distant sites but with a lag. When is the analysis 
sensitivity calculated -before lagged information has had a chance to improve an analysis 
estimate? If so, that would downweight information from other gridcells that arrive after a 
lag. Thus I have concerns about the methodology, but I admit that it is not clear to me exactly 
what was done. 

Author’s response: The self-sensitivity is calculated in the observation sites. As denoted 
in Eq. (11), the self-sensitivity is the gradient of the analysis at the observation space (𝒚𝒚a) 
to the observation vector (𝒚𝒚o). Here, 𝒚𝒚a represents the projection of analysis state vector  
𝒙𝒙a on the observation space or model analysis equivalent to observations at observation 
locations. The model analysis 𝒙𝒙a (i.e., optimized surface CO2 flux) is on the model grid 
point, whereas the model analysis equivalent to observations 𝒚𝒚a (i.e., model analysis 
equivalent CO2 mole fraction) is on the observation locations (i.e., observation space). As 
the reviewer denoted, they are not the exactly same although they are closely related as in 
Eqs. (11), (12), and (13). The self-sensitivity represents the contribution of observations 
to the model analysis in grid point as well as that in observation locations. Liu et al. 
(2009) deals with the sensitivity in numerical weather prediction (NWP) problem, thus it 
considers predicted observation. However, in this study, the analysis equivalent 
observation is used because the prediction is not much considered in CO2 data 
assimilation. Although the self-sensitivity is qualitatively related with both the model 
analysis in grid point as well as that in observation locations, the quantity used in this 
study is the sensitivity of “model analysis equivalent CO2 mole fraction at observation 
space” to “observed CO2 mole fractions”. Thus, we have revised the text on page 4, line 
8 as follows.  

“Similar to the numerical weather prediction (NWP), the relative impact of each CO2 
mole fraction observation for the model analysis equivalent CO2 mole fraction induced 
by the optimized surface CO2 flux can be calculated (Kim et al., 2014a, 2017) and used 
as a strategy for selecting potential sites of CO2 mole fraction observations.” 

Since the analysis (i.e., optimized surface CO2 flux) in this study is calculated 
considering the time lag, the effect of time lag is already included in the sensitivity 
calculation. As mentioned in Kim et al. (2014a), CarbonTracker adopts a smoother 
window to reflect the transport speed of CO2, which is based on the temporal relationship 
between the surface CO2 flux and atmospheric CO2 observations, as found in Bruhwiler 
et al. (2005) (Peters et al., 2005). For this reason, the scaling factor is optimized for 5 
weeks of lag, which implies that the observations made in the most recent week affect the 
optimized surface CO2 flux in the preceding 4 weeks. The optimization of the scaling 
factor during the data assimilation process is presented in Fig. 1 in Kim et al. (2014a) as 
shown below. In each assimilation cycle, 5 weeks of analysis scaling factors are 
estimated by observations from the most recent week. After the fifth cycle, the scaling 
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factor estimated by these 5 weeks of observations is saved as the optimized scaling factor 
and used to calculate the optimized (i.e., analysis) surface CO2 flux. 

The self-sensitivity is calculated using the analysis produced by the process above. Thus, 
the analysis surface CO2 flux already considers the time lag associated with the distant 
information. Whether the 5 weeks of lag is enough to consider the distant information is 
fully studied in Peters et al. (2007) and Kim et al. (2018b).  

 

 

Figure 1. Schematic diagram of the assimilation process employed in CarbonTracker. In 
each analysis cycle, observations made within one week are used to update the state 
vectors with a five-week lag. The dashed line indicates how the simple dynamic model 
uses analysis state vectors from the previous one and two weeks to produce a new 
background state vector for the current analysis time. The TM5 model is used as the 
observation operator to calculate the model CO2 concentration for each corresponding 
observation location and time. (Kim et al. 2014a, ACP) 

 

2. Simulated hypothetical observations (section 2.3) - there are no details or references given 
about the EXTASI experiment - are the EXTASI fluxes based on the same flux modules as used 
in this study but with different scale factors? Therefore, are there differences in the spatial 
distribution of fluxes within the ecoregions that are used to generate the simulated 
hypothetical observations compared to the flux modules, as there would be between modelled 
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fluxes and real world fluxes in an inversion of real observations? This is perhaps most 
relevant for the two regions that each account for close to 20% of the domain. If the 
distribution is the same, that’s probably ok, but it should be mentioned, as model error in the 
spatial distribution within each region is not considered. 

Author’s response: In EXTASI experiment, the surface CO2 fluxes are optimized by the 
inverse modeling using the real observation data (i.e., observed CO2 mole fractions). 
Thus, EXTASI produced optimized surface CO2 flux (from the inverse modeling using 
real CO2 mole fraction observations). In contrast, SF1 experiment produced another 
estimated surface CO2 flux (by setting scaling factor as 1). Thus, as the reviewer 
mentioned, EXTASI and SF1 are based on the same prior flux modules with different 
scale factors. The EXTASI produces fluxes that is closer to real fluxes (although the real 
fluxes are not exactly known), compared to SF1. 

Using the above two CO2 fluxes, two model CO2 mole fractions were generated and 
averaged to have the hypothetical true CO2 mole fraction observations. We made 
hypothetical true CO2 mole fractions this way because we liked to produce hypothetical 
“true data” close to real data but not the same. If the model CO2 mole fractions produced 
by EXTASI are used as “true data”, then they may be similar to the real observed CO2 
mole fractions, but they are constrained much by the real observation network. This 
configuration causes that, when we choose observation sites using several strategies, the 
experiment using the current observation network (i.e., CNTL in this study) has more 
benefits compared to other network designs. To be fairly compared the results from 
several network configurations, we have made hypothetical true CO2 fractions that are 
somewhat similar to the real feature but still hypothetical.  

Following the reviewer’s suggestion, we have clarified and added details of the EXTASI 
experiment as follows. The revised parts are underlined.  

“In this paper, simulated hypothetical observations were created and used to design the 
observation network. Simulated hypothetical observations with similar values and 
seasonal variations compared to real CO2 observations were generated by averaging 
model CO2 mole fractions from the experiment conducted with real NOAA observation 
data (EXTASI) and model CO2 mole fractions from the experiment with a fixed scaling 
factor of 1 (SF1). Both EXTASI and SF1 experiments were done for the year of 2008. In 
EXTASI experiment, the real CO2 mole fraction data were used to update the scaling 
factors in Eq. (1) to estimate the surface CO2 fluxes. In contrast, in SF1 experiment, the 
scaling factors were fixed as 1. 

Figure 2 shows the station-averaged time series of CO2 mole fractions from real 
observations (OBS), EXTASI, SF1, and an average (i.e., simulated hypothetical 
observations: TRUE, hereafter) of EXTASI and SF1.” 
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3. Average of random redistribution (page 11, line 1) - My understanding from the text is that 
REDIST is created by averaging the fluxes from three random redistribution experiments of 7 
sites. Firstly, is this correct? And if it is, I am concerned that this may lead to a better 
solution than you would expect from just 7 sites, as 7x3=21 sites were actually used to 
generate the average. Errors in the individual results may cancel in the average. The 
statistics of the average may not reflect the statistics of individual experiments, and therefore 
it would be an unfair comparison. The ADD case is also an average of three experiments, so 
would potentially have the same issue. Perhaps it would be a fairer comparison to instead 
calculate the PC, BIAS, RMSD and UR statistics for the individual experiments then average 
these statistics? 

Author’s response: As the reviewer mentioned, we did three random redistribution 
experiments and averaged the results. In each experiment, 7 sites were used and statistics 
(i.e., PC, BIAS, and RMSD) were calculated. This experiment was done three times 
independently. In each experiment, 7 sites were selected randomly. We calculated average 
statistics for three experiments rather than statistics for individual experiment since the 
statistics of individual experiment can be easily skewed by specific configuration or 
selection of sites by only one experiment. To avoid the sampling error that can possibly 
be caused by only one sampling, we did three experiments with different configurations 
to get more general results. This experimental configuration is used in previous 
observation network studies as Yang et al. (2014). Thus, we have revised the text as 
follows. The added parts are underlined. 

“Figures 3b, c, and d show the distribution of three observation networks, in which the 
seven observation sites in Asia are randomly redistributed. To obtain general results 
without sampling error, each random redistribution experiment was performed three 
times with different sets of randomly distributed observation sites, as denoted in previous 
observation network studies (e.g., Yang et al. 2014). The average of three random 
redistribution experiments was denoted as REDIST, to check the impact of the 
reallocation of the existing observation network.”  

 

4. What affects the self-sensitivity of an individual gridcell in the ALL case? In Fig 6, most of 
the gridcells with high self-sensitivity are near the boundaries of the regions used for this 
calculation. Presumably this is because they contain some information not available from 
neighboring gridcells in the ALL case. But for gridcells with many neighbors that contain 
similar information to each other, the information from any one of those gridcells may not be 
needed when all of the others are available, as in the ALL case. But that does not mean that 
at least some of these gridcells that rank low in the ALL case are unimportant in a case with 
a much lower number of observing sites. The authors point out on page 17, line 18 that self-
sensitivity is generally inversely proportional to the number of assimilated observations in an 
ecoregion, and that makes sense, but within a region, does the self-sensitivity pick out some 
sites that will give most value in a network with few sites, or just those with most sensitivity in 
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a case with many sites (ALL)? In network design studies that use optimisation, the value of 
observation sites is determined for a network that is closer to the expected size of the 
potential network. I am not yet convinced of the value of determining the worth of any single 
site from the self-sensitivity in the ALL case when many more sites than would be practical 
are included. This is my greatest concern about the methodology, and I believe this would 
need to be addressed for the paper to be published. Of course, exactly what the self-sensitivity 
is (sensitivity of fluxes or surface mole fraction) is also important here (see above comment). 

Author’s response: As mentioned in page 17, four influential regions with high 
sensitivities are located in western Siberia, the southern part of the Tibetan Plateau, and 
southeastern and northeastern Asia. Except the western Siberia, the other regions do not 
coincide much with the boundaries of the model domain. As defined, the self-sensitivity 
represents how CO2 mole fraction observations affect the model analysis equivalent CO2 
mole fraction observations at observation sites. Since the model grid points at 2° intervals 
are the observation sites in ALL experiment, if the self-sensitivity value at some grid 
point is large, then the observation at that grid point will affect highly the model analysis 
equivalent of CO2 mole fraction observations. All grid points in ALL experiment are in 
same condition: 1) the observation sites at every 2° intervals on the land are used, 2) at 
every sites, only one simulated CO2 mole fraction values around afternoon (i.e., 13 local 
standard time (LST)) are assimilated per day for one year), and 3) the self-sensitivities at 
every sites are calculated and averaged as shown in Fig. 6. Thus, the self-sensitivity 
based on these same conditions can be a measure to determine which observation sites 
should be used for assimilation to have a large effect on the model analysis equivalent at 
observation sites.  

In Page 17 line 18, we mention that the self-sensitivity is generally inversely proportional 
to the number of assimilated observations, as shown in Kim et al. (2014a, 2017). This 
inversely proportional relationship is for observation numbers and self-sensitivity at one 
site, not for many observation sites case vs few or no observation sites case.  

The genetic algorithm (GA) method which considers many sets of observation networks 
and finds out the network with minimum error with much computations, can be 
considered as the forward approach. In contrast, the method in this study uses the 
backward approach that can calculate the contribution of observations to the analysis 
equivalent mole fractions with much smaller computation. Using the self-sensitivity, we 
can select the potential observation site one by one. Practically, redistributing all 
observation sites at once is not easy or is even impossible. Adding or redistributing some 
sites given existing observation sites may be a more practical way to design the 
observation network. Once we have self-sensitivity value, we can use the value to 
determine the observation sites that would affect much on the analysis results. Using the 
self-sensitivity to determine the potential sites, we did forward calculation to verify 
whether the sites by the strategy are good or not.  

The definition of the self-sensitivity is already explained in detail in the response to the 
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specific comment 1 above.  

 

Minor points: 

5. Page 1, line 10 - "Inverse modeling .... derives estimated CO2 mole fractions in the air 
from calculated surface carbon fluxes using model and observed CO2 mole fraction data" - 
No, forward modelling derives CO2 mole fractions in the air from surface fluxes. Inverse 
modeling derives surface fluxes from CO2 mole fractions in the air. 

Author’s response: We have revised the confusing description of the inverse modeling 
as follows. The revised parts are underlined.  

“Continuous efforts have been made to monitor atmospheric CO2 mole fractions as it is 
one of the most influential greenhouse gases in Earth’s atmosphere. The atmospheric CO2 
mole fractions are mostly determined by CO2 exchanges at the Earth’s surface (i.e., 
surface CO2 flux). Inverse modeling, which is a method to estimate the CO2 exchanges at 
the Earth’s surface, derives surface CO2 fluxes using model and observed atmospheric 
CO2 mole fraction data.” 

 

6. Page 2, line 7 - "Inverse modeling .... uses observation data and transport models to 
estimate the sources and sinks of surface carbon flux and associated atmospheric CO2 mole 
fractions" - better than the previous description, but doesn’t specify what observation data 
are used (should be CO2 mole fractions in air). The associated modelled atmospheric CO2 
mole fractions can be estimated from the inferred fluxes (or perhaps during the inversion), 
but I don’t consider that part of the inverse calculation. 

Author’s response: We have revised the text as follows. The revised parts are underlined.  

“Inverse modeling, one of the methods to complete this mission, uses observed 
atmospheric CO2 mole fraction data and transport models to estimate the sources and 
sinks of surface CO2 flux (Enting, 2002; Gurney et al., 2002).” 

 

7. Page 3, line 14 - Add ‘alone’ after ‘data’ i.e. Assimilating XCO2 data alone ... 

Author’s response: We have added the text following the reviewer’s suggestion.  

 

8. Page 3, line 22 and many other locations - OSSEs (with an ‘s’ at the end) is often used for 
the plural of OSSE. I.e. We conducted one OSSE, and they conducted many OSSEs. 

Author’s response: As many other references (e.g., Wang et al. 2018), we have used 
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“OSSEs” for the plural of “OSSE”. Considering the reviewer’s suggestion, in the last 
paragraph of Section 1, we have replaced “OSSEs” by “many OSSEs” as follows. 

“In this study, many OSSEs were conducted using CarbonTracker (CT) to~” 

 

9. Page 4, line 12 - "which does not seem feasible in the near future" - what is meant here? Is 
the 43 site network not feasible? Or the 233 site network (is this not like the ALL case 
considered here, to see what would be possible with observations everywhere)? Or are the 
authors referring to the computation of the network design calculation for many sites? 

Author’s response: We meant that many 14CO2 sites may not be feasible in the near 
future in Asia. But we found that the original meaning does not fit in the paragraph well. 
Thus, we have revised the text as follows.  

“Although Wang et al. (2018) showed the potential impact of adding observation sites on 
the existing 14CO2 sites in Europe using OSSEs, the potential 14CO2 observation sites 
were not chosen based on specific selection strategies.” 

 

10. Page 4, line 24 - I would add at the end of the sentence ‘, as an alternative to 
optimisation that has been used in previous studies’ to make it clear that optimisation is not 
used in this study. Alternatively (or perhaps in addition), point out clearly elsewhere in the 
introduction that optimisation of the network is not part of this study, as that point was 
initially not clear to me. (At page 4, line 3, problems with IO and GA are discussed, but that 
doesn’t mean another optimisation method wasn’t going to be used). 

Author’s response: In my knowledge, the IO and GA are methods to select observation 
sites for observation network design until now. We could not find other methods used for 
determining surface CO2 observation network. The IO and GA are strategies selecting 
observation sites to minimize the error in their own framework. The IO and GA are called 
as the optimization method, but one of them has lower error than another in specific cases 
(Nickless et al. 2015).  

Instead of using the term “optimization”, we proposed a selection strategy based on 
influence matrix. If the observation network is designed in the region without observation 
sites, then the IO and GA methods would be useful. When adding observation sites over 
the region with existing observation sites, redistributing all observation sites at once may 
not be easy or may be even impossible. Adding or redistributing some sites given existing 
observation sites may be a more practical way to design the observation network. 

Considering the reviewer's suggestion, we have revised the text as follows. The added 
parts are underlined.  

“In the case of addition experiments, random addition and addition based on influence 
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matrix (self-sensitivity) as well as ecoregion information of the model were considered as 
strategies, as alternatives to IO and GA that have been used in previous studies.” 

“Due to time and computing restraints, the IO and GA methods seem ineffective or 
unfeasible for designing the observation network on continental scales like Asia. In 
addition, determining and redistributing all observation sites at once using the IO and GA 
methods may not be practical for most regions with existing observation sites. Adding or 
redistributing some sites given existing observation sites may be a more practical way to 
design the observation network.” 

We have already mentioned that our purpose is to identify "a better” in situ observation 
network for optimizing surface CO2 flux estimation in Asia. The text is shown in page 4, 
line 20, as follows.  

“In this study, many OSSEs were conducted using CarbonTracker (CT) to identify a 
better in-situ observation network for the purpose of optimizing surface CO2 flux 
estimation in Asia.” 

 

11. Page 5, section 2.1 - There are many details of the inversion that are not clear: Does the 
inversion run globally with a focus on Asia, or just run over Asia as a regional inversion (i.e. 
are fluxes outside the Asian domain estimated)? How many ecoregions are used in this study? 
(Is 156 regions a global number or for Asia? What are the 240 ecoregions? There are 40 
lines in Table 3, is that the number for Asia? Could say ‘We estimate x scale factors for y 
times’.) Is it possible to include a map of the ecoregions for Asia? How contiguous are the 
ecoregions? 

Author’s response: The inversion run is done globally with a focus on Asia using a 
nesting domain over Asia. The ecoregions used is 156 regions globally, 40 in the 
verification region (black dashed box in Fig. 1). As mentioned in the manuscript, 240 is 
the number of total ecoregions of the earth including ocean and unused vegetation types. 
The number of effective ecoregions globally is 156, and the 40 is the number of 
ecoregions in the verification region. The 40 ecoregions include mostly ecoregions of 
Asia and a very small portion of ecoregions of Europe. Since the portion of ecoregions 
(i.e., ecoregion indices of 191, 193, 194, 197, 201 in Table 3) of Europe is approximately 
0.5% of the verification region, including ecoregions of Europe does not affect much on 
the verification results. To clarify, we have included Transcom region as well as Land 
ecosystem type in Table 3. In addition, we have revised the text as follows. The added 
parts are underlined. We also have included the map of ecoregions for Asia in Fig. 1b. 

“This means that the optimization of the scaling factors that were assigned to the 
ecoregions of the earth is crucial for the estimation of simulated surface CO2 fluxes. The 
ecoregions are defined as the mix of the modified 19 vegetation types from Olson et al. 
(1992) and 11 Transcom regions (Gurney et al., 2002) on land, with 30 ocean regions. As 
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all 19 vegetation types are not used for the 11 Transcom regions, the number of effective 
ecoregions of the earth is 156 (Peters et al., 2010).” 

“The horizontal resolution of TM5 is 3° x 2° globally and the nested horizontal grid is 1° 
x 1° over Asia, with verification region inside of the nested domain over Asia (Fig. 1). 
The number of ecoregions of the verification region is 40, in which 36 are the Asian 
ecoregions and 4 are the ecoregions of Europe. Since the proportion of the 4 European 
ecoregions is approximately 0.5% of the verification region (Table 3), the verification 
region was considered to be located over Asia. A two-way nested grid was used to 
optimize surface CO2 fluxes in Asia. The model run including both forward and inversion 
runs was done globally with nesting over Asia and verification was done over the 
verification region located in Asia.” 

 

12. Page 5, line 9 - I would mention up front that the fluxes from the flux modules are scaled, 
and not wait until line 19. e.g. at line 9 ‘The estimated surface CO2 fluxes are mainly 
calculated by scaling fluxes from the flux modules composed ...’ 

Author’s response: We have revised the text as the reviewer suggested. 

 

13. Page 5, line 28 - the sentence that begins ‘In addition, also ....’ is not clear. It does not say 
what the model counterparts are. I would replace that sentence with something like ‘From 
this spatiotemporal CO2 distribution, the model equivalents of atmospheric CO2 at the times 
and locations of the observation data can be calculated, and these are used in the data 
assimilation process.’ 

Author’s response: To clarify, we have revised the text considering the reviewer’s 
suggestion. 

“In addition, from this spatiotemporal CO2 distribution, the model atmospheric CO2 
concentrations at the times and locations of the observation data are calculated, and these 
are used for the data assimilation process.” 

 

14. Page 7, line 17 - I would say ‘A statistical method’ rather than ‘The statistical method’, 
otherwise a reader would wonder which method is ’the’ method. I would replace ‘feasible’ 
with ‘meaningful’. 

Author’s response: We have revised the paragraph including the text as follows. We kept 
“feasible” since what we meant is “possible”. The revised parts are underlined. 

“In the EnSRF, the covariance localization method is necessary to reduce the impact of 
the sampling error due to the limited size of the ensemble and to avoid filter divergence 
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due to the underestimation of the background error covariance (Houtekamer and Mitchell, 
2001). Because calculating the physical distance between scaling factors is not feasible, 
instead of the covariance localization method, a statistical method is applied in this study.” 

 

15. Page 8, line 8 - define ya (e.g. = Hxa) and give some information about what it is (e.g. 
model equivalent of observations, or predicted observation). 

Author’s response: We have revised the text as follows. The added parts are underlined.  

“The analysis of the state vector and the influence matrix (𝐒𝐒o) that shows the contribution 
of the observation vector (𝒚𝒚o) to the analysis at the observation space (𝒚𝒚a) (i.e., the 
projection of analysis state vector  𝒙𝒙a on the observation space or model analysis 
equivalent to observations at observation locations) can be defined as:” 

 

16. Page 8, line 12 - replace ’size of observation’ with either ‘size of the observation vector, n’ 
or ‘number of observations, n’. Is that the number of observations at only one time or all 
times? 

Author’s response: The original text was wrong. The dimension of 𝐈𝐈𝑛𝑛 corresponds to 
the dimension of the analysis state vector xa. Thus, we have revised the text as follows. 
The revised parts are underlined.  

“where, 𝐈𝐈𝑛𝑛 is the identity matrix with the size of n-dimensional analysis state vector.” 

 

17. Page 8, line 25 - do you (and should you) assume no correlations between observation 
errors? It seems to me that the errors in your simulated data would be correlated, and also 
likely in the real world. 

Author’s response: The observation errors in data assimilation are usually assumed to 
have no correlations. Although the observation errors in real world would be correlated, 
this no correlation assumption is very common and may be only way in this ensemble 
sensitivity study and data assimilation. Using this assumption, 𝐑𝐑−1 in Eq. (12) can be 
simplified as 1

σ𝑗𝑗2
 in Eq. (14). Please note Liu et al. (2009).  

 

18. Page 9, line 6 - please give more explanation of what So is, e.g. ‘In our case, this would 
be the contribution of a CO2 observation to the inferred CO2 at that model gridcell/time’ - is 
that the correct explanation? 

Author’s response: We have revised the paragraph including the line as follows. The 
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revised parts are underlined. 

“According to Liu et al. (2009) and Kim et al. (2014a), 𝐒𝐒o represents the sensitivity of 
the analysis state vector 𝒚𝒚a to the observation state vector 𝒚𝒚o in the observation space 
(i.e., location). 𝐒𝐒o has a value between 0 and 1, which shows the contribution of a CO2 
observation to the analyzed CO2 at the observation site. If  𝐒𝐒o is close to 0, the analysis 
is mainly derived from the background. In contrast, the influence of observation data to 
the analysis increases as  𝐒𝐒o goes to 1. The self-sensitivity was used as a criterion for 
selecting the observation locations in designing the observation network.” 

 

19. Page 10, line 2 - please explain ‘On the basis of the nautical time zone’. Also explain ‘13 
LST’. 

Author’s response: The text means the 13 local standard time (LST) (i.e., afternoon in 
local standard time) at each time zone. To clarify, we have revised the text as follows. 
The revised parts are underlined.  

“The simulated values around afternoon (i.e., 13 local standard time (LST)) in the mid-
latitudes in the northern hemisphere are averaged and utilized as TRUE data.” 

 

20. Page 10, line 9 - ‘Model-data mismatch (MDM) was set to 3’ - what does the setting of 3 
mean? Is it a setting within Carbontracker, in which case it should be explained. 

Author’s response: MDM corresponds to the observation error covariance in data 
assimilation. The observation error for CO2 mole fraction observations at continuous 
surface observation sites is set to 3 ppm in CarbonTracker. The number 3 ppm for 
continuous surface observation sites is usually used in other inversion modeling system, 
either. To clarify, we have added text (underlined) as follows.  

“Model-data-mismatch (MDM) (i.e., observation error) for CO2 observation was set to 3 
ppm, consistent with the previous setting of 3 ppm for continuous observation site types 
(Peters et al., 2007; Kim et al., 2014b, 2017).” 

 

21. Page 11, line 25 - add ‘for observation j’ to ‘The normalized self-sensitivity for 
observation j is defined...’ 

Author’s response: For consistency, we have revised the text as follows. 

“The normalized self-sensitivity for 𝑗𝑗th observation ~” 
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22. Page 12, section 2.4 - define n for equations 16-18. 

Author’s response: “n” is the total number of model grid-point in the verification 
domain shown in Fig. 1. Thus, we have revised the text as follows. The added parts are 
underlined.  

“where 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑖𝑖 are the surface CO2 fluxes at the 𝑖𝑖th model grid-point of an 
experiment and TRUE, respectively, and n is the total number of model grid-point in the 
verification domain shown in Fig. 1.” 

 

23. Page 15, line 10 - ‘the three experiments show increasing trends’ - be careful that this in 
not misinterpreted as a trend with time. I assume you mean that for RMSD in the summer, 
CTRL>ADD>ALL? Please clarify what is meant here. 

Author’s response: We have revised the text as follows. The revised parts are underlined. 

“In terms of the RMSD, the three experiments show larger values in the summer 
compared to other seasons (Fig. 5c)” 

 

24. Page 16, line 9 - what does ‘enabled in the CT2013B framework’ mean? There may be a 
better way to express this. 

Author’s response: We have revised the text as follows. The revised parts are underlined. 

“In particular, the ALL experiment, which added many observation sites under the given 
modeling framework, shows a high level of reproducibility of TRUE.” 

 

25. Page 16, line 16 - ‘showing the impact of each observation site for the model simulation 
results’ - could you be more specific here about what quantity the impact of the observation 
sites is calculated for. 

Author’s response: As denoted in Section 2.2, the self-sensitivity is the sensitivity of 
inverse model results with respect to the observations assimilated in EnKF data 
assimilation system in CarbonTracker. For each observation at each observation site, the 
self-sensitivity is calculated. For each observation site, all self-sensitivities are added up 
to have self-sensitivity at that site. To clarify, we have revised the text as follows. The 
revised parts are underlined.  

“Since the self-sensitivity is the metric showing the impact of observations at each 
observation site for the model simulation results, as stated in Sect. 2.2, ~” 
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26. Page 17, line 13 and Table 3 - could the ecoregions be described in terms of vegetation 
types rather than just as a number which may not mean anything to the reader? 

Author’s response: We have included ecosystem types in text and tables (Tables 3, 4, 
and 5). We also have added Transcom region information in Tables 3, 4, and 5.  

 

27. Page 18, line 8-9 - These sentences are difficult to follow, consider rephrasing without the 
‘this is in contrast’ beginning to each new sentence. 

Author’s response: We have revised the text as follows. The revised parts are underlined.  

“Nevertheless, the ECOSS experiment that considered both self-sensitivity and ecoregion 
information maintains lower RMSD than the ADD experiment over the experimental 
period. Additionally, except in the period from April to late-August, the RMSD of SS is 
lower than that of ADD, which differs from ADD that is mainly better than CNTL in 
summer, as shown in Fig. 5. Thus, compared to ADD and CNTL, the SS (ECOSS) 
experiment demonstrates improvement in the other seasons except summer (over the 
experimental period).” 

 

28. Page 19, line 5 - ‘because they were derived from an uneven distribution of observation 
sites’ - do you mean an uneven number of sites for each ecoregion? 

Author’s response: We have revised the text as the reviewer indicated.  

 

29. Page 19, line 13 - add ‘each’ after ‘one observation site’ 

Author’s response: We have added the word following the reviewer’s suggestion. 

 

30. Page 20, line 5 - I don’t think ’and this is in contrast’ is the appropriate wording here. 

Author’s response: We have revised the text as follows. The revised parts are underlined.  

“The NSS, NECOSS1, and NECOSS2 experiments show lower RMSDs compared to the 
ADD experiment (Fig. 8c). The RMSD of NSS is lower than that of ADD for most of the 
time, which is different from SS that showed a degradation in summer and little 
improvement in other seasons compared to ADD in Fig. 7c.” 

 

31. Page 21, line 18 - replace ‘below 50oN’ with ‘north of 50oN’ 
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Author’s response: We have changed “below 50° N” with “south of 50° N” since “south” 
is what we meant. 

 

32. Page 21, line 20 - replace ‘slight increases in UR’ with ‘slightly more UR’ 

Author’s response: We have revised the text following the reviewer’s suggestion. 

 

33. Page 21, line 21 - add ‘than REDIST’ after ‘including China and India’. 

Author’s response: We have added the text following the reviewer’s suggestion. 

 

34. Table 6 - Bias in Fig 7 looks like it is lower for ADD than SS and ECOSS – is this 
consistent with the numbers in Table 6? Is the signed biased averaged, or the magnitude? 

Author’s response: As shown in Eq. (17), the BIAS is calculated as the average of 
summed differences between experiment results and truth. Thus, the differences have 
signs, and those signed values at model grid points are summed and averaged. 

The BIAS values of ADD show many positive and negative values and they are cancelled 
out when summed over model grid points. In contrast, the BIAS values of SS and 
ECOSS experiments show dominant specific signs. In this case, the BIAS values are not 
cancelled out and show large values with a certain sign (positive or negative). In Fig. 7, 
the SS shows large positive BIAS on June 7. In this case, the SS shows positive BIAS on 
most of the grid points, thus they are added up to have large positive BIAS. In contrast, 
the ADD shows relatively small BIAS, but the BIAS values of ADD on that day on the 
grid points are not small in magnitude with different signs, thus they are cancelled out 
when summed. 

In contrast, the RMSD considers the magnitude of BIAS as in Eq. (18). Thus, in terms of 
the magnitude of the error, we have to look at the RMSD instead of the BIAS. Although 
some BIAS values of SS and ECOSS show large magnitude on specific days, the average 
values of BIAS and RMSD of SS and ECOSS are smaller than that of ADD.   

Therefore, the BIAS in Fig. 7 and Table 6 are consistent.  

  

35. Figs 3m and 6 - the gap in observing sites in Figs 3m and 6 over the Himalayas is 
presumably due to elevation and therefore practicality of an observing site? Is this worth 
mentioning? 

Author’s response: We have omitted locations that are 2000 m above the mean sea level 
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considering the maintenance of the observing sites. We have added the reason for the gap 
in observing sites over the Tibetan Plateau as follows. The added parts are underlined.  

“In addition, the observation networks that have observation sites at every 2° intervals on 
the land (Fig. 3m, ALL experiment) are suggested as the reference to examine the 
maximum possible impact of additional observation sites. In ALL experiment, the 
observation locations that are located 2000 m above the mean sea level over the Tibetan 
Plateau are not included due to difficult accessibility and maintenance as practical 
observing sites.” 
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ACP-2019-241 (Editor – Rachel Law) 

Response to Reviewer 2 

 

The authors thank the reviewer 2 for a thoughtful review of the manuscript. The responses for 
the reviewer’s specific comments are as follows. 

 

General Comment: 

This paper describes an impact of observation network against carbon cycle estimation by 
using CarbonTracker (CT). An important aspect is that the authors showed realistic solution 
this means that we have the potential to realize this observation network in the future. This 
viewpoint is very important, and I think it is necessary to advance research in this field in the 
future. I’d like to comment from a different perspective than Reviewer 1. I think authors need 
to do some additional experiments to take advantage of the excellent features of this paper. 
One important issue is that the authors show that root mean square error increases in many 
experiments in summer, but the reason is not well specified. Authors should consider this 
reason and suggest ways to reduce large summer uncertainty, if possible, without using ALL 
observations. The other issue is that authors should use observation sites registered in NOAA 
ObsPack but not assimilated in CT. This is because these stations are in operation and can 
be a precondition to be considered when considering future network expansion. The last issue 
is that this paper focuses on only ground observation network. Although it is considered 
unrealistic to use all observation points (ALL), the OSSE should be implemented in 
consideration of the observable area of satellite which can supply much more observation 
area than ground observation network even if the observation accuracy is inferior, if the 
authors want to evaluate the construction of a more realistic carbon cycle observation 
network.  

Author’s response: We have added discussions for large summer uncertainties. The 
specific discussions can be found in the responses to the specific comments 3 and 5 
below.  

We have added the Section 3.6 that considers many observation sites registered in NOAA 
ObsPack. The results based on the observation sites registered in NOAA ObsPack are 
very similar to those based on 7 observation sites used for CT2013B. 

The purpose of this study is introducing the selection strategy (i.e., self-sensitivity and 
ecoregion information) for potential observation sites. Thus, we have examined these 
strategies using the ground observation sites. For the satellite observations, the self-
sensitivity for the satellite observations are not well known yet. We have to know 
characteristics, spatial, and temporal distributions of self-sensitivities for satellite 
observations and how the self-sensitivities of satellite observations are different from 
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those of the ground observations. Thus, the observation network design using both the 
ground observations and satellite observations will be studied in the future after the self-
sensitivities for satellite observations are fully studied. In Section 4, we have added texts 
(underlined) considering this issue as follows.  

“Although the simulation results showed an improvement in performance, the results also 
suggested that adding 10 extra observation sites in Asia may not be sufficient to fully 
optimize surface CO2 fluxes, and more observation sites are required. Reliable 
observation data from some satellite sensors could supplement the model simulations on 
the basis of continuous surface observation sites. As the quality of satellite observation 
data increases, the observation network design for both surface and satellite observation 
data using the strategies (i.e., normalized self-sensitivity and ecoregion information) of 
this study will be investigated in the future.” 

 

Specific Comments:  

1. Page 3, line 20: As we can expect an increase in satellite observation data and quality 
improvement in the future, so it is necessary to consider the mixed use of ground observation 
data and satellite observation data. 

Author’s response: The purpose of this study is showing the validity of the selection 
strategy (i.e., self-sensitivity and ecoregion information) for potential observation sites. 
Thus, we have examined these strategies using the ground observation sites. For the 
satellite observations, the self-sensitivity for the satellite observations are not well known 
yet. We have to know characteristics, spatial, and temporal distributions of self-
sensitivities for satellite observations and how the self-sensitivities of satellite 
observations are different from those of the ground observations. Thus, the observation 
network design using both the ground observations and satellite observations will be 
studied in the future after the self-sensitivities for satellite observations are fully studied. 
In Section 4, we have added texts (underlined) considering this issue as follows.  

“Although the simulation results showed an improvement in performance, the results also 
suggested that adding 10 extra observation sites in Asia may not be sufficient to fully 
optimize surface CO2 fluxes, and more observation sites are required. Reliable 
observation data from some satellite sensors could supplement the model simulations on 
the basis of continuous surface observation sites. As the quality of satellite observation 
data increases, the observation network design for both surface and satellite observation 
data using the strategies (i.e., normalized self-sensitivity and ecoregion information) of 
this study will be investigated in the future.” 

 

2. Page 3, line 25: The authors should refer Patra et al., 2003 as this paper showed global 
CO2 observation network design. 



20 

 

Author’s response: We have referred Patra et al. 2003 as follows. The added text is 
underlined.  

“Observation system simulation experiments (OSSEs), using simulated observation data, 
provide an opportunity to evaluate the impact of observation data from the current and 
potential observation sites on the performance of the modeling system (Patra et al., 2003; 
Yang et al., 2014; Byrne et al., 2017; Wang et al., 2018).” 

 

3. Page 9, Line 14 -15: The difference between hypothetical observations (TRUE) and real 
observation (OBS) is large in the summer, and this seems to be a cause of the increase in 
summer RMSD in each subsequent experiment. In order to analyze the cause of the increase 
in summer RMSD, another observation data that is close to actual observation should be 
used additionally. 

Author’s response: As the reviewer mentioned, the difference between hypothetical 
observations (TRUE) and real observations (OBS) is large in the summer, which causes 
the increase in summer RMSD in OSSE experiments.  

We made hypothetical TRUE CO2 mole fraction data different from OBS because we 
liked to produce hypothetical true data close to real data but not the same. The estimated 
model CO2 mole fractions may represent or similar to the real observed CO2 mole 
fractions, but they are constrained much by the real observation network. Thus, when we 
choose observation sites using several strategies, the experiment using the current 
observation network (i.e., CNTL in this study) has more benefits compared to other 
network designs. To be fairly compared the results from several network configurations, 
we have made hypothetical true CO2 fraction data that is somewhat similar to the real 
feature but still hypothetical.  

The large RMSD in summer is caused by the sensitivity of CO2 flux estimated by 
inversions using different set of observations. In Fig. 6 of Kim et al. (2017) below, it is 
shown that the largest difference in surface CO2 flux between the two experiments (i.e., 
inversion experiments with and without Siberian JR station observations) occurs in June 
and July, which represent the active season of the terrestrial ecosystem with a large 
surface CO2 flux uncertainty. This feature is also shown in Fig. 6 of Kim et al. (2018b) 
below. The optimized biosphere fluxes that are weekly cumulated for EB (Eurasian 
Boreal), ET (Eurasian Temperate), and TA (Tropical Asia) averaged over 2007-2009 
show that the differences between experiments become greater from the summer, which 
implies that the absorption of vegetation in summer has a large impact on the results of 
each experiment. 

Thus, we have revised 2nd paragraph of Section 2.3 and associated texts of Section 3.1 as 
follows. The added parts are underlined.  
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“Figure 2 shows the station-averaged time series of CO2 mole fractions from real 
observations (OBS), EXTASI, SF1, and an average (i.e., simulated hypothetical 
observations: TRUE, hereafter) of EXTASI and SF1. The time series of EXTASI is the 
closest to that of OBS, whereas that of SF1 with a static scaling factor (i.e., 1) differs 
from OBS, particularly in summer. Kim et al. (2017, 2018b) have shown that the largest 
difference in surface CO2 flux estimation between experiments with different settings 
appears in summer, which is associated with more sensitive response of inversion results 
to the inversion model configurations for the active season of the terrestrial ecosystem.” 

“Regarding the BIAS, the three experiments have common variations that increase and 
decrease around zero, and have high amplitudes in summer compared to other seasons 
(Fig. 4b), which is associated with large uncertainties in the CO2 mole fraction 
observations in summer shown in Fig. 2. In particular, CNTL_MOD (CNTL) shows the 
maximum positive BIAS of 23.74 (16.43) in early June. In contrast, the BIAS of REDIST 
is approximately 10.28 at the same time and maintains its value closest to zero among the 
three experiments. Considering the impact of BIAS on steady simulations of the model, 
the time series of BIAS also supports that the observation network of REDIST can 
perform more reliably in optimizing surface CO2 fluxes in Asia compared to that of 
CNTL. 

The RMSDs of all three experiments increase much in summer (Fig. 4c), which may be 
caused by large uncertainties in the CO2 mole fraction observations in summer shown in 
Fig. 2.” 
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Figure 6. The monthly prior (green) and optimized biosphere fluxes averaged from 2002 
to 2009 of the CNTL (blue) and JR (red) experiments with their uncertainties over the (a) 
Eurasian boreal, (b) Eurasian temperate, (c) North American boreal, (d) North American 
temperate, and (e) Europe. (Kim et al. 2017, ACP) 

 

Figure 6. Weekly cumulative flux in: (a) EB, (b) ET, (c) TA region averaged over 2007-
2009. (d), (e), and (f) are the magnifications of (a), (b), and (c) in the latter part of year, 
respectively. Note that EB, ET, and TA region use different scales in y-axis. (Kim et al. 
2018b, APJAS) 
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4. Page 11, Line 24: In addition to the ALL observation network, XCO2 observations of 
already operated satellites (ex. GOSAT, OCO-2) should be discussed as well as the 
expansion of the ground observation network. 

Author’s response: The purpose of this study is showing the validity of the selection 
strategy (i.e., self-sensitivity and ecoregion information) for potential observation sites. 
Thus, we have examined these strategies using the ground observation sites. For the 
satellite observations, the self-sensitivity for the satellite observations are not well known 
yet. We have to know characteristics, spatial, and temporal distributions of self-
sensitivities for satellite observations and how the self-sensitivities of satellite 
observations are different from those of the ground observations. Thus, the observation 
network design using both the ground observations and satellite observations will be 
studied in the future after the self-sensitivities for satellite observations are fully studied. 
In Section 4, we have added texts (underlined) considering this issue as follows.  

“Although the simulation results showed an improvement in performance, the results also 
suggested that adding 10 extra observation sites in Asia may not be sufficient to fully 
optimize surface CO2 fluxes, and more observation sites are required. Reliable 
observation data from some satellite sensors could supplement the model simulations on 
the basis of continuous surface observation sites. As the quality of satellite observation 
data increases, the observation network design for both surface and satellite observation 
data using the strategies (i.e., normalized self-sensitivity and ecoregion information) of 
this study will be investigated in the future.” 

 

5. Page 13, Line 16-17: Authors should clarify why RMSD grows in summer. Additional 
experiments using another hypothetical observation data closer to actual observation data 
may help. Other possible factors are meteorological conditions and rectifier effects. 

Author’s response: As the reviewer mentioned, the difference between hypothetical 
observations (TRUE) and real observations (OBS) is large in the summer, which causes 
the increase in summer RMSD in OSSE experiments.  

We made hypothetical TRUE CO2 mole fraction data different from OBS because we 
liked to produce hypothetical true data close to real data but not the same. The estimated 
model CO2 mole fractions may represent or similar to the real observed CO2 mole 
fractions, but they are constrained much by the real observation network. Thus, when we 
choose observation sites using several strategies, the experiment using the current 
observation network (i.e., CNTL in this study) has more benefits compared to other 
network designs. To be fairly compared the results from several network configurations, 
we have made hypothetical true CO2 fraction data that is somewhat similar to the real 
feature but still hypothetical.  
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The large RMSD in summer is caused by the sensitivity of CO2 flux estimated by 
inversions using different set of observations. In Fig. 6 of Kim et al. (2017) below, it is 
shown that the largest difference in surface CO2 flux between the two experiments (i.e., 
inversion experiments with and without Siberian JR station observations) occurs in June 
and July, which represent the active season of the terrestrial ecosystem with a large 
surface CO2 flux uncertainty. This feature is also shown in Fig. 6 of Kim et al. (2018b) 
below. The optimized biosphere fluxes that are weekly cumulated for EB (Eurasian 
Boreal), ET (Eurasian Temperate), and TA (Tropical Asia) averaged over 2007-2009 
show that the differences between experiments become greater from the summer, which 
implies that the absorption of vegetation in summer has a large impact on the results of 
each experiment. 

Thus, we have revised 2nd paragraph of Section 2.3 and associated texts of Section 3.1 as 
follows. The added parts are underlined.  

“Figure 2 shows the station-averaged time series of CO2 mole fractions from real 
observations (OBS), EXTASI, SF1, and an average (i.e., simulated hypothetical 
observations: TRUE, hereafter) of EXTASI and SF1. The time series of EXTASI is the 
closest to that of OBS, whereas that of SF1 with a static scaling factor (i.e., 1) differs 
from OBS, particularly in summer. Kim et al. (2017, 2018b) have shown that the largest 
difference in surface CO2 flux estimation between experiments with different settings 
appears in summer, which is associated with more sensitive response of inversion results 
to the inversion model configurations for the active season of the terrestrial ecosystem.” 

“Regarding the BIAS, the three experiments have common variations that increase and 
decrease around zero, and have high amplitudes in summer compared to other seasons 
(Fig. 4b), which is associated with large uncertainties in the CO2 mole fraction 
observations in summer shown in Fig. 2. In particular, CNTL_MOD (CNTL) shows the 
maximum positive BIAS of 23.74 (16.43) in early June. In contrast, the BIAS of REDIST 
is approximately 10.28 at the same time and maintains its value closest to zero among the 
three experiments. Considering the impact of BIAS on steady simulations of the model, 
the time series of BIAS also supports that the observation network of REDIST can 
perform more reliably in optimizing surface CO2 fluxes in Asia compared to that of 
CNTL. 

The RMSDs of all three experiments increase much in summer (Fig. 4c), which may be 
caused by large uncertainties in the CO2 mole fraction observations in summer shown in 
Fig. 2.” 
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Figure 6. The monthly prior (green) and optimized biosphere fluxes averaged from 2002 
to 2009 of the CNTL (blue) and JR (red) experiments with their uncertainties over the (a) 
Eurasian boreal, (b) Eurasian temperate, (c) North American boreal, (d) North American 
temperate, and (e) Europe. (Kim et al. 2017, ACP) 

 

Figure 6. Weekly cumulative flux in: (a) EB, (b) ET, (c) TA region averaged over 2007-
2009. (d), (e), and (f) are the magnifications of (a), (b), and (c) in the latter part of year, 
respectively. Note that EB, ET, and TA region use different scales in y-axis. (Kim et al. 
2018b, APJAS) 
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6. Page 15, Section 3.2: As already mentioned, the authors should evaluate the observation 
sites that are included in ObsPack and not assimilated in CT, in the sense that they are most 
feasible. 

Author’s response: We have added the Section 3.6 that considers many observation sites 
registered in NOAA ObsPack. We also have added Figs. 11 and 12 in the Section 3.6. 
The results based on the observation sites registered in NOAA ObsPack are similar to 
those based on 7 observation sites used for CT2013B. 

 

7. Page 16, Section 3.3: As shown in general comments, authors should implement OSSE that 
assumes satellites in actual operation (data coverage, accuracy, etc.). 

Author’s response: The purpose of this study is showing the validity of the selection 
strategy (i.e., self-sensitivity and ecoregion information) for potential observation sites. 
Thus, we have examined these strategies using the ground observation sites. For the 
satellite observations, the self-sensitivity for the satellite observations are not well known 
yet. We have to know characteristics, spatial, and temporal distributions of self-
sensitivities for satellite observations and how the self-sensitivities of satellite 
observations are different from those of the ground observations. Thus, the observation 
network design using both the ground observations and satellite observations will be 
studied in the future after the self-sensitivities for satellite observations are fully studied. 
In Section 4, we have added texts (underlined) considering this issue as follows.  

“Although the simulation results showed an improvement in performance, the results also 
suggested that adding 10 extra observation sites in Asia may not be sufficient to fully 
optimize surface CO2 fluxes, and more observation sites are required. Reliable 
observation data from some satellite sensors could supplement the model simulations on 
the basis of continuous surface observation sites. As the quality of satellite observation 
data increases, the observation network design for both surface and satellite observation 
data using the strategies (i.e., normalized self-sensitivity and ecoregion information) of 
this study will be investigated in the future.” 

 

8. Page 18, Line 1-2: Authors should consider and show the reason (There are other similar 
examples). 

Author’s response: The SS strategy determines the potential observation sites based on 
SS values. The SS values can be concentrated in relatively small area, or in certain 
ecoregions. This concentration of large SS values can cause few observation sites in other 
ecoregions since we have a limited number of observation sites as an addition constraint. 
Thus, the SS strategy can cause a larger bias in certain period. To clarify, we have 
revised the text as follows. The added and revised parts are underlined.  
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“However, the BIAS of SS shows a sudden increase in early June, with a maximum 
positive BIAS of 21.79 (Fig. 7b), which is associated with concentrated sites by large SS 
values in certain ecoregions that cause not enough DA in other ecoregions. Although the 
BIAS of ECOSS is generally closer to 0 than that of ADD, except in July, ECOSS shows 
the maximum negative BIAS of -15.78 in late July. These tendencies suggest that the DA 
method that optimizes parameters such as the scaling factor used in CT2013B may 
occasionally have trouble in optimizing surface CO2 fluxes when using limited 
observation sites for a larger area.” 

 

9. Page 20, Section 3.5: Authors should show summer RMSD of surface CO2 fluxes and 
discuss their features. 

Author’s response: Following the reviewer’s suggestion, we investigated the summer 
(from June to August) RMSD of surface CO2 fluxes (Fig_rev2). Although the magnitude 
of the summer RMSD is stronger than that of all year (Fig. 9 in the manuscript), the 
characteristics of the spatial distributions for all year and for three months in summer are 
very similar. Since the summer RMSD governs the RMSD of all year, they are similar. 
Thus, we have not included the Figure for summer RMSD in the revised manuscript. 
Instead, we have included the text below at the end of the first paragraph of Section 3.5. 

“The spatial RMSD distribution during the summer from June to August (not shown) is 
also similar to that for whole year shown in Fig. 9.” 
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Figure_rev2. The spatial distribution of the average of weekly RMSD of surface CO2 fluxes 
(gC m-2 yr-1) from June to August for a) the CNTL, b) the REDIST, c) the ADD, d) the SS, e) 
the ECOSS, f) the NSS, g) the NECOSS1, h) the NECOSS2, and i) the ALL experiments. 

 

10. Table 3-6: Since Ecoregion Index is difficult to understand intuitively, authors should 
include the region number and vegetation type. 

Author’s response: Following the reviewer’s suggestion, we have added Transcom 
region and ecosystem type information in Tables 3, 4, and 5. 

 

11. Figure 1: The authors should specify Transcom region boundaries in Asia. If the 
vegetation type can be illustrated, it is still preferable. 

Author’s response: Following the reviewer’s suggestion, we have included the map of 
Transcom regions and ecoregions for Asia in Fig. 1b. We also have added Transcom 
region information in Tables 3, 4, and 5.  

 

 



29 

 

References 

Byrne, B., Jones, D. B. A., Strong, K., Zeng, Z. C., Deng, F. and Liu, J.: Sensitivity of 
CO2 surface flux constraints to observational coverage, J. Geophys. Res. Atmos., 
122(12), 6672–6694, doi:10.1002/2016JD026164, 2017. 

Kim, H., Kim, H. M., Kim, J. and Cho, C.-H.: Effect of data assimilation parameters on 
the optimized surface CO2 flux in Asia, Asia-Pacific J. Atmos. Sci., 54(1), 1–17, 
doi:10.1007/s13143-017-0049-9, 2018b. 

Kim, J., Kim, H. M., Cho, C. H., Boo, K. O., Jacobson, A. R., Sasakawa, M., Machida, T., 
Arshinov, M. and Fedoseev, N.: Impact of Siberian observations on the optimization of 
surface CO2 flux, Atmos. Chem. Phys., 17(4), 2881–2899, doi:10.5194/acp-17-2881-
2017, 2017. 

Patra, P. K., Maksyutov, S. and TransCom-3 modelers: Sensitivity of optimal extension of 
observation networks to the model transport, Tellus B, 55, 498– 511, 2003. 

Wang, Y., Broquet, G., Ciais, P., Chevallier, F., Vogel, F., Wu, L., Yin, Y., Wang, R. and 
Tao, S.: Potential of European 14 CO2 observation network to estimate the fossil fuel 
CO2 emissions via atmospheric inversions, Atmos. Chem. Phys, 185194(July), 4229–
4250, doi:10.5194/acp-18-4229-2018, 2018. 

Yang, E.-G., H. M. Kim, J. Kim, and Kay J. K.: Effect of observation network design on 
meteorological forecasts of Asian dust events, Monthly Weather Review, 142, 4679-4695, 
doi:10.1175/MWR-D-14-00080.1, 2014. 


